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Abstract

Low-income cities that are subject to high population pressure and vulnerable to climate

events often have a low capacity to continuously deliver safe drinking water. Here we

reported the results of a 32-year survey on the temporal dynamics of drinking water quality

indicators in the city of Antananarivo. We analyzed the long-term evolution of the quality of

the water supplied and characterized the interactions between climatic conditions and the

full-scale water supply system. A total of 25,467 water samples were collected every week

at different points in the supplied drinking water system. Samples were analyzed for total

coliforms (TC), Escherichia coli (EC), intestinal Enterococci (IE), and Spores of Sulphite-

Reducing Clostridia (SSRC). Nine-hundred-eighty-one samples that were identified as posi-

tive for one or more indicators were unevenly distributed over time. The breakpoint method

identified four periods when the time series displayed changes in the level and profile of con-

tamination (i) and the monthly pattern of contamination (ii), with more direct effects of rainfall

on the quality of supplied drinking water. The modeling showed significantly different lags

among indicators of bacteria occurrence after cumulative rainfall, which range from 4 to 8

weeks. Among the effects of low-income urbanization, a rapid demographic transition and

the degradation of urban watersheds have gradually affected the quality of the water sup-

plied and resulted in the more direct effects of rainfall events. We focused on the need to

adopt an alternative perspective of drinking water and urban watersheds management.

Introduction

A poor capacity to provide safe drinking water, regardless of weather conditions, is of growing

concern in low-income areas vulnerable to climate change [1,2]. Indeed, some parts of the

world are expected to experience an increase in the frequency and intensity of precipitation

and will find it increasingly difficult to limit the impact of storms [3], such as flooding or

heavy run-off [4,5]. These events are associated with elevated turbidity [6–8] and dissolved

organic matter in water sources [9], which can overwhelm treatment plans [10]. The high
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levels of suspended solids limit the proper progress of the clarification steps and reduce the

efficiency of chlorination. Indeed, extreme rainfall regimes are likely to be associated with

drinking water contaminations [6,10], and this is predicted to be worsened by climate change

[11]. Contaminated water is the main cause of diarrhea in children, and it is evident that an

integrated approach to improving water supply will have an impact on the health of the popu-

lation [12].

However, the relationship between rainfall patterns and microbial water quality is complex,

involving an interplay between the type of water supply, the type of water source, and the treat-

ment technology applied to water [13]. Also, susceptibility to climate change is reinforced by

rapid and unplanned urbanization, poor sanitation, erosion, and low level of maintenance of

the supply network [14]. Thus, the nature and the depth of the link between rainfall and water

quality is not expected to be stationary. Rather, these should vary with the infrastructure and

environmental changes, the time scale of study (yearly, season or day to day), and the rainfall

patterns. Rainfall is a seasonal phenomenon with significant inter-annual variability [15]

related to climate variations [16], extreme climatic events [6], intra-annual variability or distri-

bution of water [17], change in duration of spells of continuous rain or no-rain events, and the

total amount of water delivered during each wet spell [15]. Combined or selective impacts of

these factors also depend on the catchment’s characteristics.

Due to its diverse landscape, Madagascar is exposed to a variety of weather and climate phe-

nomena [18]. The capital of Madagascar (Commune Urbaine d’Antananarivo–CUA) has

experienced rapid urbanization due to the arrival of an additional 100,000 inhabitants per

year. This population growth has increased the technical constraints on infrastructure and

local services that were already deficient [19]. Water supply in Madagascar dates only from the

colonial period (1952) and has been outpaced by urban expansion and population growth.

Consequently, home connections are still limited, and a network of about 900 standpipes (pub-

lic water fountains) supplies un-piped households. In this context, storm events, heavy rainfall,

and runoff can increase water turbidity and microbiological contamination [20]. Un- or insuf-

ficiently filtered, inadequately, and even adequately disinfected drinking water is thus suscepti-

ble to microbiological contamination [21]. Water utilities are required to monitor microbial

indicators to assess the effectiveness of the treatment process (i.e., spores of Clostridia), the

safety of end drinking water (i.e., Escherichia coli, intestinal enterococci), and the biological

stability of microorganism communities in piped water (i.e., total coliforms) [21]. All changes

impacting the water source or the treatment process can affect these indicators and the drink-

ing water quality. Exploring the interaction between precipitation events and urban water sup-

ply systems will highlight monitoring needs and priorities for improving water production.

Due to its geographic setting, its demographic burden, and its environmental transition,

Antananarivo is a suitable example for setting up new strategies to survey water treatment

based on predictive mathematic models. Predictive models could also be used to adapt the

activities of dispensaries based on the burden of diarrhea. First, we analyzed how the water

quality had evolved over the last 30 years, and then how the rainfall pattern has impacted long-

term water quality in the supply system under environmental and technical shifts. We also

focused on the current week-to-week relationship between rainfall patterns characteristics and

water quality to determine the main factors regulating water contamination.

Materials and methods

CUA and its drinking-water supply system

Site of study. Antananarivo is located in the central highlands of Madagascar at 1,300 m

above sea level (18˚55’ S latitude and 47˚32’ Longitude). The city is nestled among twelve hills
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and lies in the natural floodplain of the Ikopa River, which skirts the city to the south and west

(Fig 1). The river and its tributaries play an important role in rice-dominated agricultural pro-

duction. The metropolitan area spreads over 220 km2, with an estimated population of 3,058

million inhabitants in 2018 [22]. This area currently experiences significant challenges due to

flooding during the rainy season.

Climate. Antananarivo experiences a subtropical highland climate, warm and temperate

classified as Cwb by the Köppen-Geiger system [23]. Summers are rainy, with most of the pre-

cipitations falling in December, January, and February. The winters are dry, especially in June,

July, and August. The dry season occurs from May to September (i.e., from week no.14 to

no.40), and the wet season from November to April (i.e., from week no.41 to no.13). From

1985 to 2017, the annual average of rainfall was above 1500 mm with extremes in January

(above 300 mm) and June (less than 10 mm). The city of Antananarivo has experienced

cyclones over the past 20 years, including Geralda in January 1994, Giovanna in February

2012, and Enawo in January 2017. These induced severe flooding as in February 2015 and

2016.

Water supply. In 2015, according to the National Water and Electricity Utility (JIRAMA),

the whole drinking water supply system represents 1000 km of pipes for 80,000 subscribers

(supply rate 56.8%). Water is provided by the Ikopa River, whose flow is diverted to the 1.41

km3 artificial Mandroseza Lake from where water is pumped [24]. Two water stations, Man-

droseza I and II, with a daily production of 93,000 and 62,000 m3 per day (m3/d) respectively,

supply 30 reservoirs. The treatment process includes coagulation, flocculation, decantation, fil-

tration, chlorination, and neutralization steps [25].

Data collection

Water sampling and analysis. Four different points in the network (e.g. piped house-

holds, administrative buildings, standpipes, water tanks) were randomly investigated daily,

five days a week. Each sample was collected in 500 ml sterile containers with 10 mg sodium

thiosulfate and stored at 4 to 10˚C until processing at the Institute Pasteur laboratory within

18 to 24 hours. Microbial water quality was assessed by enumerating samples contaminated

or not by microbial indicators, including Escherichia coli (EC) and Total Coliform count

(TC); intestinal enterococci (IE); spores of Sulfite-Reducing Clostridia (SSRC) [26]. From

1985 to 2014 (August), the laboratory used standardized methods based on the filtration

of 100 milliliters (ml) of sample for testing EC, TC [27,28] and IE [29,30]. Since August

2014, the IDEXX Quanti-Tray methods were performed for testing IE [31], EC and TC [32].

From 1985 to June 2010 and after August 2016, the detection and enumeration of the

spores of sulfite-reducing anaerobes (SSRC) required an enrichment of 20 ml of sample in

a liquid medium [33]. From July 2010 to July 2016, the 100 ml filtration method was pre-

ferred for testing SSRC, resulting in a five-fold increase in test volume [34]. Criteria for a

negative sample is set to “undetectable microorganism in any 100 ml” and in any “20 ml for

SSRC”.

Temporal patterns of microbial water quality are expressed as the frequency of positive

samples reported to the total number of samples collected during the period (monthly and

weekly) over 32 years (from 1985 to 2017, except 2009 due to the insurrectional crisis).

Monthly series had 6.41% missing values, and weekly series had 18.69% missing values. The

missing values were mainly due to the interval between analysis service contracts or weeks dur-

ing which samples were not taken (technical problems or weeks not working). For multivariate

analysis, missing data were replaced by the median of the related month for monthly series

and of the related week for weekly series.
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Fig 1. Location of Mandroseza Lake inside the limits of Antananarivo. The file in “Africa map” created from

OpenStreetMap databank are licensed under the Open Database 1.0 License. Administrative boundaries were from

data OCHA (office for the coordination of Humanitarian Affairs) https://data.humadata.org/dadaset/madagascar-

administrative-level-0-4-boundaries. Watercourse layers are OpenSource databases from https://www.openstreetmap.

org. OpenStreetMap R is open data, licensed under the Open Data Commons Open Database License (ODbl) by the

OpenStreetMap Foundation (OSMF). The final map was prepared with own tiles under “ARCGIS software”.

https://doi.org/10.1371/journal.pone.0218698.g001
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Rainfall data. From 1985 to 2017, monthly rainfall was collected from the data from

Direction Générale de la Météorologie. Daily rainfall (available from 2007 to 2017) was collected

from the IRI-International Research Institute for climate and society. To have the same time-

step for rainfalls and contamination, these data were summarized as cumulative rainfall by

month or by week.

Statistical analysis

Breakpoint detection method. To detect specific periods or obvious trends within con-

tamination markers and rainfall time series, we applied a breakpoint detection method imple-

mented in the Strucchange R package [35]. We used the method of simultaneous estimation of

multiple breakpoints proposed by Bai and Perron in 2003 [36]. The method was run using the

default parameters of breakpoints function, and the number of periods was estimated by mini-

mizing the BIC (Bayesian Information Criterion).

Fourier analysis. To test if the variable “month” affects the contamination markers and

rainfall pattern, we applied a Fourier transform to each variable using the TSA (Time Series

Analysis) R package [37]. The computed periodograms from this transformation were tested.

If there is a month effect in the time series, the periodogram should have a peak at time 12

(corresponding to 12 months). The significance of the amplitude of the periodogram at time

12 is tested using a permutation test (i.e., comparison with a random sequence with a signifi-

cance level at 0.05) [38]. All p-values are available in the supporting information (S1 Table).

Hierarchical clustering. To check for similar current profiles of contamination, we

focused on data from the last period provided by statistical analysis of contamination change.

We applied a hierarchical clustering algorithm with Euclidean distance and Ward distance.

The clustering was applied to the four contamination markers (IE, EC, TC, and SSRC). Total

contamination was not used for clustering to avoid collinearity with IE, TC, EC, and SSRC.

Rainfall and total contamination were added to the graphical representation for interpretation.

Auto-regressive integrated moving average (ARIMA) models. To investigate the spe-

cific relationship between drinking water contamination and rainfall, we have run three mod-

els following: a “naive” model (i) that consists of forecasting the contamination of a given week

by the mean of the previous corresponding weeks. This model does not account for the effect

of rainfall and is used as a benchmark for further comparisons: any prediction model achieving

higher prediction error is not relevant. Two different ARIMA models are fitted on each

marker: an ARIMA model, with no extra covariate (ii); and an ARIMA model adjusted on

cumulative rainfalls of the previous weeks (iii), with a shift varying from 1 to 10 weeks. The

optimal number of cumulative weeks is estimated by minimizing the prediction error (root

mean square error, RMSE) assessed by cross-validation in the years 2016 and 2017. A likeli-

hood-ratio test was used to compare the goodness of fit of statistical models. All parameters of

ARIMA models are automatically selected using a stepwise procedure which minimizes the

BIC, implemented in the auto.arima function of forecast package [39]. The Portmanteau test

was used to conclude that no residual autocorrelation remained in the models [40]. This pro-

cedure allows investigation of the effect of rainfall and cumulative rainfalls on contamination

markers; it also allows for the quantification of the number of cumulative weeks optimal to

predict contamination.

Results

Contamination of the water over the 32 years

A total of 971 samples have been identified as positive for one or several microbial indicators

among 25,467 samples collected over 32 years (365 months). This accounts for 3.8% of non-
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compliant samples, unequally distributed over time. Indeed, during the period from 1989 to

2004 (175 months = 75% of the months), no contamination was reported.

Breakpoints in the yearly pattern of contamination

The time series of monthly water contamination frequencies showed significant shifts over the

years for all indicators (IE, EC, TC, and SSRC). Change points and the associated 95% confi-

dence intervals for total contamination (IE, EC, TC, and SSRC), as well as rainfalls, are sum-

marized in Table 1 (Breakpoint detection method).

Three breakpoints occurred over the “total contamination” series, defining four periods:

i) before 1990, ii) between 1990 and 2005, iii) between 2005 and 2012, and iv) after 2012. Time

series analysis also captured specific change-points for each specific contamination marker

[i.e., 1990 and 2004 (TC); 2003 (EC); 2011 (SSRC) and 2012 (IE)]. For these periods, the

monthly average of contaminated samples varied from 1.1% (the intermediate period from

1990 to 2005) to 9.5% (the last 5 years) (Fig 2). Periods 1 (from 1985 to 1990) and 3 (from 2005

to 2012) showed similar levels of contamination (4.7% and 4.2%). While the period from 1990

to 2005 was relatively free-from water contamination. The period from 2012 to 2017 showed a

significant decrease in drinking water quality. Over the 30 years, no breakpoint or obvious

trend was detected in the rainfall.

Over the whole series, and except for the 1990–2005 period, SSRC contamination events

have continuously increased (Fig 3d), with the recent median of contamination events reach-

ing 4.8% (Fig 3k). During the last period, IE contamination also increased, with median con-

tamination events rising from 0 to 0.8% (Fig 3k). EC contaminated samples remained sporadic

throughout the periods, with medians of the periods close to zero. However, the means of con-

tamination increased very slightly from 0.1% (Fig 3e) to 0.7% (Fig 3k) (breakpoint in 2004).

For TC, three out of four periods showed baseline contamination events with half of the

months harboring 1% of contamination.

Change in monthly pattern of contamination

As the months harboring the highest contamination events also varied over time (Fig 3), the

month effect had to be tested independently from the periods. The periodogram method and

permutation test showed significant 12 months periodicity in data of several years for TC, IE,

and rainfall (p-value < 0.05) (S1 Table). This means that TC and IE contamination events and

rainfalls have preferentially occurred at specific months during the year. For SSRC, the test

was barely significant (p-value ~ 0.05), suggesting that it suffers from a lack of power to detect

Table 1. Breakpoints in contamination markers and rainfall time series.

TOTAL d IE c EC TC SSRC Rainfall

Breakpoint

n˚1

1989(1)a [1989(9);1993(4)]
b

- - 1990(1) [1989(12);1991(7)] - -

Breakpoint

n˚2

2004(11) [2003(6);2005(3)] - 2003(11) [1994(10);2004

(9)]

2004(11) [2002(10);2004

(12)]

- -

Breakpoint

n˚3

2012(3) [2009(10);2012(6)] 2012(8) [2007(6);2014

(2)]

- - 2011(7) [2009(11);2011

(9)]

-

a Year and (month) when a breakpoint has occurred;
b 95% Confidence intervals of time when a breakpoint has occurred;
c Contamination markers, namely intestinal enterococci (IE), Escherichia coli (EC), total coliforms (TC) and spores of sulfite-reducing clostridia (SSRC);
d Total contamination, regardless of markers.

https://doi.org/10.1371/journal.pone.0218698.t001
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Fig 2. Time series of drinking water contamination frequencies in Antananarivo’s (Madagascar) water supply and rainfall from

1985 to 2017, using the period from breakpoints method. The time series are displayed in grey. The periods are represented by

dashed vertical black lines; the mean of the time series within each period is indicated by a dashed blue line. Confidence intervals

associated with change points are shown as red lines.

https://doi.org/10.1371/journal.pone.0218698.g002

PLOS ONE Water contamination and climate changes

PLOS ONE | https://doi.org/10.1371/journal.pone.0218698 June 15, 2020 7 / 18

https://doi.org/10.1371/journal.pone.0218698.g002
https://doi.org/10.1371/journal.pone.0218698


a specific pattern for this parameter. No month effect was detected for EC (p-value

~ 0.3> 0.05).

From 1985 to 2004, November harbored the maximum of sample contamination account-

ing for the highest mean of the period, with 12.6% (Fig 3b) and 2% (Fig 3f), in the first and sec-

ond period, respectively. In Antananarivo, November is also the month of the first heavy

rainfall (Fig 3c, 3g, 3j and 3m). During the following periods, contamination events progres-

sively increased preferentially at the beginning of the year, with means and medians of con-

taminated samples reaching 6% and 17% respectively in March (third period) and January

(last period) (Fig 3i and 3l). This is in accordance with the rainiest months (Fig 3j and 3m).

During the last 6 years, contamination events spread over the December to April period (Fig

3l). Thus, monthly contamination distribution can be superposed to rainfall distribution (Fig

3l and 3m).

Fig 3. Distribution of drinking water contamination frequencies in Antananarivo’s (Madagascar) water supply

and rainfall from 1985 to 2017. Box plots are displayed with a mean (red cross).

https://doi.org/10.1371/journal.pone.0218698.g003
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Relationship between water contamination and rainfall

Profile contamination clustering. Correlation between the percentage of contaminated

samples collected for one month and the rainfall measured during the same month was first

queried using a clustering strategy conducted on the whole data set collected from March 2012

to the current date. For each month, rainfall, total contamination, IE, EC, TC, and SSRC were

considered as variables for multiple component analysis (MCA) and automatic ascendant clas-

sification. The months grouped in a cluster and exhibited a similar profile of contamination.

Fig 4a displays the clustering tree. Four clusters were determined according to the level of each

contamination marker (IE, EC, TC, and SSRC). The scatter plot displays the distribution of all

markers within each cluster. Rainfall and total contamination were also displayed (Fig 4b).

Cluster 1, the largest, included 34 observations characterizing to months with low contamina-

tion in the context of low rainfall. Cluster 4, the smallest, included seven observations that

demonstrated high contamination in TC and IE/EC, in the context of middle rainfall level.

Clusters 4 and 3 exhibit similar total contamination. However, cluster 3 reported higher SSRC,

lower TC, and IE/EC contamination and higher rainfall than cluster 4. This suggests that a

similar total contamination rate might be associated with different contamination profiles.

Cluster 2 demonstrated high contamination for all markers in the context of high rainfall.

In summary, during the dry seasons, the level of contamination was relatively low and

mainly caused by SSRC (cluster 3). During the wet seasons, contamination was related to all

other contamination markers (cluster 2) or by SSRC (cluster 3). Contamination by TC and IE/

EC (cluster 4) was also more reported during the wet season.

The contamination profile also varied over the years. TC and EI/EC contaminations

emerged three years ago and became predominant in 2017 (cluster no.4). Whereas in 2013,

2015, and 2016, contamination was mainly sustained by SSRC (cluster no. 3) and in 2012 and

2014 by all other markers (cluster no. 2). At the month level, contamination profiles varied

cyclically according to the seasons. The wettest months of January and February showed high

contamination, mainly caused by all types of microorganism (cluster no. 2) and SSRCs (cluster

no. 3) respectively. This high contamination level occurred until May, regardless of the

marker. Except during these first 5 months of the years, low or no contamination was

observed, suggesting a rainfalls effect on emergence and persistence of contamination.

Rainfall and contamination modeling. According to previous data, the cumulative effect

of the amount of rain fallen over previous weeks on contamination levels can be suspected.

Three models (observed means, ARIMA model with no covariate, and ARIMA model adjusted

to the optimal number of cumulative precipitations) were compared to select the one that best

predicted the impact of cumulative rain on the occurrence of each contamination marker. The

values fitted by the three models were reported (Fig 5), and determinants of best models were

summarized in Table 2.

The ARIMA model adjusted with cumulative weekly rainfall was found as the most accu-

rate with the lowest BIC value and with a significant ratio test of likelihood (p-value <0.05).

The Portmanteau test concludes that no residual autocorrelation remained in the models

(p> 0.05 for all models).

In summary, apart from EC, these models showed that weekly cumulative rainfalls had an

impact on drinking water quality with different time lags according to the contamination

markers. For total contamination, a lag of 5 weeks of cumulative rainfall led to the best model

(BIC = -546.67) when comparing to the model with no covariate (BIC = -542.69, a p-value of

the likelihood ratio test = 1.9e-03<0.05). Prediction performance is also better than the other

models (7.95E-2 < 8.91E-2 and 8.65E-2).
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Fig 4. Hierarchical clustering of monthly observations from drinking water monitoring in Antananarivo’s

(Madagascar) water supply from 2012 to 2017. a) Clustering tree; b) Scatter plot displays the distribution of all

markers within each cluster. The black crosses are the mean within the cluster of the corresponding variable. The

dotted black line is the overall mean. c) Bar plots explore the repartition of each cluster by wet/dry seasons, by year and

by months.

https://doi.org/10.1371/journal.pone.0218698.g004
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For other specific markers and in agreement with MCA, the different lags suggest the chro-

nological emergence of contamination markers after the weekly rainy periods: 1) SSRC con-

tamination events generally occurred first after 4 weeks of cumulative rainfalls; 2) IE

contamination events occurred after 5 weeks of cumulative rainfalls; 3) TC emerged last,

Fig 5. Modeling drinking water contamination in Antananarivo’s (Madagascar) water supply from 2012 to 2017. The following

figure shows the observed series in grey, the values fitted by the mean in orange, by the ARIMA model with no covariate in blue, and

by the ARIMA model adjusted on the optimal number of cumulative rainfalls in green.

https://doi.org/10.1371/journal.pone.0218698.g005
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within 8 weeks of cumulative rainfalls. For EC, this procedure estimated that 3 weeks was the

optimal cumulative rainfall (BIC = -1460.62). Nevertheless, the likelihood of the model does

not significantly increase compared to the model with no covariate (BIC = -1465.96, a p-value

of likelihood ratio test = 5.6e-01 > 0.05). This suggests that the procedure is not able to detect

how rainfall affects EC rate. Prediction error of the model adjusted on 3 weeks of cumulative

rainfall (~ 1.44e-02) does not lead to an improvement of the prediction accuracy of the naive

model (~ 1.87e-02) nor of the ARIMA model with no covariate (~ 1.46e-02). This could be

due to a lack of power of the model as EC contamination events were too sporadic (9% of the

series).

In conclusion, the emergence of SSRC, IE, and TC are differentially linked to cumulative

weekly precipitations, but no significant impact of cumulative rainfall could be detected for

EC.

Discussion

Drinking water quality issues

Thirty-two-year monitoring of microbial indicators was performed in Antananarivo’s full-

scale drinking water distribution system, which operated under severe pressure from rapid

and unplanned urbanization. The study showed that seasonal variations and significant long-

term changes occurred in the microbiological quality of drinking water in the Antananarivo

supply system. Large variations were observed in the occurrence of intestinal enterococci—EI

(indicator of fecal pollution), total coliforms—TC (indicator of treatment efficiency or cleanli-

ness and integrity of distribution systems) and clostridia spores—SSRC (indicator of filtration

plant performance), following rainfall. Such seasonal variations in drinking water system per-

formance were potentially due to rapid changes in raw water quality as a result of precipitation

(e.g. increased stormwater flows and discharges, soil erosion, sporadic high turbidity) and an

increased microbial load entering drinking water distribution [41] (e.g. overloading of the

treatment process, adversely affecting disinfection efficiency) [17,42,43].

Long-term changes were also observed in the annual contamination level of TC, IE and

SSRC. Such breakpoints (1993, 2004 and 2012) were potentially attributable to the treatment

plant upgrades (Mandroseza II, in 1993, with an increase of 60,000 m3 of water per day), a

gradual inability to meet quantity requirements since 2004, and environmental changes that

gradually led to rapid and significant fluctuations in raw water quality (e.g. changes in land

use, a deforested and urbanized watershed) [43–46]. On the other hand, the low proportion of

Table 2. Determinants of best ARIMA model adjusted to the optimal number of cumulative rainfalls.

