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Abstract (250 words) 39	

Over the last ten years, genome-wide association studies (GWAS) have identified 40	

hundreds of susceptibility loci for autoimmune diseases. However, despite increasing 41	

power for the detection of both common and rare coding variants affecting disease 42	

susceptibility, a large fraction of disease heritability has remained unexplained. In 43	

addition, a majority of the identified loci are located in non-coding regions, and 44	

translation of disease-associated loci into new biological insights on the aetiology of 45	

immune disorders has been lagging. This highlights the need for a better 46	

understanding of non-coding variation and new strategies to identify causal genes at 47	

disease loci. In this review, I will first detail the molecular basis of gene expression 48	

and review the various mechanisms that contribute to alter gene activity at the 49	

transcriptional and post-transcriptional level. I will then review the findings from 10 50	

years of functional genomics studies regarding the genetics on gene expression, in 51	

particular in the context of infection. Finally, I will discuss the extent to which genetic 52	

variants that modulate gene expression at transcriptional and post-transcriptional 53	

level contribute to disease susceptibility and present strategies to leverage these 54	

information for the identification of causal mechanisms at disease loci in the era of 55	

whole genome sequencing. 56	

 57	

  58	
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Introduction 59	

The host immune response to stress exhibits considerable variation, both at the 60	

individual and population levels1. While many non heritable factors contribute to this 61	

variability, including age, gender or past exposures to pathogens2-5 (see1 for a review 62	

on these aspects). There is also widespread evidence that genetics plays a 63	

significant role in determining the efficacy of the human immune response, in 64	

particular in the context of innate immunity6-12. Genome-wide association studies 65	

(GWAS) have been a considerable asset in defining the genomic regions involved in 66	

immune disease susceptibility13. However, identifying the causal mechanisms 67	

through which GWAS variants contribute to disease susceptibility has proven to be 68	

extremely challenging. Indeed, it was soon realized that most GWAS pointed toward 69	

gene deserts or non-coding regions14,15, highlighting the strong need for 70	

characterization of the molecular mechanisms through which such non-coding 71	

regions may alter immune disease susceptibility16. Furthermore, while large GWAS 72	

meta-analyses have granted increasing power to capture the effect of common 73	

variants on disease susceptibility, a large fraction of disease heritability has 74	

remained unaccounted for17. There is now increasing evidence to suggest that rare 75	

variants, non-coding in particular, may contribute to explain this missing heritability 76	

18-20. Therefore, there is a growing need to understand how non-coding variants, 77	
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whether rare or common, contribute to the variability of immune phenotypes in 78	

humans. In this review, I will first present the various mechanisms though which non-79	

coding elements may contribute to regulate gene expression, either at the 80	

transcriptional level, or post-transcriptionally through RNA splicing and degradation. 81	

Then, I will review current knowledge of how common genetic variants drive immune 82	

gene expression at the transcriptional and post-transcriptional level. Finally, I will 83	

discuss strategies to decipher the impact of rare regulatory variants on immune 84	

response and characterize the causal mechanisms that determine immune disease 85	

susceptibility.  86	

 87	

The molecular bases of gene expression 88	

In multi-cellular organisms, tight regulation of gene expression programs is essential. 89	

First, during development, cells must coordinate expression of various transcription 90	

factors to divide and differentiate into future organs. Then, in adult life, regulatory 91	

sequence need to allow for cell-type specific gene expression profiles, that are both 92	

(i) robust to genetic variations and (ii) able to react appropriately to external stimuli. 93	

In human, such combination of resilience and adaptability is achieved through a 94	

network of regulatory features, the complexity of which largely exceeds that of the 95	

protein coding genome. Indeed, while coding sequence represent only 1.5% of the 96	
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human genome, there is evidence that at least 20% of the genome is covered by 97	

regulatory features, and 10% is actively bound by known transcription factors21.  98	

