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ScienceDirect
The mesenchymal microenvironment is increasingly

recognized as a major player in immunity. Here we focus on

mesenchymal cells located within or in proximity to the blood

vessels wall, which include pericytes, adventitial fibroblasts

and mesenchymal stromal cells. We discuss recent evidence

that these cells play a role in tissue homeostasis, immunity and

inflammatory pathologies by multiple mechanisms, including

vascular modulation, leucocyte migration, activation or survival

in the perivascular space and differentiation into specialized

‘effector’ mesenchymal cells essential for tissue repair and

immunity, such as myofibroblasts and lymphoid stromal cells.

When dysregulated, these responses contribute to

inflammatory and fibrotic diseases.
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Introduction
The blood vasculature is organized into networks of arteries,

veins, arterioles, venules and interconnected capillaries. The

wall of blood vessels is constituted of different types of contrac-

tile cells (termed mural cells) depending on the blood vessel

type/size (Figure 1, and reviewed in Ref. [1�]). Capillaries are

covered by a discrete subset of mesenchymal cells termed

pericytes, which are embedded within the vascular basement

membrane (vBM) and establish close contacts with endothelial

cells (EC). As all mesenchymal cells, pericytes are non-hemato-

poietic (CD45–) and non-endothelial (CD31–). They express

PDGFRb, RGS5, NG2 and low levels of alpha-smooth muscle

actin (a-SMAlow), even though these markers are also expressed

by other mesenchymal subsets. The phenotype of mural cells is

heterogeneous along the microvasculature, with a-SMAlow peri-

cytes on capillaries and a-SMAhigh smooth muscle cells (SMC)

covering arterioles and venules [2].
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In larger blood vessels such as arteries, EC are covered by the

tunica media, a contractile structure composed of several layers of

SMCs, which is surrounded by a connective tissue termed the

adventitia.Theadventitia is in direct contact with the surrounding

tissue and contains a mesenchymal subset termed adventitial

fibroblasts expressing CD34, Sca-1 and PDGFRa, small blood

vessels (vasa vasorum), lymphatic vessels, nerves, and immune

cells embedded within a collagenous matrix. In the past few years,

a subset of mesenchymal progenitors called mesenchymal stromal

cells/mesenchymal stem cells (MSCs) have been identified in the

perivascular space of several organs. Due to their proximity to

blood vessels and expression of common markers such as

PDGFRa, PDGFRb or CD34, these cells were suggested to

be similar or related to pericytes and adventitial fibroblasts [3–

6]. Other commonly used markers for MSCs in mice include

CD105, Sca-1, CD44, CD29 or CD90. MSC were first identified in

the bone marrow (BM) as multipotent, self-renewing mesenchy-

mal progenitors that have the capability, in single-cell assays, of

generating bone, cartilage, adipocytes and hematopoiesis-sup-

porting stromal cells. The gene signature and differentiation

potential of MSCs from other organs is still debated and varies

according to the tissue of origin [7,8]. When isolated from organs

(in particular from the adipose tissue where they are abundant),

expanded in vitro for several generations and re-injected, MSCs

have been shown to have a beneficial effect in several pathologies

affecting the heart, bone, lung and skin [6,9–11].

As integral constituents of the blood vessels wall, pericytes and

adventitial fibroblasts are essential regulators of vascular devel-

opment, maturation and function (reviewed in Refs. [12,13]). In

the CNS, pericytes regulate the cerebral blood flow and main-

tain the blood-brain barrier [14–16]. Accordingly, pericytes loss

is involved in the microvascular dysfunction characteristic of

several inflammatory/fibrotic diseases, neurodegenerative dis-

eases and cancer [17,18]. Here we review recent evidence that,

in addition to their vascular role, pericytes and adventitial

fibroblasts are essential regulators of inflammation and a critical

component of tissue homeostasis. These novel data suggest that

mesenchymal cells localized within or around blood vessels

organize tissue responses by distinct mechanisms, including

recruitment, activation and/or modulation of immune cells such

as neutrophils, monocytes/macrophages and type 2 innate lym-

phoid cells (ILC2s), as well as differentiation into specialized

mesenchymal subsets such as lymphoid stromal cells or myofi-

broblasts which have a central role in immunity and repair,

respectively (Figure 2).

Interaction with immune cells in the
perivascular space
Neutrophils
Neutrophil migration into tissues is an early innate response to

injured and pathogen-infected tissues. Extravasation within
www.sciencedirect.com
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Figure 1

(a)

(b)
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The perivascular space around capillaries (a) and arteries (b) at

steady-state and after inflammation.
tissues requires vascular adhesion, transendothelial cell migra-

tion within pericytes gap or breaching of the pericyte sheath and

associated basement membrane [19–21]. