
HAL Id: pasteur-02874588
https://pasteur.hal.science/pasteur-02874588v1

Submitted on 19 Jun 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

CRISPR in Parasitology: Not Exactly Cut and Dried!
Jessica Bryant, Sebastian Baumgarten, Lucy Glover, Sebastian Hutchinson,

Najma Rachidi

To cite this version:
Jessica Bryant, Sebastian Baumgarten, Lucy Glover, Sebastian Hutchinson, Najma Rachidi. CRISPR
in Parasitology: Not Exactly Cut and Dried!. Trends in Parasitology, 2019, 35 (6), pp.409-422.
�10.1016/j.pt.2019.03.004�. �pasteur-02874588�

https://pasteur.hal.science/pasteur-02874588v1
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr


Review
CRISPR in Parasitology: Not Exactly Cut and
Dried!
Jessica M. Bryant,1,2,3,* Sebastian Baumgarten,1,2,3 Lucy Glover,4 Sebastian Hutchinson,2,5 and
Najma Rachidi2,6
Highlights
CRISPR/Cas9 genome editing tech-
nology has greatly advanced functional
studies in parasites such as Leishma-
nia, Plasmodium, and Trypanosoma,
and insect vectors, including
Anopheles.

In Plasmodium falciparum and Plas-
modium yoelii, alternative CRISPR-
based technologies such as CRISPRi
can modulate gene expression in the
absence of genome editing.

In Leishmania major, Leishmania
donovani, and Leishmania mexicana,
a streamlined and highly efficient
CRISPR/Cas9 system makes high-
throughput mutant screens possible.

In Trypanosoma brucei, CRISPR/Cas9
makes highly efficient marker-free
gene editing possible.

In Anopheles gambiae and Anopheles
stephensi, CRISPR/Cas9-based gene
drive systems show promise in advan-
cing population suppression and
replacement efforts.
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CRISPR/Cas9 technology has been developing rapidly in the field of parasitol-
ogy, allowing for the dissection of molecular processes with unprecedented
efficiency. Optimization and implementation of a new technology like CRISPR,
especially in nonmodel organisms, requires communication and collaboration
throughout the field. Recently, a ‘CRISPR in Parasitology’ symposium was held
at the Institut Pasteur Paris, bringing together scientists studying Leishmania,
Plasmodium, Trypanosoma, and Anopheles. Here we share technological
advances and challenges in using CRISPR/Cas9 in the parasite and vector
systems that were discussed. As CRISPR/Cas9 continues to be applied to
diverse parasite systems, the community should now focus on improvement
and standardization of the technique as well as expanding the CRISPR toolkit to
include Cas9 alternatives/derivatives for more advanced applications like
genome-wide functional screens.

A CRISPR/Cas9 Revolution in Parasitology
Parasitic diseases such as leishmaniasis, malaria, and trypanosomiasis remain an enormous
burden on human health around the globe. While the genomes of Leishmania, Plasmodium,
Trypanosoma, and Anopheles were first sequenced over a decade ago, the study of gene
function has been slowed by tedious or inadequate genome-editing techniques [1–4]. Thus, the
first studies using CRISPR/Cas9 (see Glossary) gene editing in eukaryotes provided exciting
new possibilities in the field of parasitology [5–7].

This simple, yet efficient system of genome editing uses the Cas9 endonuclease to generate a
double-strand break (DSB) at a locus of interest in the genome (Figure 1A , Key Figure).
Specificity is achieved via Cas9 binding to a single guide RNA (sgRNA), which must contain
20 nucleotides complimentary to a sequence in the genome flanking a protospacer-adjacent
motif (PAM). The DSB break is then repaired with homology-directed repair (HDR) using a
provided repair template or with the more error-prone microhomology-mediated end
joining (MMEJ) or nonhomologous end joining (NHEJ) pathways, depending on the
organism (Table 1). CRISPR/Cas9 allows for deletion, insertion, or mutation of DNA with little
to no genetic scarring.

CRISPR/Cas9 technology is revolutionizing parasitology research and gene drive systems in
insect vectors; and while this review focuses on Plasmodium, Leishmania, Trypanosoma, and
Anopheles, CRISPR/Cas9 has been successfully adapted to many more parasite systems,
including Toxoplasma [8], Cryptosporidium [9], Strongyloides [10], and Trichomonas vaginalis
[11]. As CRISPR/Cas9-based technology evolves, the parasitology community is quickly
discovering methods that work well, techniques that can be improved, and ongoing challenges
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Glossary
CRISPR/Cas9 (clustered regularly
interspaced short palindromic
repeats/CRISPR-associated
protein 9): a genome-editing
technique based on a naturally
occurring antiviral defense system in
bacteria. The Cas9 nuclease is
targeted via an sgRNA to a specific
�20 nt genomic sequence
immediately adjacent to a
protospacer adjacent motif (PAM).
The PAM, which is 5ʹ-NGG-3ʹ
(where N is any nucleobase and G is
guanine) for Streptococcus pyogenes
Cas9, is required for Cas9 binding to
and cleaving of the DNA.
CRISPR interference/activation
(CRISPRi/a): a genome-editing-free
technique that uses a catalytically
inactive Cas9 to bind to the
promoter of a gene to repress or
activate transcription. Fusion of
epigenetic effector domains to
dCas9 can enhance repressive
activity or activate transcription.
Gene drive: technology in sexually
reproducing organisms that aims to
spread a genetic feature throughout
a population via super-Mendelian
genetic inheritance (i.e., higher than
50% of offspring will inherit an allele).
Homology-directed repair (HDR):
an accurate pathway for repair of a
DNA DSB that requires a
homologous DNA sequence for
repair. In general, break ends are
resectioned and hybridized with the
repair template, which is used to
synthesize the missing sequence.
Microhomology-mediated end
joining (MMEJ) and
nonhomologous end joining
(NHEJ): error-prone pathways for
repair of a DNA DSB that do not
require a homologous repair
template. In MMEJ, break ends are
resectioned and annealed at small
homologous sequences in the single-
stranded DNA. In NHEJ, break ends
are processed if necessary to create
compatible ends, which are then
ligated.
Population suppression/
replacement: a method for reducing
vector-borne diseases in which
vector numbers are suppressed or
wild vector populations are replaced
with modified organisms with
reduced vector competence.
Ribonucleoprotein (RNP): a
complex formed between an RNA
that can only be solved by sharing of experiences and development of new approaches. We
share here a sampling of information on the trial-and-error development of CRISPR/Cas9 in
molecular parasitology that we hope might benefit those attempting this technology in the
future.

Troubleshooting Traditional and Developing New CRISPR Techniques in
Plasmodium
The development of CRISPR/Cas9 in Plasmodium falciparum and Plasmodium yoelii for
genome editing has greatly advanced functional studies in these parasites by increasing
precision of editing and decreasing the amount of time needed to obtain genetically modified
parasites from months to weeks [12–14]. Plasmodium lacks the canonical NHEJ pathway and
primarily uses the HDR pathway to repair DNA DSBs, resulting in fewer unintended or off-target
effects [2,15–17]. Thus, the CRISPR/Cas9 system in P. falciparum relies on either a one- or
two-plasmid system that provides the Cas9 nuclease, the sgRNA, and a DNA repair template
[12,13]. The system in P. yoelii uses only one plasmid [14]. Despite the overwhelming success
and widespread implementation of CRISPR/Cas9 in the Plasmodium research community
(please see [18] for an excellent review of CRISPR/Cas9 success stories in apicomplexan
parasites), there are several ongoing challenges that merit discussion, including difficulty with
sgRNA design, unintended genomic mutations, and complications related to gene essentiality.

sgRNA and Repair Template Design in an AT-rich Genome
One challenge to CRISPR/Cas9 use in P. falciparum is its extremely AT-rich genome, which can
make the search for a suitable PAM and the cloning of repair templates difficult (Table 2) [2].
Several parasite-specific sgRNA design tools that include various methods of scoring speci-
ficity and quality have been developed [19–21]i–iii, but anecdotal evidence within the field has
provided additional guidelines for designing successful sgRNAs. First, the sgRNA binding site
should be as close as possible to the desired mutation site (less than 100 bp). For large
deletions, it is more effective to use two sgRNAs, one on each end of the locus to be deleted.
This can be achieved by transfecting two plasmids carrying different sgRNAs simultaneously or
by using the ribozyme–guide–ribozyme (RGR) system [22], recently adapted to P. yoelii, to
generate multiple sgRNAs from the same construct or to simply lead to a more defined sgRNA
length [23]. Optimization of the sgRNA structure with duplex extension and thymine mutation of
the Cas9-bound loop may also help the efficacy of CRISPR/Cas9 (see loop of sgRNA in
Figure 1A) [24].

For HDR template design, many laboratories have shown that the length of the homology repair
regions on either side of the mutation need not exceed 400 bp. Successful genome editing has
been achieved with as few as 50–100 bp homology arms [21,23]. Smaller repair templates and
the ever-decreasing cost of gene synthesis will help to alleviate the difficulty of cloning AT-rich
sequences.

Unintended Genomic Mutations with CRISPR/Cas9
While CRISPR/Cas9 genome editing works well in many cases, several laboratories using
plasmids containing the DNA repair template have observed plasmid integration at the Cas9-
edited site. It has been suggested that this problem might be helped by linearizing the DNA
repair template, using two sgRNAs to generate two cut sites in the locus of interest, or including
a Cas9 cut site flanking the DNA repair template on the plasmid (communicated by Marcus Lee
and Michael Walker). In addition to plasmid integration, an unexpected consequence of
CRISPR/Cas9 genome editing in subtelomeric regions is the loss of all DNA between the
Cas9 cut site and the chromosome end, which is repaired with the addition of telomeric repeats
410 Trends in Parasitology, June 2019, Vol. 35, No. 6



molecule and an RNA-binding
protein. A Cas9 RNP complex
consists of recombinant Cas9 and
sgRNA.
Ribozyme–guide–ribozyme (RGR):
ribozymes are ribonucleic acid
enzymes, or RNA molecules with
catalytic activity. In RGR, self-
cleaving ribozymes flank an sgRNA.
Once transcribed, ribozyme cleavage
leaves the sgRNA with a precise
length and structure, which improves
Cas9 binding and function. RGR
allows for the use of any promoter
for sgRNA transcription as well as
multiple sgRNA transcription from a
single promoter.
Single guide RNA (sgRNA): a
hybrid RNA molecule that guides
Cas9 to a specific genomic target
sequence via two domains. The
crispr portion is complementary to
the genomic sequence of interest
and the tracr portion is structured
and bound by Cas9.
[25]. This phenomenon might be unavoidable if no essential genes lie between the Cas9 cut site
and the chromosome end, as P. falciparum has been shown to be adept at repairing sub-
telomeric DNA damage [26]. These examples of unexpected and unintended DNA mutations
make a strong case for whole-genome DNA sequencing of all edited parasites.