 99	

Promoters and enhancers shape transcriptional activity across tissues 100	

The regulatory features that control transcription are characterized by epigenetic 101	

histone modifications (see Table 1 and ref.22) and can be decomposed in two main 102	

categories (Figure 1a). At the transcription start site, promoters recruit RNA 103	

polymerase, along with a variety of other transcription factors, to initiate gene 104	

transcription15,23,24. While 96% of promoters are active in more than one tissue or cell 105	

type, only ~20% are ubiquitously expressed indicative of strong tissue-specificity of 106	

gene regulation23. Tissue-specificity is further increased by distal enhancer regions 107	

⎯ located up to 1Mb away from the promoters they regulate ⎯ which, when 108	

activated by tissue-specific transcription factors, are brought in contact with their 109	

associated promoter by looping of the DNA molecule (Figure 1b,c) to modulate their 110	

activity15,24,25. Activation of both promoters and enhancers is associated to an 111	

opening of the chromatin and acetylation of H3K27 histone residues (Figure 1d,e), 112	

together with transcription of non-coding RNAs22,25,26. This transcription occurs either 113	

in the opposite direction of transcriptional elongation at promoters (upstream 114	

antisense RNAs), or bi-directionally for enhancers (enhancer RNAs). Although such 115	
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RNAs are rapidly degraded by exosomes, they allow precise quantification of 116	

enhancer/promoter activity by sequencing techniques that target the 5’ end of 117	

transcripts such as CAGE-seq or GRO-Cap23,25,27.  118	

Over the last 10 years, large Consortia ⎯ such as Fantom523,25, ENCODE26, 119	

BluePrint28-31 or Roadmap Epigenomic22 ⎯ have combined these techniques with 120	

Chromatin immuno-precipitation (ChipSeq) and chromatin accessibility Assays 121	

(DNAse-Seq, FAIRE-Seq, or ATAC-Seq) to precisely map promoters and enhancers 122	

along the genome and characterize of their activity across tissues. In doing so, 123	

theses studies have provided valuable insights on the regulatory architecture of the 124	

response to immune stimuli. Notably, immune enhancers were shown to have a 125	

distinct sequence composition, DNA structure and activity patterns32, with their 126	

activation preceding that of their proximal promoters during immune response, 127	

revealing their crucial role in the early transcriptional response to immune stimuli33.  128	

 129	

Three-dimensional chromatin conformation orchestrates transcription  130	

Because enhancers are located far from the genes they regulate, 131	

understanding how they are brought into contact with their target gene is of primary 132	

importance to decipher the complex networks of that underlies transcriptional 133	

regulation in humans. Chromosome Conformation Capture techniques (Hi-C, and 134	
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Promoter-capture Hi-C, Chia-PET) have recently enabled the detection of DNA-DNA 135	

interactions along the genome30,31,34,35, allowing the assignment of enhancers to their 136	

target genes. In practice, a single gene is often regulated by multiple enhancers, and 137	

one enhancer can regulate multiple genes15,24. Notably, ~70% of these interactions 138	

are restricted to specific regions, known as Topologically associating domains or 139	

TADs, which can spread across hundreds of kilobases24,31. The boundaries of these 140	

TADs are genetically encoded ⎯ with evidence of TADs being modified by targeted 141	

deletions and genetic variants occurring at the boundary35,36 ⎯ and are enriched in 142	

are binding sites of the insulating factor CTCF. Note, however, that CTCF binding 143	

sites have also been observed within TADs35, indicating that CTCF binding is not 144	

sufficient to induce a TAD boundary. Growing evidence suggests that TADs act to 145	

facilitate efficient and insulated co-regulation of functionally related genes. In 146	

particular, they were reported to segregate promoters of immune gene together to 147	

facilitate their epigenetic priming37. 148	

Within TADs, promoter/enhancer conformation exhibits a wide variability 149	

across tissues, and was proposed to underlie cell type-specificity of enhancer 150	

functions31. In particular, several studies have reported the existence of enhancers 151	

acting as hubs for chromatin-chromatin interactions, linking promoters to other 152	

enhancers30,38,39. These hubs ⎯ sometimes referred as super-enhancers38, 153	



	 8	

frequently interacting regions30 or initiator enhancers39 ⎯ are tissue-specific30, 154	

preferentially found next to cell identity genes30,38 and enriched in tissue-specific 155	

eQTL39. More importantly, super enhancers are strongly enriched in disease-related 156	

SNPs and largely contribute to auto-immunity30,38. For instance, up to 22% of SLE 157	

GWAS loci fall into B-cell specific super enhancers, with disease-linked super-158	

enhancers being observed at key immune genes such as HLA-DRB1, HLA-DQA1, 159	

the interferon response factor IRF5 or the NF-κB inhibitor TNFAIP338. 160	

 161	

Post-transcriptional regulation through alternative splicing  162	

Beyond transcription, the control of gene expression is also ensured at the 163	

post-transcriptional level through alternative splicing (AS) and miRNA-mediated 164	

degradation. AS can change the function of the protein isoform that is being 165	

expressed, through addition/removal of exons encoding functional domains. The 166	

most iconic example of such a mechanism is the splicing transition of CD45 antigen 167	

during training of adaptive immunity, where T-cells switch from the CD45RO epitope 168	

that characterizes naïve T-cells to the CD45RA epitope associated with memory T-169	

cells40. AS can also repress gene expression through the introduction of premature 170	

stop codons into transcribed sequences, leading to non-sense mediated decay41,42. 171	

Although our understanding of the splicing code remains incomplete, there is a wide 172	

agreement that it involves the recognition by the spliceosome of donor/acceptor 173	
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sequences located at the intron boundaries, together with a branchpoint sequence 174	

⎯ typically located ~30 nucleotide upstream of the acceptor splice site41,42. This 175	

leads to the formation of a lariat and the removal of the intron. AS is induced by 176	

competition between splice sites and is regulated through a wide array of RNA 177	

binding proteins able to recognize both exonic and intronic regulatory sequences42-178	

45. These sequences can act as to either repress or promote, the recruitment of the 179	

spliceosome around a specific splice site or exon. In addition, alternative splicing can 180	

also be regulated co-transcriptionally, with exon inclusion being associated to a 181	

lower transcriptional elongation rate around the alternatively spliced exon41.  182	

 183	

Impact of miRNA-mediated degradation on immune response 184	

 Another layer of post-transcriptional regulation occurs through the binding of 185	

miRNAs to 3’UTRs, and the targeting of bound mRNAs to the RNA induced silencing 186	

complex (RiSC)46,47. The RISC then functions to repress gene expression through 187	

degradation of transcripts and inhibition of translation. For example, upon TLR4 188	

stimulation, the NF-κB-activated miRNAs mir-146a and miR-155 are strongly up-189	

regulated and bind to 3’UTRs of the TLR4 signal transducers, TRAF6 and IRAK4 190	

and the TLR4 inhibitors SHIP1 and SOCS148, respectively. These mRNAs are then 191	

targeted to the RISC for degradation, thereby contributing to the balance of 192	
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inflammatory responses to TLR4 stimulation. Several mechanisms can further 193	

modulate the impact of miRNAs on gene expression. For instance, usage of 194	

alternative UTRs and poly-adenylation sites can change the set of miRNA binding 195	

sites available for regulation of gene expression49. Such changes have been shown 196	

to be widespread upon stimulation49 and to play an important role in allowing key 197	

regulators of immune response, such as IRF5 or Map Kinases MAPKAP1 and 198	

MAP2K4, to escape repression by immune miRNAs49. Formation of miRNA isoforms 199	

⎯ known as isomiRs ⎯ could also contribute to immune response variability. 200	

Indeed, it was shown that post-transcriptional modifications of miRNAs through 201	

editing of the miRNA seed sequence or shifts in 5’/3’ boundaries of the mature 202	

miRNA, can alter their target sites or stability and lead to a decrease in their ability to  203	

for regulate mRNAs46,50. Furthermore, extensive changes in isomiRs have been 204	

observed upon stimulation, including for key immune miRNAs51. For instance, upon 205	

stimulation by interferon, mir-222 expresses shorter isoforms, which are associated 206	

to lower apoptosis52,53, highlighting how changes of miRNA isoform can contribute to 207	

regulate the response to immune stimuli. 208	

 209	

The genetic bases of gene expression 210	
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One major challenge of functional genomics is the understanding of the regulatory 211	

code that dictates gene expression from the genetic information encoded by DNA 212	

sequences. One approach to learn this regulatory code is through the use of 213	

naturally-occurring genetic variation. Studies of expression quantitative trait loci 214	

(eQTL) aim to identify genetic variants that are associated to gene expression levels 215	

in human populations.  216	

 217	

Genetic control of transcriptional activity is highly stimulation-specific 218	

eQTL studies have first focused of steady-state expression measurements on 219	

lymphoblastoid cell lines or whole blood, from a wide range of populations54-58. 220	

These studies are revealed that the majority of eQTLs are located in cis, i.e. less 221	

than 1Mb away of the gene they control, and that population-specific eQTLs are 222	

driven by changes in allelic frequency rather than gene × gene or gene × 223	

environment interactions59. While a few trans-associations ⎯ involving genes 224	

located on different chromosomes ⎯ were detected, these associations were either 225	

weak or driven by cross mapping errors60 and changes in cellular composition61. The 226	

strong potential of eQTL for biomedical applications62 has rapidly lead to extend this 227	

framework to multiple tissues63 or purified immune cell types29,64, revealing a strong 228	

tissue specificity of eQTLs. Furthermore, exposing human cells to immune and 229	
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infectious challenges has allowed the identification of response eQTLs that are 230	

associated with changes in gene expression specifically upon immune stimulation 231	

(Figure 1f,g)6,9,12,65,66. Interestingly, response-eQTLs were found to be highly 232	

variable across stimuli and time points8,9,12. For instance, the rs9266257 variant was 233	

found to control expression of HLA-C in macrophages specifically upon infection by 234	

Salmonella, but not Listeria65. Interestingly, this phenomenon appeared even more 235	

striking among trans-eQTLs which where often revealed by immune stimulation8. An 236	

outstanding example of this is the TLR1 locus, where the European-specific 237	

missense variant rs5743618 is associated with a decreased inflammatory response 238	

to stimulation of the TLR1/2 complex9. Interestingly, the European-specific allele of 239	

this variant is protective against leprosis67 and overlaps one of the strongest 240	

signature of natural selection in the human genome9, highlighting how selective 241	

pressures induced by pathogens can lead to strong inter-individual and inter-242	

population differences in immune phenotypes. 243	

 244	

The subtle effect of enhancer variants of gene expression 245	

Studies of the mechanistic bases of eQTLs9,57 have shown that promoter variants 246	

are largely overrepresented among eQTLs. However, enhancer variant are 247	

increasing likely to be found when focusing on secondary, weaker eQTLs63. The 248	
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increasing power to detect small effect size and highly localized effects offered by 249	

eQTL meta-analyses61 and analyses of eQTLs at single cell resolution68 will likely 250	

improve our understanding of the contribution of enhancer variants to gene 251	

expression. Another approach to detect subtle effects of enhancers variants on gene 252	

expression consists in assaying directly the effect of genetic variants on regulatory 253	

activity, based on chromatin accessibility66,69, histone modifications29,69, or short-live 254	

transcriptional products70. In doing so, Li et al. estimated that QTLs for regulatory 255	

elements could account for ~60% of eQTLs, but only <25% of enhancers QTLs were 256	

associated to an effect on transcription nearest gene69, suggesting that only a small 257	

fraction of variants that alter regulatory activity lead to a measurable effect on gene 258	

expression. However, variants that alter chromatin accessibility with no visible effect 259	

on gene expression at basal state can contribute to prime enhancers66. Upon 260	

stimulation, this priming favours the binding of stimulus-specific transcription factors, 261	

such as NF-κB or Stat2, leading to a stronger immune response37,66, Together, these 262	

observations highlight the potential of eQTL meta-analyses and direct assays of 263	

regulatory activity to understand inter-individual variability in immune response. 264	
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 265	