Contamination markersa Lag (weeks) BIC b model BIC no-covariate Likelihood ratioc Prediction modeld Prediction naïve Prediction no-covariate

IE 5 -1119.84 -1118.34 7.4E-4 3.26E-2 3.62E-2 3.38E-2

EC - -1460.62 -1465.96 5.6E-1 1.44E-2 1.87E-2 1.46E-2

TC 8 -1010.19 -1011.11 2.95E-2 6.07E-2 6.07E-2 6.26E-2

SSRC 4 -620.49 -608.22 2.0E-5 6.26E-2 8.55E-2 6.61E-2

Total 5 -546.67 -542.62 1.9E-3 7.95E-2 8.91E-2 8.65E-2

a Contamination markers, namely intestinal enterococci (IE), Escherichia coli (EC), total coliforms (TC) and spores of sulfite-reducing clostridia (SSRC);
b Bayesian Information Criterion values for adjusted and no-covariate (reference) models (the lower, the better);
c Likelihood ratio to test if the adjusted model is a better fit than the naïve model (values must be <0.05);
d Prediction accuracy of the three models (the lower, the better): adjusted model over cumulative rainfall weeks (i), naïve model based on previously observed means (ii)

and model with no-covariate.

https://doi.org/10.1371/journal.pone.0218698.t002
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EC-contaminated samples has shown that, regardless of the ecological context or the technical

performance of the treatment plan, the process has always been able to remove recent faecal

contamination [47].

Water supply and demand issues: Signal of imbalance

Over the past 30 years, the capacity for drinking water treatment has not fully met the growing

needs of residents. The population in 2017 was 2,904,000, a 5% increase per year from 1985. At

the same time, daily water production increased by only 100,000 to 160,000 m3. In addition,

the drinking water infrastructure was ageing and falling apart, with a production efficiency of

around 60% [22,25,48].

Most pumps, basins, sand filters, storage reservoirs and underground water pipes were

installed 60 years ago. Even with this system still in operation, it would need to be upgraded to

meet exponential water demand (as an increase of 2% per year) [48]. The situation (e.g. age

and no innovative design) required finding a balance that has reconciled duration and effi-

ciency of treatment (nominal capacity of treatment plant) with daily water demand. However,

the increase of technical problems, the decrease of yields, and the high seasonal changes in raw

water did not allow a long-time balance to be maintained. Water demands in permanent

excess of the nominal capacity resulted in a baseline remaining contamination by coliforms

that characterized the water supply system.

The installation of the Mandroseza II treatment unit has led to a significant improvement

in the microbiological quality of the water (statistical analysis of breakpoints). In practice, the

implementation of the filtration step with the double-layer filter in complement of sand filtra-

tion has led to a sustainable reduction (more than 10 years) of contamination events in the

supply system, especially samples contaminated by TC. Efficiency of clarification step was able

to reduce TC contamination by a factor of three [49]. In 2004, the number of contamination

events rose again to reach 4% of contaminated samples per month. The TC parameter gov-

erned this increase (+3%). The imbalance of the production system therefore shaped the CT

contamination level of the water supply system [24,50].

In March 2017, a new subunit (Mandroseza II bis) was implemented to increase the capac-

ity from 3,000 m3/h to 3,900 m3/h, but it was too soon to assess the impact of this on water

quality. However, Antananarivo is expected to host nearly 3,400,000 inhabitants in 2020.

Urbanization and demographics can again affect the balance between water supply and

demand. The critical point will be the economic capacity to again upgrade infrastructures and

to find a new economic model for water supply [51].

Ecological disruptions and damage to the water resource

Although there were no clear trends in the precipitation data, Antananarivo (since 2012) expe-

rienced successive extreme weather events, which led to episodes of high contamination dur-

ing the first months of the year [52]. Cyclone Giovanna in February 2012 coincided with the

start of the period with the highest contamination rates. The rains brought by cyclone Felleng

in January 2013 raised river levels, with damage on water infrastructures. The rains of Febru-

ary 2015 triggered floods and the rising floodwaters have broken through several dams around

the capital. Heavy rains that have hit the island since late 2014 were followed by Cyclone

Chedza in January 2015. Since December 2015—and more precisely in January 2016—Anta-

nanarivo has also experienced torrential rains which caused significant damage. Enawo (a cate-

gory-four tropical cyclone), hit Antananarivo in March 2017 and caused severe floods and

landslides.
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Significant associations between increased precipitation and greater occurrence of bacterial

indicators in water samples were found, with specific lags in the effects of precipitation accord-

ing to the different indicators. The emergence of SSRC and IE generally occurred within 4–5

weeks of rain, while TC appeared after 8 successive weeks of precipitation. The 4–8 weeks lag

effect we observed can be explained by a cumulative phenomenon or a chain reaction that

began with rainy season and that affected treatment efficiency, then the hygiene of supply

network.