Using dCas9 to Manipulate Gene Transcription
With any genome-editing technique, essentiality may prevent gene knockout, and unfortu-
nately, Plasmodium lacks the RNAi pathway [27]. Conditional knockout is now possible with the
dimerizable Cre recombinase (DiCre) system in which ‘silent' loxP sequences are inserted into
the locus of interest and a split Cre recombinase is chemically activated to achieve recombi-
nation [28]. In addition, gene knockdown has been achieved with FKBP, EcDHFR, TetR
aptamer, or the glmS ribozyme fusions [29–32]. However, all of these methods still require
genome editing and leave a genetic scar at the endogenous locus.

Alternative tools for transcriptional manipulation that do not require genome editing are
CRISPR interference/activation (CRISPRi/a) (Figure 1B) [33–35]. CRISPRi/a utilize an
enzymatically inactive Cas9, or ‘dead' Cas9 (dCas9) to bind to, but not cut, the promoter
region of a gene. The binding of dCas9 alone can prevent the assembly or progression of the
transcription machinery, resulting in gene knockdown. Recent studies by Baumgarten et al.
and Walker and Lindner have demonstrated the efficacy of CRISPRi in P. falciparum and P.
yoelii, respectively [23,36]. These studies suggest that gene knockdown with dCas9 requires
binding at a specific ‘sweet spot’ that can only be found with trial and error, but which is most
likely located on the nontemplate DNA strand as close to the transcriptional start site as
possible where the chromatin is most open. Tiling of dCas9 across the promoter using multiple
sgRNAs may increase the CRISPRi effect. Baumgarten et al. also provide a useful protocol for
performing chromatin immunoprecipitation (ChIP) and sequencing of dCas9 to confirm sgRNA
specificity, which is important in any CRISPRi/a study [36]. In addition, dCas9 ChIP can be used
to test the efficacy of potential sgRNAs for CRISPR/Cas9 studies.

dCas9 can also be fused to transcriptionally repressing or activating domains to alter the local
chromatin structure/composition. A recent study by Xiao et al. fused dCas9 with histone
acetyltransferase or deacetylase domains from PfGCN5 and PfSir2a, respectively [37]. Binding
of dCas9-GCN5 and dCas9-Sir2a to gene transcriptional start sites modulated local levels of
histone acetylation and resulted in up- and down-regulation of the targeted genes, respectively.
Although only two genes were targeted for CRISPRi in this study, the dCas9-Sir2a system may
provide a stronger knockdown than using dCas9 alone.

Interestingly, CRISPRi (even with dCas9-Sir2a) achieves only a modest reduction in transcrip-
tion of essential genes in Plasmodium [36,37]. In such experiments, parasites that emerge
(normally 4–6 weeks) after transfection of the CRISPRi plasmids may have acquired a growth
advantage such as lower levels of dCas9 expression. A tightly controlled, inducible dCas9 is
needed to achieve immediate and maximum gene knockdown and minimize off-target effects.

CRISPR/Cas9 Transforms Genetic Manipulation in Leishmania and Makes
High-throughput Knockout Screens Possible
Genetic engineering has always been particularly challenging and time-consuming in Leish-
mania parasites [38]. In the classical approach, deleting a gene of interest required multiple
cloning steps, long flanking regions for HDR, and at least two rounds of transfection for deletion
of both alleles [39,40]. Moreover, Leishmania parasites can adapt to environmental stress by
copy number variation and aneuploidy [41–44], increasing the risk of compensatory mutations
Trends in Parasitology, June 2019, Vol. 35, No. 6 411



Key Figure

Molecular Basis and Recent Advancements of CRISPR/Cas9 Technology in Parasites and Insect
Vectors
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Figure 1. (A) The Cas9 protein is guided by a single guide RNA (sgRNA) to the target locus to induce a DNA double-strand break (DSB). The DSB is repaired by
homology-directed repair (HDR), microhomology-mediated end joining (MMEJ), or nonhomologous end joining (NHEJ). (B) Transcriptional repression/activation via
CRISPRi/a in Plasmodium falciparum. dCas9 (inactivating mutations shown in red) binding to gene promoters can interfere with transcriptional initiation or elongation
[23,36]. Fusion of epigenetic effector domains to dCas9 can modulate histone modifications around the dCas9 binding site to activate or repress transcription via
hyperacetylation by GCN5 or hypoacetylation by Sir2a, respectively [37]. (C) High-throughput gene knockout and tagging system in Leishmania spp. DNA repair
template containing a drug-selectable marker flanked by minimal homology regions (HRs), and an optional barcode is transfected with an sgRNA template under a T7
promoter into parasites expressing Cas9 and a T7 RNA polymerase (T7 RNAP). Sandflies can be infected with mixed, barcoded knockout parasites [48,50]. (D)
Inducible Cas9 expression in Trypanosoma brucei [53]. Transgenic T. brucei expresses a T7 RNAP, a Tet repressor (TetR), and Cas9 protein under a tetracycline (Tet)-
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Table 1. Overview of CRISPR/Cas9 Systems in Parasites and Insect Vectors

Plasmodiumfalciparum
and P yoelii

Leishmania spp. Trypanosoma brucei Anopheles spp.