Genetic regulation of post-transcriptional variability in the immune response 266	

Perhaps unsurprisingly given their strong potential to alter protein function, 267	

splicing quantitative trait loci (sQTLs, figure 2a) have turned out to be consistently 268	

less frequent than eQTLs across the human genome. Indeed, eQTLs appear to be 269	

from 1.5 to 6 time more frequent than sQTLs, across studies56,57,58 ,65,71,72 (Table 2). 270	

In addition, sQTLs displayed a stronger overlap between conditions of stimulation 271	

than eQTLs65,71, suggesting a limited impact of stimulation on the genetic regulation 272	

of splicing. Nevertheless, disease-causing sQTL have been observed at many key 273	

immune genes including OAS1, IRF7, IL7R, IFI44L, TYK2 and ERAP265,71,73-75, 274	

highlighting the importance of considering splicing variation when searching for the 275	

causal mechanisms underlying GWAS loci. Interestingly, several of these loci, 276	

including OAS1 or ERAP2 present haplotypic signatures of positive and balancing 277	

selection, suggesting that these sQTL have conferred a selective advantage to 278	

human populations in the past, likely through increased resistance to pathogens.71,73. 279	

The regulation of miRNA expression has also been extensively studied, both at basal 280	

state76,77 and in response to infection78. Similar to splicing, miRNA QTLs studies 281	

(figure 2b) have generally suggested a limited genetic control of miRNAs, consistent 282	

with expectation of strong selective constraints on miRNA expression due to their 283	
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widespread impact on gene expression76,78. miRNA QTLs appear to be strongly 284	

enriched in variants located in their promoter and eQTLs of their host gene79. 285	

However, there is also strong evidence that enhancers and loci that are bound by  286	

transcription factor (TF) contribute to miRNA expression77. Recently, a study has 287	

used models of SNP-miRNA interactions to quantify the impact of SNPs on the 288	

regulation by miRNAs (reg-eQTL, figure 2c). This has lead to the identification of 289	

~40 SNP that disrupt miRNA binding sites80. The proposed approach, however, 290	

suffers from the lack of power usually associated with interaction testing, and may 291	

largely underestimate the true number of such reg-eQTL. Larger studies combining 292	

expression, genetic and miRNA data are now needed to fully characterize the impact 293	

of genetic variants on miRNA-mediated degradation in the immune response.  294	

 295	

The contribution of regulatory variants to disease susceptibility 296	

In support of the importance or eQTLs in disease susceptibility, they have been 297	

repeatedly reported to be enriched in disease loci8,9,12,57,63. For instance, the 298	

association of the rs4077515 variant with Inflammatory bowel disease is mediated by 299	

activation of a distal enhancer of CARD9 leading to an increase of its transcription, 300	

supporting the causal role of CARD9 in Inflammatory bowel disease29. Similarly, 301	

there is increasing support to the notion that sQTL or mirRNA QTLs can also 302	
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contribute to common disease risk69,71,81. For instance, the Multiple sclerosis 303	

associated variant rs6897932, located within an exon 6 of IL7R, has been shown to 304	

promote exon skipping. As a result, a soluble form of IL7R is being produced that is 305	

associated with exacerbated auto-immune phenotypes in mice75. However, despite 306	

evidence that 90% of auto-immune loci act through regulatory variants, 60% of which 307	

are located at enhancers82, it was suggested that only a limited fraction of the QTLs 308	

detected at GWAS loci play a causal role in disease susceptibility63,83. This 309	

observation, which may reflect the robustness of disease gene expression induced 310	

by the high redundancy of their enhancers84, highlights the importance of taking 311	

linkage disequilibrium into account when assessing the co-localization between 312	

GWAS loci and eQTLs, or sQTLs85.  313	

 314	

Deciphering the regulatory code to predict the effect of rare variants 315	

Recently, the development of massively parallel reporter assays (MPRA) has 316	

enabled the direct assessment of cis-regulatory activity associated to specific DNA 317	

fragments, either synthetic86, or naturally occurring87,88. The general principle of 318	

MPRA techniques (figure 3) consists in transfecting libraries of barcoded plasmids 319	

into live cells and counting the occurrence of each barcode in the transfected cells, 320	

as a measure of the activity of the associated regulatory sequence (after 321	
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normalization by the barcode frequency in the initial library). By measuring the 322	

activity of both alleles at heterozygous loci, these approaches further allow 323	

quantifying the impact of genetic variants, or haplotypes, from a single individual. 324	

Thus, they constitute a privileged tool for assessing the impact of rare variants on 325	

regulatory regions, or identifying causal variants among sets of linked SNPs 326	

identified through eQTL analyses88,89. For instance, dissection of regulatory 327	

mechanisms at a 87 nucleotide-long IFNB1 enhancer indicated that 83 substitutions, 328	

out the 261 possible, resulted in altered activity in virus-infected cells88. 329	

 Massively parallel assays have also been used in the context of both splicing90,91 330	

and miRNA-mediated regulation92,93, revealing, for instance, that up to 16% of splice 331	

disrupting variants are located in deep intronic regions90. With the development of 332	

deep learning frameworks for sequence-based predictions94,95, data generated by 333	

these assays, will now fuel the construction of predictive models. These models will, 334	

in turn, allow quantifying the regulatory impact of novel genetic variants on 335	

transcriptional activity88, alternative splicing96, or miRNA-mediated regulation93. 336	

 337	

Concluding remarks: a strategy for the future.  338	

Elucidating the mechanisms by which non-coding variants contribute to the inter-339	

individual variability of immune response is now an essential step in order to 340	
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translate the findings of epidemiological genetic studies into the clinics13. The 341	

characterization the human epigenome across a wide variety of tissues and 342	

conditions has allowed establishing a first map of the regulatory landscape of the 343	

human genome. Further efforts are now needed to fully define the cascade of 344	

regulatory events that take place during the immune response, for a wide spectrum 345	

of stimuli and with a high temporal resolution.  This will allow classifying regulatory 346	

elements according to their activity in distinct cell types, and in response to specific 347	

stimuli. Then, using heritability partitioning techniques97,98 that decompose the 348	

genetic variance of complex traits across several SNP categories, we will be able to 349	

identify the cell types and stimuli that most strongly contribute to the development of 350	

immune disorders. Holistic studies that consider both transcriptional and post-351	

transcriptional aspects of gene expression variation41,66,74, and combine RNA seq 352	

with sequencing of small RNAs or ATAC-seq, constitute a promising approach to 353	

understand the aetiology of immune disorders. Such approaches, however, are only 354	

the first step toward the identification of the causal mechanisms that underlie disease 355	

susceptibility. Validation of the proposed mechanisms, through colocalization 356	

analysis85, mendelian randomization approaches99 and randomized clinical trials100, 357	

are then required to formally establish causality. Finally, as whole genome 358	

sequencing is becoming increasingly common19, the ability to identify rare regulatory 359	
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variants at known disease genes will become a crucial step toward personalized 360	

treatments of both rare and common immune disorders. In this context, the 361	

increased knowledge of the regulatory code granted by functional genomics studies, 362	

and MPRA in particular, will constitute a precious tool to predict and assess the 363	

effect of rare variants on intermediate disease phenotypes.  364	

  365	

  366	
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Table 1. Epigenetic marks associated with gene regulation 367	

Epigenetic mark Associated function Assay 
H3K4me1 Enhancers Chip-Seq 
H3K4me3 Promoters Chip-Seq 

H3K27Ac 
Active regulatory regions 

(promoter/enhancer) 
Chip-Seq 

H3K9Ac 
Active regulatory region 

(promoter/enhancer) 
Chip-Seq 

H3K36me3 
transcribed regions 

/exon definition 
Chip-Seq 

H3K9me3 
repressed region 
(heterochromatin) 