The emergence of the SSRC first was potentially attributed to soil leaching [53] during the

first rains in November, which gradually overloaded the station with suspended matter, after 4

weeks. The Ikopa River watershed was severely impacted by erosion (e.g. deforestation, soils

poorly protected by vegetation, agricultural practices) [54–57], that adversely affected clarifica-

tion step and efficiency of disinfection [43]. Highlands cities that used surface water had con-

tamination events, mainly sustained by the SSRC [58]. Failures in the treatment system

appeared to have occurred, especially during wet periods.

The first IE emerged at week 5 after the beginning of heavy rainfalls. Their presence was

potentially due to a loss of efficiency of filtration systems and chlorination steps (turbid water

should be fully clarified to enable disinfection to be effective) and to a greater charge of sus-

pended solids in raw water [59,60]. This increase in IE was only seen during the more recent

period. Indeed, in 1995, the silting of the Ikopa River was estimated at 81 m3 per year per km2

of the watershed, and sediments concentrated mainly upstream of dams (particularly Mandro-

seza dam) [9,61–63]. Since then, the depth of Lake Mandroseza had gradually decreased from

7.5 m to 3 m and has begun to be invaded by non-aquatic plants.

Demographic and ecological changes have also occurred, including deforestation of water-

sheds and disturbance of the protection perimeter related to urbanization. The Mandroseza

basin has increased from 30 to 50 hectares of the urbanized area [64]. Since then, although EC

contamination events are not significant (median zero), the range of contaminated samples

has increased. Nevertheless, the emergence of EC contamination is not significantly related to

cumulative rainy weeks. The treatment system was able to limit the occurrence of EC, even

though urban runoff could be heavily loaded with this bacterium [65].

After 8 weeks of cumulative rainfall (January–February), TC appeared. These contamina-

tion events were delayed and not directly related to precipitation. Unlike SSRC and IE, these

contamination events seem related to another parameter. This event could be the accumula-

tion of sediments or the deterioration of the cleanliness of the supply networks. The loss of fil-

tration efficiency also creates conditions for the proliferation of TC in the supply network

[21,66].

Bias induced by changes in monitoring

Over the last 30 years, some parameters have been ignored during water quality monitoring.

Sample turbidity measurements, for example, have only been recorded since 2016. Similarly,

the evaluation of organic matter in the water network (the simplest being the determination of

permanganate oxidation) would also be necessary to assess hygiene. Monitoring of the chlo-

rine level should allow the characterization of the response to this phenomenon. The chlorine

demand resulting from the difference between the amount of chlorine added and the residual

chlorine in the system tends to increase as the hygiene conditions of the system deteriorate. It

is also likely that the disruption in 2012, which was characterized by a high level in SSRC, was

related to the change in method and volume (× 5) for the measurement of SSRC (NF T 90–415

vs. NF EN 26461–2). Apart from this case, no testing changes impacted on fecal contamination

(EC and IE) and TC, which were highly stable during this period.
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Conclusions

The bacteriological quality of the supplied water in Antananarivo has gradually deteriorated in

recent years. Water supply infrastructure did not kept pace with population growth and the

imbalance between production capacity and water demand has become critical (exponential

urban growth and low production efficiency), with a serious impact on the quality of supplied

water.

Unplanned urban expansion and land-cover change (deforested watershed) reinforced the

impact of heavy rainfall on drinking water quality (high variation of suspended solids). Silta-

tion of lake resources and erosion were aggravating factors during rainy periods, introducing

contamination markers attached to sediments into the supply system (i.e., spores of sulfite-

reducing of Clostridia and intestinal enterococci).

The overload of the filtration system mainly occurred after four weeks of cumulative rainfall

favoring strong contamination in January and February. Regrowth conditions of bacteria were

evident with the emergence of total coliforms after 8 weeks of cumulative rainfall. Conse-

quently, the vulnerability to persistent contamination and biological instability generally per-

sisted during rainy periods. On contrast, Escherichia coli were generally removed by the

implemented treatment, even during periods of heavy rainfall.

The upgrading of the treatment plant in 1993 had a long and positive impact on drinking

water quality, mainly in decreasing contamination events by total coliforms. Appropriate

upgrading of the filtration process could be effective in improving the microbiological quality

of the water in the supply system. Otherwise, a fair balance between the duration of filtration

(flow rate) and the quantity of available treated water must be found.

Stability in testing methods and expansion of monitoring parameters were needed to better

assess changes of the interplay between climate and environmental or technical context of

water supply.
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8. Hrdinka T, Novický O, Hanslı́k E, et al. Possible impacts of floods and droughts on water quality. J

Hydro-Environment Res 2012; 6:145–150.

9. Rosario-Ortiz FL, Snyder SA, Suffet IH (Mel). Characterization of dissolved organic matter in drinking

water sources impacted by multiple tributaries. Water Res 2007; 41:4115–4128. https://doi.org/10.

1016/j.watres.2007.05.045 PMID: 17659316

10. Delpla I, Jung A-V, Baures E, et al. Impacts of climate change on surface water quality in relation to

drinking water production. Environ Int 2009; 35:1225–1233. https://doi.org/10.1016/j.envint.2009.07.

