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The generation of robust systemic and mucosal antibody and cell-mediated immune (CMI) responses that
are protective, long-lasting, and can quickly be recalled upon subsequent re-exposure to the cognate anti-
gen is the key to the development of effective vaccine candidates. These responses, whether they repre-
sent mechanistic or non-mechanistic immunological correlates of protection, usually entail the activation
of T cell memory and effector subsets (T-CMI) and induction of long-lasting memory B cells. However, for
ETEC and Shigella, the precise role of these key immune cells in primary and secondary (anamnestic)
immune responses remains ill-defined. A workshop to address immune correlates for ETEC and
Shigella, in general, and to elucidate the mechanistic role of T-cell subsets and B-cells, both systemically
and in the mucosal microenvironment, in the development of durable protective immunity against ETEC
and Shigella was held at the recent 2nd Vaccines against Shigella and ETEC (VASE) conference in June
2018. This report is a summary of the presentations and the discussion that ensued at the workshop.
� 2019 The Authors. Published by Elsevier Ltd. This is an openaccess article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction

Enterotoxigenic Escherichia coli (ETEC) and Shigella are two-
leading attributable bacterial causes of diarrhea in young children
and in travelers to endemic regions While improved access to
nutrition, general infrastructure improvements and prevention
strategies such as water, sanitation and hygiene (WASH)
approaches have led to decreases in global diarrheal disease mor-
tality due to ETEC and Shigella, disease burden and diarrheal mor-
bidity remain high in resource poor settings in Africa and Asia
[1,2]. Prevention of ETEC and Shigella infections can be much
improved through vaccination, but there are no licensed vaccines
for either pathogen [3,4]. Progress has been hampered by the lim-
ited knowledge of immunological mechanisms that protect the
host against these pathogens and relevant immunological parame-
ters that can predict disease outcome and/or vaccine efficacy [5].

While, in general, mucosal IgA responses to either colonization
factors (CFs) or the heat labile toxin have been observed to be asso-
ciated with protection against ETEC diarrhea and serum IgG
responses to either LPS or conserved Ipa proteins to be associated
with protection against shigellosis, distinct immunological corre-
lates of protection (CoP) for ETEC and Shigella are yet to be identi-
fied [6]. To address this need, a workshop entitled, ‘‘Role of antigen
specific T and B cells in systemic and mucosal immune responses
in ETEC and Shigella infections, and their potential to serve as cor-
relates of protection in vaccine development” was held at the
recent Vaccines against Shigella and ETEC (VASE) meeting in June
2018, featuring a panel of experts provided an opportunity to dis-
cuss and share advances in Shigella and ETEC immunology pertain-
ing to mechanistic observations from natural studies and vaccine
trials, identify gaps and propose strategies to uncover CoP for these
two major pathogens. Five presentations (three in ETEC and two in

http://crossmark.crossref.org/dialog/?doi=10.1016/j.vaccine.2019.03.040&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.vaccine.2019.03.040
http://creativecommons.org/licenses/by/4.0/
mailto:sach.mani@gmail.com
mailto:msztein@som.umaryland.edu
https://doi.org/10.1016/j.vaccine.2019.03.040
http://www.sciencedirect.com/science/journal/0264410X
http://www.elsevier.com/locate/vaccine


4788 S. Mani et al. / Vaccine 37 (2019) 4787–4793
Shigella) featured current knowledge on humoral and T-CMI
responses to Shigella and ETEC during natural infection and vacci-
nation. A discussion followed on strategies toward identification
and selection of immunological correlates that would transcend
all age groups, immune status and vaccination modalities. Specific
recommendations proposed to facilitate ‘‘the path forward”
included designing appropriate controlled human infection model
(CHIM) studies that would mimic various target populations, as
well as utilizing tools to better decipher the immune response.
2. Correlates and mechanistic observations from natural ETEC
infections and ETEC vaccination [Drs. F. Qadri, icddr,b and AM.
Svennerholm, University of Gothenburg]

Protection against ETEC is most likely provided locally at the
site of ETEC colonization in the small intestine by secretory IgA
antibodies against ETEC colonization factors (CFs), the heat labile
toxin (LT) and potentially other protective ETEC surface antigens.
Observations from natural infection studies have demonstrated
relationships between pre-immune titers (antibody levels in serum
and/or mucosal specimens) against ETEC antigens and incidence of
diarrheal disease caused by ETEC expressing the corresponding
antigens.