Application � Deletion
� Insertion
� Substitution

� Deletion
� Insertion
� Substitution

� Deletion
� Insertion
� Substitution

� Deletion
� Insertion

Repair mechanism HDR HDR, MMEJ MMEJ, HDR HDR, NHEJ

Repair template
homology arm length

�100–400 bp �30 bp �25–100 bp �1–2 kb

sgRNA promoter � U6 snRNA [12]
� T7 RNAP [13]

� T7 RNAP (L. major, L.
mexicana) [48]

� U6 snRNA (L. major) [45]
� rRNA promoter (L. donovani)

[47]

� T7 RNAP [48,53]
� PARP [56]

U6 snRNA [64,65]

Multiplex sgRNA � RGR [23]
� Multiplasmid

Multi-sgRNA transfection [48] Would be possible with RGR [56]
and multi-sgRNA transfection
[48]

Multiple sgRNA
expressing construct [63]

Inducible/
conditional Cas9
expression

– – TetR-inducible promoter [53] Cell-specific (i.e., vasa,
zpg) [64,66]

Plasmid-free Transfection of SpCas9 RNP
complex [77]

Transfection of SaCas9 RNP
complex [73]

Transfection of SaCas9 RNP
complex [73]

Microinjection of embryos
with Cas9 protein [64,65]

Markers for selection of
transgenics

� Human dihydrofolate
reductase

� Blasticidin S deaminase
� Neomycin

phosphotransferase II (G-
418)

� Puromycin-N-
acetyltransferase (puromycin)

� Yeast dihydroorotate
dehydrogenase

� Blasticidin S deaminase
� Neomycin

phosphotransferase II (G-418)
� Puromycin-N-

acetyltransferase (puromycin)
� Phleomycin
� Miltefosine resistance

� Hygromycin
� Puromycin-N-

acetyltransferase (puromycin
dichloride)

� Neomycin
phosphotransferase II (G-
418)

� Blasticidin S deaminase
� Phleomycin
� Nourseothricin

Fluorescent protein

CRISPRi/a � dCas9 [23,36]
� dCas9-GCN5/Sir2A [37]

– – –

Time to obtain
transgenics

� �4–6 weeks � 1 week � 1 week � Microinjection of
embryo leads to
transgenic adults
during the course of a two-step gene deletion process and masking knockout phenotypes.
CRISPR/Cas9 has accelerated Leishmania genetic engineering substantially.

Plasmid-based CRISPR/Cas9 Systems in Leishmania
CRISPR/Cas9 was first adapted to Leishmania major by Sollelis et al. and was an improvement
over traditional methods, allowing for the generation of knockout cell lines in a single step [45].
This system used one plasmid encoding Cas9 and a second plasmid encoding the sgRNA
(under the control of a U6 promoter) and the homologous repair templates flanking a drug-
inducible rRNA promotor (PrRNA). Without the addition of Tet, TetR binds to the Tet operator (TetO), inhibiting Cas9 expression. The addition of Tet leads to the removal
of TetR from TetO and expression of Cas9 protein. (E) CRISPR/Cas9-based gene drive system in the Anopheles insect vector. Crossing a wild-type (gray) with a
transgenic (blue) mosquito normally leads to a 50% Mendelian inheritance rate of the mutated locus in offspring (left). In a gene drive system (right), Cas9 is expressed by
the transgene and induces a DSB in the wild-type allele, which is repaired using the transgene as a template [64,65]. This leads to super-Mendelian inheritance and
spread of the transgene throughout the population.
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Table 2. The Number of PAM Sequences per Kilobase in Different Genomic Regions of Parasites

Plasmodium
falciparum [2]

Plasmodium
yoelii [82]

Trypanosoma
brucei [61]

Leishmania
major [4]

Leishmania
mexicana [83]

Cas9

Genic (promoter) 30.1 (14.3a) 29.9 (22.2a) 93.1 118.8 119.2

Intergenic 19.1 23.3 65.9 100.5 104.4

Cas12a

Genic (promoter) 70.1 (76.3a) 76.9 (80.9a) 27.6 10.2 10.4

Intergenic 70.6 74.8 42.8 21.2 20.8

aA promoter is defined as the region 1000 bp upstream of a translation start site for each individual gene. Due to the
polycistronic nature of transcription in kinetoplastids, this number was only calculated for Plasmodium spp. The latest
versions of all genome sequences were obtained from EuPathDB [84].
resistance cassette. Edited parasites were successfully obtained with drug selection. The
CRISPR/Cas9 system was subsequently improved by Zhang et al. in Leishmania donovani in
several ways: (i) the homologous repair regions were shortened, (ii) the stronger RNA Pol I rRNA
promoter was used to drive sgRNA transcription, (iii) an RGR was used for discrete and
potentially multiple sgRNA production, and (iv) a single vector expressing both Cas9 and the
sgRNA was generated [46,47]. Zhang et al. demonstrated the ability of their CRISPR/Cas9
method to delete multicopy genes, which was previously impossible with the traditional
approach [47]. In this study, they cotargeted the A2 multigene family and the miltefosine
transporter gene, which confers resistance to miltefosine. This method increased genome
editing efficiency and eliminated the need for drug-selectable marker integration at the locus of
interest. However, this approach requires repeated transfections to increase editing efficiency
and selects for edited parasites with cloning, both of which increase time in culture and could
lead to parasite adaptation. Both of these first systems also rely on a vector-based sgRNA,
which requires plasmid cloning.

A Versatile and Cloning-free CRISPR/Cas9 Toolkit
Recently, Beneke et al. developed a cloning-free, PCR-based CRISPR/Cas9 method for fast
and accurate genome editing that was successfully applied to Leishmania mexicana, L. major,
L. donovani, and Trypanosoma brucei [48,49]. This system is provided as a toolkit with
protocols for gene deletion and N terminal or C terminal tagging as well as a websiteiv for
designing primers required for generating sgRNAs and DNA repair templates [48]. In this
system, transgenic Leishmania parasites stably expressing codon-optimized SpCas9 and T7
RNA polymerase (T7 RNAP) were transfected with two PCR fragments encoding a T7-
promotor-driven sgRNA and a DNA-repair template consisting of �30 bp homology arms
flanking a drug-selectable marker. After 1 week of drug selection, 100% of surviving parasites
carried the intended genomic mutation. Thus, this total culture time is dramatically reduced
compared with other methods. Another advantage of this method is that PCR fragments are
degraded within 48 h, preventing subsequent editing.

This system has proven to be fast and reliable, and it has been successfully used to target single
genes [49]. Recently, Beneke et al. went on to carry out the first CRISPR/Cas9-based high-
throughput knockout screen in a kinetoplastid to genetically dissect the Leishmania flagellar
proteome [50]. This study generated approximately 100 gene knockouts of flagella-associated
proteins and performed an in-depth characterization of different motility phenotypes. A 17 nt
barcode in the DNA repair template allowed for infection of the sandfly vector with a mixed pool
of knockout parasites (Figure 1C). Thus, CRISPR/Cas9 has opened up a new era in the field of
414 Trends in Parasitology, June 2019, Vol. 35, No. 6



Leishmania biology, as it is now possible to investigate entire pathways in vitro and in vivo. This
is especially profound considering the fact that approximately 60% of the genes in the
Leishmania genome are ‘hypothetical' genes that have not been investigated. Deciphering
the functions of these genes is crucial for understanding Leishmania biology and discovering
novel drug targets.

Marker-free CRISPR/Cas9 Genome Editing in Trypanosomes
Genetic tool development in T. brucei has run ahead of that in other parasites, largely due to
species-specific benefits such as relatively high transfection efficiencies, efficient homologous
recombination, inducible systems such as the tetracycline repressor, RNAi, and the ability to
knock out and knock in genes [51]. However, the limited number of selectable markers
available has meant that generating strains with more than two simultaneous gene knockouts
is challenging. While this issue has been partially overcome through the development of the
DiCre system [52], CRISPR/Cas9 technology has made precise, ‘scar-less’, and marker-free
genome editing feasible in this pathogen. Fortunately, the T. brucei genome has a GC content
of 50.73%, and a 5ʹ-NGG-3ʹ PAM sequence should be present every eight base pairs (Table 2
and [53]).

Early applications of CRISPR/Cas9 for genome editing in kinetoplastids demonstrated that
Cas9 was able to form a DSB in these parasites [46,54,55]. Characterization of the resolution of
these breaks revealed that repair was through MMEJ unless a donor repair template was
present to facilitate HDR. Recent CRISPR/Cas9 technology development in T. brucei has
significantly advanced the gene-editing toolbox, now allowing for rapid gene knockout, gene
tagging, and precision editing in both bloodstream form and insect stage cells [48,53,56].

Establishing CRISPR/Cas9 in T. cruzi
Peng et al. established the first CRISPR/Cas9 system in a kinetoplastid by transfecting T. cruzi
with a Cas9-encoding plasmid and in vitro transcribed sgRNA [55]. Gene knockout was
achieved by MMEJ or, if a DNA-repair template was provided, HDR. While CRISPR/Cas9
via HDR allowed for marker-free editing, overall low frequencies of the desired mutation were
observed (� 0.1%). Lander et al. then streamlined the CRISPR/Cas9 system in T. cruzi by
coexpressing sgRNA and Cas9 from a single vector [54]. Using a DNA-repair template for HDR
that included a drug selection marker, the authors achieved high-efficiency knockout and
tagging of endogenous genes after 5 weeks of continuous drug pressure [57]. Most recently,
Costa et al. adapted the system developed by Beneke et al. (described above) to T. cruzi,
creating a cell line stably expressing Cas9 and T7 RNA polymerase [58]. This system has made
cloning-free endogenous gene tagging and gene knockout possible in T. cruzi.

Cloning-free CRISPR/Cas9 Systems in T. brucei Bloodstream Parasites
Beneke et al. first published CRISPR/Cas9 in bloodstream-form T. brucei using a system that
relied on stable, integrated expression of the T7 RNAP and Cas9 [48]. Using this system, the
parental strain could then be nucleofected with two PCR products: one encoding a T7
promoter-driven sgRNA and the other containing the DNA-repair template with 30 bp homol-
ogy arms. The benefit of this system is that a gene knockout can be achieved with a single
nucleofection with no prior plasmid cloning. While more efficient than classical knockout
strategies, this system still relies on drug selection of mutants, which limits the complexity
of parallel edits to the number of selectable markers.