001 PMID: 19640587

11. Moors E, Singh T, Siderius C, et al. Climate change and waterborne diarrhoea in northern India:

Impacts and adaptation strategies. Sci Total Environ 2013:468–469.

12. Oloruntoba EO, Folarin TB, Ayede AI. Hygiene and sanitation risk factors of diarrhoeal disease among

under-five children in Ibadan, Nigeria. Afr Health Sci 2014; 14:1001–1011. https://doi.org/10.4314/ahs.

v14i4.32 PMID: 25834513

13. Howard G, Calow R, Macdonald A, et al. Climate change and water and sanitation: likely impacts and

emerging trends for action. Annu Rev Environ Resour 2016; 41:253–276.

14. McDonald RI, Green P, Balk D, et al. Urban growth, climate change, and freshwater availability. Proc

Natl Acad Sci U S A 2011; 108:6312–6317. https://doi.org/10.1073/pnas.1011615108 PMID:

21444797

15. Ratan R, Venugopal V. Wet and dry spell characteristics of global tropical rainfall. Water Resour Res

2013; 49:3830–3841.

16. Razavi T, Switzman H, Arain A, et al. Regional climate change trends and uncertainty analysis using

extreme indices: A case study of Hamilton, Canada. Clim Risk Manag 2016; 13:43–63.

17. Prest EI, Weissbrodt DG, Hammes F, et al. Long-term bacterial dynamics in a full-scale drinking water

distribution system. PLoS One 2016; 11:e0164445. https://doi.org/10.1371/journal.pone.0164445

PMID: 27792739

18. Hannah L, Dave R, Lowry PP, et al. Climate change adaptation for conservation in Madagascar. Biol

Lett 2008; 4:590–594. https://doi.org/10.1098/rsbl.2008.0270 PMID: 18664414

PLOS ONE Water contamination and climate changes

PLOS ONE | https://doi.org/10.1371/journal.pone.0218698 June 15, 2020 16 / 18

https://doi.org/10.1017/S0950268812001653
http://www.ncbi.nlm.nih.gov/pubmed/22877498
https://doi.org/10.1371/journal.pmed.1002688
http://www.ncbi.nlm.nih.gov/pubmed/30408029
https://doi.org/10.1038/s41598-017-17966-y
http://www.ncbi.nlm.nih.gov/pubmed/29269737
https://doi.org/10.1128/aem.68.5.2188-2197.2002
https://doi.org/10.1128/aem.68.5.2188-2197.2002
http://www.ncbi.nlm.nih.gov/pubmed/11976088
https://doi.org/10.1016/j.watres.2015.08.018
https://doi.org/10.1016/j.watres.2015.08.018
http://www.ncbi.nlm.nih.gov/pubmed/26311274
https://doi.org/10.1016/j.watres.2007.05.045
https://doi.org/10.1016/j.watres.2007.05.045
http://www.ncbi.nlm.nih.gov/pubmed/17659316
https://doi.org/10.1016/j.envint.2009.07.001
https://doi.org/10.1016/j.envint.2009.07.001
http://www.ncbi.nlm.nih.gov/pubmed/19640587
https://doi.org/10.4314/ahs.v14i4.32
https://doi.org/10.4314/ahs.v14i4.32
http://www.ncbi.nlm.nih.gov/pubmed/25834513
https://doi.org/10.1073/pnas.1011615108
http://www.ncbi.nlm.nih.gov/pubmed/21444797
https://doi.org/10.1371/journal.pone.0164445
http://www.ncbi.nlm.nih.gov/pubmed/27792739
https://doi.org/10.1098/rsbl.2008.0270
http://www.ncbi.nlm.nih.gov/pubmed/18664414
https://doi.org/10.1371/journal.pone.0218698


19. Van der Bruggen B, Borghgraef K, Vinckier C. Causes of water supply problems in urbanised regions in

developing countries. Water Resour Manag 2010; 24:1885–1902.

20. Gleason JA, Fagliano JA. Effect of drinking water source on associations between gastrointestinal ill-

ness and heavy rainfall in New Jersey. PLoS One 2017; 12:e0173794. https://doi.org/10.1371/journal.

pone.0173794 PMID: 28282467

21. Hwang C, Ling F, Andersen GL, et al. Microbial community dynamics of an urban drinking water distri-

bution system subjected to phases of chloramination and chlorination treatments. Appl Environ Micro-

biol 2012; 78:7856–7865. https://doi.org/10.1128/AEM.01892-12 PMID: 22941076

22. United Nations, Departement of Economic and Social Affairs PD (2018). World Urbanization Prospects :

The 2018 Revision, custom data acquired via website [Internet]. 2018 [cited 2019 May 13]. https://

population.un.org/wup/DataQuery/

23. Peel MC, Finlayson BL, McMahon TA. Updated world map of the Köppen-Geiger climate classification.
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méthode du nombre le plus probable, NF EN ISO 9308–2, 2014.

32. AFNOR Certification. Enterolert-DW / Quanti-Tray for the quantification of enterococci in drinking water:

Certificate IDX 33/03-1, 2013.
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