Data from birth cohort studies have shown that a repeat epi-
sode of diarrhea or infection by the homologous CF type was
uncommon in children with symptomatic or asymptomatic infec-
tions by CFA/I, CS1 plus CS3, CS2 plus CS3, or CS5 plus CS6 strains
[7]. In ETEC challenge studies, increased levels of plasma IgA and
IgG antibodies to LTB, CFA/I and CS6 were observed at day 7 after
ETEC infection with concomitant increases in circulating antibody
secreting cells (ASCs) of IgA and IgG isotypes for these three anti-
gens [8,9] However, while natural infection with ETEC leads to
increases in LTB, CFA/I and CS6 specific antibodies and antigen
specific ASC at early convalescence, only increases in LTB and
CFA/I specific responses were observed at late convalescence LTB
and CFA/I specific memory B cell responses were also elevated in
patients with ETEC diarrhea. When antibody avidity index (AI)
was correlated with memory B cell (BM) responses in patients
infected with ETEC, IgA specific AI strongly correlated with IgA-
MBC for both CFA/I and CS6 antigens [8]. Good correlations were
observed between gut homing ASCs and specific antibody isotypes
[9].

An orally administered inactivated ETEC vaccine candidate con-
sisting of a combination of recombinantly produced CTB (rCTB) and
formalin-inactivated ETEC bacterial strains expressing the CFs CFA/
I and CS1-CS5, as well as some of the most prevalent ETEC O-
antigens, the rCTB-CF ETEC vaccine, was developed [10] and suc-
cessfully evaluated in Phase I and II trials in adult volunteers in
Sweden, Bangladesh and Egypt, where the vaccine was well toler-
ated and elicited mucosal immune responses against the different
vaccine CFs in >70% of the vaccinees [11–13]. The protective effi-
cacy of the vaccine was evaluated in two large placebo-
controlled Phase III trials in American travelers going to Mexico
and Guatemala. In these studies, the vaccine was shown to provide
protection against moderate to severe diarrhea (MSD) caused by
ETEC strains expressing vaccine preventable outcomes (VPOs),
i.e., vaccine related antigens [14]. When anti- CTB serum IgA titers
induced by the vaccine at arrival in Guatemala was evaluated as a
marker for reduced risk for developing traveler’s MSD, an anti-CTB
titer greater than 360 was observed to reduce the risk of develop-
ing MSD. In a similar study in Egypt, higher anti-CFA/I IgG titers in
serum of rCTB ETEC vaccinated Egyptian children less than
18 months correlated inversely with the development of ETEC
CFA/I diarrhea [15]. In a subsequent Phase I study in adult Swedish
volunteers, the improved oral inactivated ETEC vaccine, ETVAX
consisting of recombinant ETEC strains overexpressing ETEC CFs
and an LT toxoid, in the presence of the double mutant (dm)LT
adjuvant was evaluated [16]. In this study, as many as 83% of the
vaccinees given two oral doses of ETVAX + 10 mg dmLT responded
robustly to all five primary vaccine antigens (CFA/I, CS3, CS5, CS6
and LTB) [16]. When LTB responses were further dissected, 97%
of the responders generated an over 15-fold rise in mucosal IgA
responses and over 80% had neutralizing Ab to the LT toxin. When
previously vaccinated volunteers were recalled and given an oral
vaccine boost one to two years later, responses against CFs
expressed by the vaccine were much higher than in naïve individ-
uals given a single dose of the vaccine [17]. The ETVAX + 10 mg
dmLT also induced strong IFN-c and IL-17A T cell responses to all
vaccine CFs and LTB; depletion experiments verified that these
responses were primarily produced by vaccine + dmLT induced
CD4 + T cells [Lundgren et al., unpublished]. Observations from a
descending age study in Bangladesh demonstrated that 100% of
adults responded with mucosal immune responses to the five pri-
mary vaccine antigens [18] and that children down to 6 months of
age responded with significant mucosal fecal and or ASC/ALS
responses to all those antigens [Svennerholm et al., unpublished
data]. In summary, birth cohorts, CHIM and vaccine studies all
point to an important role of anti-CF and anti-LT mucosal immune
responses in protection against ETEC associated diarrhea.
3. ETEC infection and vaccination: insights from a pig model
[Dr. Bert Devriendt, Ghent University]

Natural ETEC infections in livestock such as pigs cause neonatal
and post-weaning diarrhea, resulting in severe economic losses to
the pig industry due to mortality, reduced growth rates and
increased medication [19]. In addition to the physiological and
immunological similarities between humans and pigs, ETEC patho-
genesis in swine is identical to that in humans. This attribute
makes swine an ideal large animal model to study host-pathogen
interactions in the gut as well as evaluate vaccination strategies
to prevent pediatric ETEC infections [20]. Like humans, involve-
ment of fimbriae in adhesion to the small intestinal epithelium,
make them ideal targets for vaccine strategies against porcine ETEC
strains. The most prevalent porcine ETEC strains are those that pos-
sess F4 and F18 fimbriae, whose receptors are aminopeptidase N
(APN) and blood group ABH type 1 carbohydrates [21,22]. These
receptors govern susceptibility to ETEC infection and are also
required to mount robust intestinal immunity upon oral vaccina-
tion with fimbriae-based vaccines.

Clearance of ETEC infections in pigs is associated with the
induction of fimbriae-specific secretory IgA (SIgA) in intestinal tis-
sues, such the small intestinal lamina propria and mesenteric
lymph nodes [23]. Induction of these SIgA probably involves
fimbriae-specific intestinal Th17 cells [24]. This mechanism was
evaluated in a few oral immunization studies with purified fim-
briae that in susceptible piglets triggered local fimbriae-specific
SIgA, which provide protection against challenge infection with
the homologous ETEC strain [25,26]. This was associated with the
induction of fimbriae–specific IL17-producing lymphocytes in
blood and intestinal tissues [24].

In piglets, passive protection afforded by either maternal anti-
bodies or SIgA antibodies in feed have helped to overcome some
of the constraints posed by oral vaccination strategies on an imma-
ture immune system. In some instances, preexisting maternal anti-
bodies at the time of oral vaccination, help to boost vaccine
efficacy. Upon withdrawal of milk from piglets, fimbriae-specific
maternal antibodies in serum might enhance the efficacy of oral
vaccination with purified fimbriae in these piglets [27]. In other
instances, artificial strategies to prolong passive immunity such
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as delivery of fimbriae-specific SIgA molecules produced in plant
seeds and given to the piglets in their feed provided protection
to the piglets against challenge infection with ETEC – helping them
tide over the time needed by their immune systems to mount an
active response [28]. Use of these plantibodies have helped to
bridge the gap between passive and active immunity.

In summary, fimbriae-specific receptors are necessary for sus-
ceptibility to ETEC infection and to trigger robust local SIgA
responses upon oral vaccination with fimbriae-based vaccines,
which provide protection to piglets against ETEC-induced diarrhea.
4. Review of mechanistic T follicular/helper (TFH) responses
across two studies – ETEC challenge and ETVAX vaccination
[Drs. Monica M. McArthur and Marcelo B. Sztein, CVD,
University of Maryland School of Medicine]

The third presentation of the workshop focused on T-CMI
responses in volunteers challenged with wild-type ETEC strain
H10407. Since ETEC is a non-invasive luminal pathogen, mucosal
humoral responses are believed to be a major contributor to pro-
tection. Given the key role that CD4+ T cells play in the develop-
ment, enhancement and maintenance of antibody responses, it is
critical to also understand the role of this critical effector arm of
the immune response including the production of key Th1 cytoki-
nes such as IL-2, IFN-c, IL-17A, in response to antigenic stimulation
[29]. Circulating T follicular/helper (cTFH) cells are a key CD4+ sub-
set characterized by the expression of CXCR5 that plays a critical
role in promoting humoral responses [30]. In general, development
of systemic and mucosal antibody responses to ETEC are driven by
effector immunity components such as CD4+ and cTFH activation,
cytokine production and expression of homing molecules. Periph-
eral blood mononuclear cells (PBMC) collected both pre- and
post-challenge during a recent ETEC CHIM study were evaluated
for CD4+, and, cTFH responses following challenge with wild-type
(wt) ETEC. CD4+ T cell responses to in vitro stimulation with ETEC
antigens pre- and post-challenge and their association with long-
term B memory (BM) responses were also evaluated. Increased pro-
duction of CFA/I-specific TNF-a and IL-2 by multifunctional CD4+ T
cells 3 days after challenge were observed in volunteers who did
not develop disease (Resistant) following challenge [31]. Signifi-
cantly higher levels of integrin a4b7 expression, a molecule associ-
ated with homing to the gut, the site of initial encounter with ETEC
[32], were also observed in CD4+ T cells from volunteers who were
Resistant, suggesting that these CD4+ cells possess the ability to
home to the site of pathogen encounter and may play a role in pro-
tection. The higher expression of integrin a4b7 in cTFH of Resistant
volunteers, at day 3 post challenge, correlated with lower cumula-
tive stool volumes and with ETEC-specific IgA BM responses [31].
These results support the notion that interaction between
antigen-specific cTFH and their B cell counterparts in the gut-
associated lymphoid tissues such as Peyer’s patches and/or mesen-
teric lymph nodes, results in antigen-specific BM responses which
may confer long-term protection in humans.

Very recently, the observations that exposure to ETEC results in
the induction of cTFH were confirmed in a study involving Swedish
adults who received 2 doses of the oral inactivated ETVAX ETEC
vaccine [33]. These studies showed enhanced expression of ICOS,
IL-21, Th17 markers and integrin b7 by activated cTFH cells in anti-
body secreting cell (ASC) ‘‘responders” within 1 week after primary
vaccination. Moreover, co-culture experiments showed that cTFH
cells promoted post-vaccination memory B cells to differentiate
and secrete higher levels of LTB-specific IgA antibodies. Taken
together, these two studies suggest that activated cTFH cells are
mobilized into blood after oral vaccination or wild-type ETEC chal-
lenge and may be used as biomarkers of ETEC vaccine specific
mucosal memory in humans. Thus, further exploration of T cell
responses, particularly cTFH, and their role in protection against
ETEC are warranted.
5. Serum IgG antibodies to Shigella LPS – a correlate of
protection against shigellosis (Drs. Daniel Cohen, Tel Aviv
University and Armelle Phalipon, Institut Pasteur)

Observations from natural and experimental infections with
Shigella have shown that these exposures confer serotype specific
immunity to subsequent Shigella exposure of the same serotype
in around 70% of the individuals [34–38]. This protection lasts for
around two years and suggests that the O-specific polysaccharide
of Shigella LPS is the protective antigen against shigellosis [36–
38]. In observational sero-epidemiological studies, pre-existing
anti-LPS IgG antibodies to S. sonnei or S. flexneri 2a decreased the
likelihood of subsequent shigellosis with the homologous, but
not the heterologous Shigella species, supporting previous data
on occurrence of serogroup-specific immunity after shigellosis
[39,40]. These findings are supported by data in which the pres-
ence of serum IgA and IgG antibodies prior to experimental chal-
lenge with virulent S. sonnei was correlated with protection
against illness [41].

In view of the data showing that serum IgG to Shigella LPS were
associated with resistance to shigellosis caused by the homologous
serotype, experimental Shigella conjugate vaccines were generated
at the National Institutes of Health (NIH) by John Robbins and
Rachel Schneerson using detoxified O-specific polysaccharide from
S. sonnei or from S. flexneri 2a covalently bound to the recombinant
Pseudomonas exoprotein A (rEPA) (S. sonnei-rEPA, S. flexneri 2a -
rEPA) [42,43]. The S. sonnei-rEPA conjugate vaccine was found to
elicit stronger increases in the titers of serum IgG antibodies
against homologous LPS, when compared to natural infection
[44,45]. Data from two efficacy trials of a S. sonnei conjugate vac-
cine and from S. sonnei human challenge studies also confirm a
strong association between the level of serum IgG antibodies to
Shigella LPS and reduced risk of homologous naturally occurring
or induced shigellosis. In the 1st field efficacy trial, 74% protection
was observed in young adults with a strong increase in serum IgG
titers following the single injected dose of the vaccine [44]. In a
subsequent study in children aged one to four years, protection
from S. sonnei shigellosis was age dependent after two doses of
the S. sonnei conjugate vaccine and correlated with the levels of
anti-S. sonnei LPS IgG. In children aged three to four years, protec-
tion was as high as 71% that dropped to less than 5% in children
less than two years of age [46]. When functionality of the serum
antibodies was evaluated in adults who received the S. sonnei-
rEPA vaccine, 78% of the responders had specific S. sonnei IgG
exhibiting strong serum bactericidal activity. A synthetic
carbohydrate-based conjugate vaccine, SF2a-TT15 against S. flex-
neri 2a was designed and constructed at Institut Pasteur [47,48]
aiming to obtain a more immunogenic vaccine conferring protec-
tion against shigellosis in children younger than 3 years of age. In
a phase I study recently completed in Israel, the SF2a-TT15 conju-
gate vaccine induced a stronger serum IgG response as compared
with the 1st generation of detoxified O-specific polysaccharide-
based S. flexneri 2a- rEPA conjugate [49, Cohen D et al.,
unpublished data]. These data in humans with the SF2a-TT15 con-
jugate corroborate previous findings in mice showing that Shigella
conjugates with shorter synthetic saccharides can be stronger
inducers of anti-LPS IgG than conjugates incorporating the whole
O-SP of the same strain [49]. The protective efficacy of the SF2a-
TT15 conjugate and the role of serum IgG raised against S. flexneri
2a LPS induced by the vaccine as correlates of protection will be
further evaluated in a controlled human infection model.
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6. Review of mechanistic observations from Shigella vaccine
and challenge studies [Drs. Franklin Toapanta and Marcelo B.
Sztein, CVD, University of Maryland School of Medicine]

The final presentation focused on T-CMI responses in volunteers
challenged with Shigella as well as those that were vaccinated with
live-attenuated Shigella vaccine candidates that mimic various
aspects of the initial steps of infection in humans. Shigella, being
an intracellular pathogen not only infects gut epithelial cells, but
also gut immune cells such as macrophages, T cells and B cells
[50–55]. Macrophages and B cells are antigen-presenting cells,
which can efficiently stimulate and activate T cells. Therefore, Shi-
gella infections are expected to induce T-CMI; however, very little
data regarding these immune responses are available. Previous
studies had provided indirect evidence of these responses. For
example, rectal biopsies of acutely infected or convalescent human
volunteers showed activation of intraepithelial T cells and macro-
phages. Moreover, IL-1a, IL-1b, IFN-c, TNF-a, IL-1Ra, IL-6, IL-8,
IL-4, IL-10 and TNF-b were detected in rectal tissues [56]. In
patients with S. dysenteriae 1 infections, IFN-c was identified in
rectal tissues and the levels of this cytokine were higher in conva-
lescent volunteers than in those with acute disease. Moreover,
immunity to shigellosis correlated with up regulation of IFN-c
and IFN-cR [57]. Given the limited availability of specimens from
Shigella CHIM studies, live-attenuated Shigella vaccine candidates,
which mimic various aspects of the initial steps of infection in
humans, have provided opportunities to explore induction of T-
CMI in peripheral blood (PBMC and sera). Vaccines such as
SFL1070 (S. flexneri 2a; DaroD) induced cells that produced IFN-c
upon stimulation with S. flexneri 2a polysaccharide antigen or Ipa
[58]. Studies using other vaccine candidates, such as CVD 1203
(DaroA, DvirG), SC595 (DstxA), WRSS1 (DvirG), and CVD 1208S
(DguaBA, Dsen, Dset) have also shown the induction of cytokines
either in sera or by PBMC upon ex-vivo stimulation with Shigella
antigens [59–62].