Rico et al. recently developed an inducible, selection-free CRISPR/Cas9 genome editing
system in T. brucei (Figure 1D) [53]. In this system, a Cas9-induced DSB is repaired by
Trends in Parasitology, June 2019, Vol. 35, No. 6 415



HDR via a �50 bp single-stranded oligonucleotide repair template or with MMEJ in the absence
of one. Because no drug-selectable markers are used, the system was optimized in several
ways. First, a T. brucei codon-optimized Cas9 was used under the control of an RNA
polymerase I promoter to enhance expression [59,60]. Next, a tetracycline operator was
inserted directly upstream of the Cas9 gene, providing for tightly inducible expression and
thus reduction of potential Cas9-induced toxicity and off-target effects. Finally, this system
used an sgRNA under the control of a constitutive T7 promoter, but incorporated a hepatitis
delta virus (HDV) ribozyme [22] at the 3ʹ end to produce a discrete guide for better assembly
with Cas9. This study also reported that a PAM-adjacent GC content of >50% is most optimal.
In this selection-free optimized system, Rico et al. achieved high rates of biallelic gene editing
dependent on the tightly controlled induction of Cas9 expression.

Precision CRISPR/Cas9 Editing of Multigene Families in T. brucei Procyclic Parasites
The T. brucei genome contains >190 gene families with at least five members, representing
approximately 20% of the 9000 total genes [61]. To be able to edit such gene families, a repair
template must be provided for a prolonged period of time. A recent marker-free CRISPR/Cas9
system developed by Vasquez et al. took advantage of the ability of procyclic insect-stage
trypanosomes to maintain episomes without genome integration [56]. Sequentially transfected
episomes – the first encoding a codon-optimized Cas9 and the second encoding an RGR and
homologous repair template – are stably maintained in otherwise wild-type cells at approxi-
mately �1 copy per cell through continuous culturing. This system uses the procyclic acidic
repetitive protein (PARP) promoter for RGR transcription to obviate the need for T7 RNAP
expression.

Vasquez et al. aimed to use their CRISPR/Cas9 system to mutate a single codon in histone H4
to achieve a lysine-to-arginine substitution at position 4, mimicking a constitutively nonacety-
lated state [56]. Although there are an estimated 43 copies of the histone H4 gene in the
genome, 90% were edited after 5 months of culture. Interestingly, multiple copies of the H4
gene were lost completely, but no off-target effects were observed. This study demonstrates
the utility of marker-free CRISPR/Cas9 systems for editing multicopy gene families.

CRISPR in Anopheles for Population Replacement and Suppression
The study of insect vectors is as important to the eradication of parasitic diseases as the study
of the parasites themselves. While CRISPR/Cas9 technology is advancing functional studies in
Anopheles mosquitoes, it is especially promising in the field of gene drive. Gene drives are
genetic systems in sexually reproducing organisms that quickly spread a genetic feature
throughout a population in a ‘selfish' manner that defies normal Mendelian inheritance patterns
(Figure 1E) [62]. In the case of Anopheles gene drives, the goal is to spread genetic mod-
ifications that negatively affect mosquito fertility or Plasmodium infection.

Using CRISPR/Cas9 for Gene Drives
CRISPR/Cas9 genome editing has been implemented successfully in Anopheles stephensi and
Anopheles gambiae in studies attempting to block Plasmodium infection/transmission or
reduce the mosquito population [63–65]. A population suppression approach was pre-
sented in a recent study by Hammond et al., which developed a CRISPR/Cas9-based gene
drive system to target haplosufficient female fertility genes in A. gambiae [65]. A construct
flanked by regions homologous to the fertility gene and containing sgRNA, a fluorescent
marker, and a vasa2 promoter-driven Cas9 (for germline expression in either sex) was inserted
into the fertility gene locus. This gene drive system achieved super-Mendelian inheritance;
however, fertility was greatly reduced in heterozygous females due to leaky Cas9 expression in
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somatic tissues involved in producing eggs. Follow-up studies used the zpg promoter to more
tightly restrict Cas9 expression to the germline, which alleviated the cost to female fertility
somewhat [66,67]. However, females inheriting the gene drive allele from their fathers showed
reduced fertility, perhaps due to paternal deposition of Cas9 protein in the fertilized zygote.
While this effect would reduce female contribution to the propagation of gene drive, strong
super-Mendelian inheritance may still promote transgene propagation to an entire population
and its subsequent collapse.

Another successful use of CRISPR/Cas9-based gene drive was presented by Gantz et al.,
which sought to spread Plasmodium resistance factor-encoding transgenes in A. stephensi
[64]. Larvae were microinjected with Cas9 protein, double-stranded RNAs to silence expres-
sion of the Cas9 transgene and the Ku70 gene (involved in NHEJ), and a 21 kb plasmid
containing an sgRNA, fluorescent marker, vasa promoter-driven Cas9, and two genes encod-
ing single-chain antibodies against P. falciparum ookinete protein Chitinase 1 and the circum-
sporozoite protein (CSP), which were under the control of blood meal-induced promoters. All
construct components were flanked by regions of homology to the eye-pigmentation gene kh.
This method yielded a kh knock-in mosquito line in which significant gene drive was achieved in
transgenic male-derived lineages. However, a high frequency of NHEJ DSB repair was
observed in transgenic female-derived lineages, most likely due to Cas9 expression in the
egg persisting through syncytial blastoderm formation.