Chip-Seq 

H3K27me3 
repressed region  

(polycomb) 
Chip-Seq 

Cytosine 
methylation 

repressed regulatory 
regions (promoter/enhancer) 

BisulfiteSeq 

Open Chromatin 
Active regulatory region 

(promoter/enhancer) 
DNAse-Seq/ 
ATAC-Seq 

Table 2. Compared number of eQTL and sQTL detected across studies 368	

Study Sample used 
Number 
of eQTL 
detected 

Number 
of sQTL 
detected 

Metric 
used 

Pickrell, 201056 
lymphoblastoid cell 

lines (n=69) 
929 187 Exon 

Lappalainen, 
201357 

lymphoblastoid cell 
lines  (n= 462) 

3,773 639 Transcript 

Battle, 201458 Whole blood (n=922) 10,914 2,851 Transcript 

Nedelec, 201665 
macrophages 

(n=175 x 3 conditions) 
1,647 1,120 Transcript 

Chen, 201629 
Monocytes, 
neutrophils, 

CD4+ T-cells (n=197) 

6513, 
5845, 
5799 

3044, 
2034, 
3347 

Transcript,  
Exon 

Ye, 201871 
Dendritic cells 
(3 conditions, 

n= 99+227+250) 
6,694 2,763 Transcript 
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Figures 369	

 370	

Figure 1: The molecular bases of response-eQTLs. 371	

a. Genomic dissection of a genic region. Grey arrow represents the transcription 372	

start site. Purple, green and orange lines represent possible chromatin-chromatin 373	

interactions between enhancers, or between enhancers and the promoter. 374	

Green/red circle represents a mutation of the orange enhancer. The same color 375	
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code is used throughout the figure. b-c. 3-dimensional representation of 376	

chromatin interactions leading to gene expression. At basal state (b), gene 377	

expression is mediated by the green enhancer, which comes in contact with the 378	

promoter (lightblue) and recruits the purple enhancer. Upon stimulation (c), the 379	

green enhancers is sequestrated far from the promoter and replaced by the 380	

orange enhancer, allowing the mutation to alter gene expression. d-e. Activity of 381	

regulatory elements in the region, at basal state (d) and upon stimulation (e). 382	

Peaks indicate H3K27 acetylation with measures activity at promoters and 383	

enhancers. f-g. Boxplots of gene expression for each genotype, at basal state (f) 384	

and upon stimulation (g). Alleles at the locus are colour coded (red: low 385	

expression, green: high expression allele). The impact of the genetic variant 386	

located in the orange enhancer is visible only in the stimulated condition, where 387	

the enhancer is active. 388	

389	
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 390	

 391	

Figure 2: Genetic regulation at the post-transcriptional level. 392	

a. sQTL alter gene function by changing their splicing, leading to a different protein 393	

isoform. b. miRNA QTL that modify the abundance of miRNAs can act in trans in to 394	

alter gene expression of genes located elsewhere on the genome through miRNA-395	

mediated degradation. c. SNPs that disturb (or create) miRNA binding sites in the 396	

3’UTR of a gene can also change their level of expression, by acting in cis on 397	

miRNA-mediated degradation. Such SNPs are referred as reg-eQTLs. 398	

  399	



	 24	

 400	

Figure 3: Principle of massively parallel reporter assays (MPRA).  401	

MPRA consists in forming libraries of putative regulatory sequences, where each 402	

sequence is associated to a specific, random barcode (1). The barcoded sequence 403	

is then introduced in a reporter plasmid, where it is ligated to the 3’ of a green 404	

fluorescent protein (GFP) associated with a basic promoter sequence (2). The 405	

plasmid library is then transfected into a cell line representative of the tissue of 406	

interest (3). RNA from GFP positive cell are harvested and mRNAs of the reporter 407	

gene are captured and sequenced (4). The regulatory activity of each sequence is 408	

then measured by comparing the counts of its associated barcode in the transfected 409	

cell library with that of the initial sequence library (5). 410	
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