Despite all these advances, the identity of the T cell subsets pro-
ducing the cytokines at the local (intestine) and systemic levels
remains rather limited. A recent report using CVD 1208S, showed
that upon 3 oral vaccine doses, �70–90% of vaccinees exhibited
T-CMI responses [63]. T-CMI was detected in both CD8+ and CD4
+ T cells. T effector memory (TEM) and central memory (TCM) sub-
sets were the main cytokine producers and CD107a-expressors. T
cells capable of simultaneously expressing multiple functions
(e.g., producing more than one cytokine and/or expressing defined
activation markers such as CD107a), are dubbed multifunctional
(MF). The presence of these cells has been associated with opti-
mized effector functions, and protection from disease in multiple
systems [64,65]. Multifunctional (MF) cells were also detected in
CD8 TEM and cells with 2–3 functions were the most abundant.
Moreover, the cells that produced higher levels of cytokines, also
expressed higher levels of integrin a4b7. These data expanded on
the previous knowledge that Shigella induces T-CMI and demon-
strated that various CD8+ and CD4+ T cells subsets were responsi-
ble for producing cytokines and upregulating CD107a. Despite
these observations, the lack of CHIM Shigella studies were T cell
subsets were evaluated that makes it impossible, at present, to cor-
relate these markers with protection from disease. Thus, vaccina-
tion followed by challenge studies are urgently needed to
address these critical questions. Of note, the assay to determine
T-CMI initially developed by conventional flow cytometry has been
modernized to take advantage of mass cytometry, a platform that
allows evaluation of a wider variety of cell subsets. The current
mass cytometry panel for T-CMI is composed of 38 unique makers
to study not only CD4 and CD8 T effector memory subsets, but also
cTFH cells and other subsets. Of note, expanding T-CMI studies to
include cTFH cells is crucial since cTFH drive the development of
BM cells, and consequently effective humoral vaccine responses.

Immunization with live attenuated Shigella vaccine candidates
elicited strong IgG and IgA responses to Shigella LPS and IpaB as
well as IpaB-specific B memory cells [66–68]. However, the
methodologies available at the time that these trials were per-
formed did not allow for comprehensive characterization of these
responses. As mentioned above, novel methodologies such as mass
cytometry are currently being used to identify antigen-specific B
cells that bind Shigella and other enteric bacterial pathogens with
high avidity. In a proof of principle experiment, when PBMC from
a wild-type Salmonella Typhi challenge study (S. Typhi CHIM) were
studied using multiparametric analysis, the percentage of S. Typhi-
specific B cells in volunteers who developed typhoid disease upon
challenge showed distinct differences in phenotypic markers, com-
pared to pre-challenge levels [Toapanta F, Sztein M et al., unpub-
lished data]. Dimensionality reduction algorithms, such as t-
Distributed Stochastic Neighbor Embedding (t-SNE), allowed for
the identification of clusters of cells that were part of the B cell
naïve subset and that had diverse expression of multiple markers
(e.g., CD40, CD38, CD95, CD69, CXCR5) depending on disease
development. Mass cytometry can be similarly employed in Shi-
gella CHIM studies, to identify antigen-specific B cell subsets that
might be associated either with disease protection or disease
susceptibility.