A more recent study used CRISPR/Cas9 in A. gambiae to show that knockout of the fibrinogen-
related protein 1 (FREP1) host factor suppressed Plasmodium infection [63]. Dong et al.
unsuccessfully attempted Cas9/sgRNA microinjection of embryos as described above [64]
and thus developed a system in which transgenic mosquitoes expressing three different
sgRNAs targeting the FREP1 gene were crossed to transgenic mosquitoes expressing
Cas9 in the germline. Knockout of FREP1 via NHEJ significantly reduced the prevalence of
infection as well as the number of oocysts and sporozoites in P. falciparum-infected adult
mosquitoes. Although FREP1 knockout adult mosquitoes showed no difference in life span and
body size from control mosquitoes, they did show a delay in development, a lower feeding
propensity, and reduced fecundity and egg-hatch rate. These phenotypes may preclude the
use of FREP1 as an efficient gene drive target in population replacement designs. While this
study showed the potential of CRISPR/Cas9 to investigate specific host factors, it highlights the
possible fitness costs of such systems.

Challenges of Anopheles CRISPR/Cas9 Gene Drive Systems
The studies discussed here demonstrate that CRISPR/Cas9 technology has the potential to
advance gene drive systems by achieving specific gene conversion at a high rate in laboratory
mosquito populations. However, one drawback of using this technology in population sup-
pression and replacement efforts is the possibly reduced fitness of transgenics, which can be
related to importance of targeted genes or imprecision of Cas9 action/expression. These
issues may be alleviated in Anopheles through the use of tightly regulated tissue-specific or
blood meal-driven Cas9 or sgRNA expression.

Another challenge is the emergence of gene drive-resistant alleles due to improper target site
repair of Cas9-induced DSBs, most often due to error-prone NHEJ resulting in a sequence that
is refractory to future CRISPR/Cas9 editing [68,69]. Gene drive systems that utilize multiple
sgRNAs, ‘nicking' endonucleases that cleave a single strand, or methods that suppress the
NHEJ pathway, may help to alleviate the problem of gene drive resistance [5]. However, even
these systems may not be able to address the genetic diversity in potential CRISPR/Cas9
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editing sites in natural populations of mosquitoes [70]. A recent study by Kyrou et al. avoided
CRISPR-based gene drive resistance by targeting the sex-determination gene doublesex,
which is a highly conserved, functionally constrained sequence [67]. This study highlights the
importance of target choice for gene drives that will succeed in population suppression.

In addition to the technical challenges encountered, the possibility of CRISPR-Cas9-mediated
gene drives in natural populations has raised concerns about ecological and ethical implica-
tions of such experiments. Although only specific species of mosquito would be targeted for
population suppression, the impact of such a gene drive on the local ecosystem is unpredict-
able [71]. Using gene drive to prevent mosquito infection with P. falciparum may appear to be
less risky than population suppression from an ecological perspective, but these mutations
could have unforeseen effects on mosquito ecology as well. The mere presence of Cas9 in the
nucleus over many generations could result in rare off-target mutations that affect the evolu-
tionary trajectory of mosquito populations. Further optimization of these systems and long-term
studies will hopefully allay these concerns.

Taking CRISPR to the Next Level
Controlling Cas9: An Ongoing Challenge in All Systems
While the TetR inducible Cas9 system works well in T. brucei, most CRISPR/Cas9 systems
discussed here involve constitutive Cas9 expression, which can be toxic and induce genetic
instability in some cases [49,53,72,73]. In Toxoplasma gondii, expression of a nonfunctional,
‘decoy' sgRNA alleviated toxicity associated with constitutive expression of a nontargeted
Cas9 [72]. A similar strategy could be applied to Leishmania and Plasmodium, but lack of
inducible transcription systems in these parasites is a major obstacle in general. One potential
solution is to use the DiCre system, already adapted to these parasites, to activate a loxP-
interrupted Cas9 [74–76]. This or similar tightly controlled systems would also help to study the
function of essential genes.

An alternative to an inducible system is using Cas9 ribonucleoprotein (RNP) complexes for
transient transfection. Crawford et al. achieved genome editing in P. falciparum by transfecting
with recombinant SpCas9, in vitro-transcribed sgRNA, and 200 nucleotide single-stranded
oligodeoxynucleotides (for DNA repair) [77]. However, this study reported a transfection
efficiency similar to plasmid-based methods, with 23% of transfections yielding correctly edited
parasites. Thus, this system may be best suited for introducing mutations that confer a fitness
advantage to edited parasites. Soares Medeiros et al. used SaCas9 RNP complexes to edit the
genome in multiple life cycle stages of T. cruzi, procyclic forms of L. major, and bloodstream
forms of T. brucei [73]. This study demonstrated that SaCas9 is more effective than SpCas9 in
their system, possibly due to the smaller size and higher transfection efficiency of SaCas9.
However, SaCas9 has a longer PAM sequence, which leads to fewer options for sgRNA
design. Nonetheless, Cas9 RNP systems allow for serial or simultaneous genetic manipulations
and obviate the need for plasmid cloning, integrated constructs for Cas9/sgRNA expression, or
drug selection.