7. Discussion

Following the presentations, discussions revolved around the
difficulties of defining immune correlates of protection and outlin-
ing what are the best CoP currently available. This was followed by
an overview of the attributes that an immune correlate must pos-
sess as well as the endpoint that is being targeted. The recommen-
dations from participants in the correlates of enteric vaccine-
induced protection conference helped to guide the panel discus-
sion [69–71,6].

In reviewing key points from the five talks, it was observed that
there was a general agreement that in ETEC, protection is most
likely provided by SIgA antibodies against CFs, LT (and potentially
other protective antigens) produced locally in the small intestine,
whereas in the case of Shigella, serum IgG responses to Shigella
LPS appear to correlate with protection. However, these responses
varied widely among bacterial strains and serotypes, vaccine type,
adjuvants used, route of immunization, age, nutritional and
immune status. What constitutes protection has also been difficult
to be accurately defined in diarrheal diseases – is it protection
against infection or disease? Even when considering disease pre-
vention, there is a wide range of definitions, from aiming to curtail
severe disease to targeting any/most disease manifestations.

In many instances, serological measures of immunogenicity
have not correlated with protection. For instance, no correlations
were observed between antibodies to LPS present at the time of
challenge and resistance to typhoid fever upon exposure to wt S.
Typhi [72]. In contrast, T-CMI, especially multifunctional CD8+
TEM responses correlated with protection upon challenge with S.
Typhi, highlighting the need for a better understanding of T-CMI
and B memory responses to have a more complete view of the
mechanisms that could be involved in protection [73]. However,
S. Typhi, Shigella and ETEC are Gram negative bacteria with very
different pathogenic mechanisms; thus, caution should be exer-
cised when attempting to equate CoP between these enteric bacte-
rial infections. While there was consensus that it is important to
dissect and understand the role of memory B cells and cTFH cells
in driving protective responses, an immune correlate should be
easily measurable, and efforts should be directed to identify a
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threshold of antibody (and isotype) levels that correlate with pro-
tection. While this attribute, in general, could be extremely useful
in defining a CoP early after vaccination, defining the role of B and
T CMI memory in driving serological and mucosal immune
responses could be very important in helping to predict the long-
evity of protective responses induced by vaccination and/or expo-
sure to the pathogens.

Limitations of current assay methodologies in accurately mea-
suring pathogen specific mucosal immune response is a challenge
that must be addressed. For instance, in ETEC, anti-CF and anti-
enterotoxin IgA responses are localized in the lumen of the small
intestine, making it difficult to sample and accurately measure.
Whilst Antibodies in Lymphocyte Supernatants (ALS) assays mea-
suring IgA antibodies in supernatants from cultured PBMC are
likely to be reflective of local mucosal IgA responses, this proce-
dure is labor intensive and difficult to scale up for field studies.
On the other hand, measuring IgA in fecal extracts, while easier
to perform, has inherent variability that needs to be extensively
standardized. These challenges restrict both assays to very few
specialized laboratories [6].
8. Recommendations

Following the broad ranging discussion, the panel, as well the
audience participants emphasized the need for additional opportu-
nities to interact and exchange data, information and materials
with the goal to facilitate identifying CoP that support vaccine
development and licensure for ETEC and Shigella vaccines. A few
specific recommendations were proposed towards achieving this
goal:

a. Design targeted CHIM studies using a variety of vaccine
types, adjuvants and routes of immunization that would
afford the evaluation of both humoral and cellular responses
and to correlate the observed responses with protection
from disease.

b. Design and perform sero-epidemiological studies in children
and adults in highly endemic regions to examine candidate
pre-existing immunological parameters as correlates of a
reduced risk to develop homologous disease under natural
conditions of exposure.

c. Expand the technologies to access mucosal tissue and fluid
samples in the appropriate gut segments for the bacterial
infection being studied to help define CoP in mucosal tissues.

In conclusion, defining correlates of protection are a key
requirement to advance the development of vaccines against ETEC
and Shigella. Evaluation of these responses with selected vaccine
candidates should then be performed at the appropriate time
points in vaccine trials in endemic areas.
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