Alternative Cas Proteins: New Avenues for Genome-wide CRISPR Screens?
In a major advance for the field, Sidik et al. recently used CRISPR/Cas9 to perform the first
genome-wide genetic screen in an apicomplexan, identifying genes that affect fitness during T.
gondii fibroblast infection [72]. This screen relied on the presence of the NHEJ pathway in T.
gondii, where it is not necessary to provide a DNA repair template along with the sgRNA.
However, such a large-scale screen is not possible in Plasmodium or Leishmania, which
primarily use HDR to repair DSBs. The streamlined, PCR-based workflow developed by
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Outstanding Questions
Would CRISPR-based gene drive sys-
tems be effective in population sup-
pression and replacement programs
in natural populations of mosquitoes?
What is the environmental impact of
these systems?

Conditional or tissue-specific Cas9
expression systems are available in
Trypanosoma and Anopheles mosqui-
toes. Will similar systems be devel-
oped for Leishmania and
Plasmodium?

Can Cas12a emerge as an effective
alternative to Cas9, especially for
organisms like Plasmodium with AT-
rich genomes?

Can Cas13 nucleases be adapted for
post-transcriptional gene knockdown,
especially in parasites that lack the
RNAi pathway?

CRISPR/Cas9-based high-throughput
functional screens are now possible in
Leishmania and Toxoplasma. Can
similar systems be applied to Trypano-
soma? Can CRISPRi/a or Cas13 tech-
nology make these screens possible in
Plasmodium?
Beneke et al. now also allows for rapid generation of knockout constructs and genome-wide
screens in kinetoplastid parasites via HDR [50]. However, for parasites requiring longer
homology regions for efficient insertion/deletion (e.g., Plasmodium), this approach might
not be as easily applied.

In contrast, and independent of DSB repair mechanisms, the recent adaptation of CRISPRi and
CRISPRa to parasite systems has the potential to make large-scale knockdown and over-
expression screens possible in parasites with clearly defined promoters. Since CRISPR/Cas9
was first established in various parasite systems, many variations on this gene-editing tool have
been developed in other systems that could prove useful to the parasitology community.
Cas12a (formerly known as Cpf1) especially has emerged as an alternative nuclease to Cas9
[78,79]. Cas12a is smaller than Cas9, requires a smaller sgRNA, and leaves a staggered DSB.
Importantly, the preferred PAM sequence for Cas12a is 5ʹ-TTTV-3ʹ (where ‘V' is A, C, or G), a
motif that occurs more frequently than 5ʹ-NGG-3ʹ in the AT-rich Plasmodium genome (Table 2).
Using Cas12a could make sgRNA design easier, especially in promoter regions, but may result
in more off-target effects (Table 2). Importantly, an enzymatically inactive (‘dead’) version of
Cas12a could be used to target the highly AT-rich promoter regions of Plasmodium with an
sgRNA library for large-scale gene knockdown via CRISPRi (Table 2).

Other emerging alternatives to Cas9 are Cas13 nucleases. In contrast to Cas9 and Cas12a,
Cas13 nucleases bind to RNA transcripts in an sgRNA-mediated manner and can be used for
specific RNA degradation, base editing, or tracking [80,81]. Most importantly, Cas13 nucleases
do not require a specific PAM sequence for cutting RNA as long as the secondary RNA
structure allows for its binding. An additional potential option for parasite systems (e.g.,
Plasmodium, T. cruzi, Leishmania) lacking the RNAi pathway is using Cas13 nucleases in
combination with a transcriptome-wide sgRNA library to perform high-throughput knockdown
screens.

Concluding Remarks
While genome editing with CRISPR/Cas9 has been established in the field of parasites and
insect vectors, there is an ongoing effort to improve the efficiency of this technique and apply it
to new systems. Continued timely communication and sharing of advice, ideas, and reagents
are required to utilize this revolutionary technology to its full potential throughout our respective
fields. Making plasmids available on vector databases, disclosing information about tested
sgRNA efficiency in real time, and holding regular CRISPR-specific conferences would better
facilitate the widespread success of such efforts. Also important is the ongoing discussion
about how the modified parasites and insect vectors we create with CRISPR/Cas9 can be used
in an ethically and ecologically responsible way to stop the spread of disease (see Outstanding
Questions).

Moving forward, it is crucial to use the ever-evolving CRISPR toolbox to troubleshoot traditional
genome-editing applications as well as apply it to new methodologies. Cas12a has emerged as
an attractive alternative to Cas9 in organisms such as Plasmodium with highly AT-rich genomes
(see Outstanding Questions). In addition, Cas13 nucleases or dCas9/dCas12a could be used
to perform gene knockdowns in organisms such as Plasmodium and Leishmania that lack the
RNAi machinery and inducible expression systems (see Outstanding Questions). Finally,
CRISPR/Cas9 is being used to perform larger-scale functional screens in Toxoplasma, Try-
panosoma, and Leishmania. While these types of screens may not be easily performed with
traditional CRISPR/Cas9 in Plasmodium, they may be possible with CRISPRi- or Cas13-
mediated knockdown (see Outstanding Questions). These CRISPR-based technologies have
Trends in Parasitology, June 2019, Vol. 35, No. 6 419



the potential to finally generate knockout/knockdown libraries, a valuable resource for the
parasitology community.
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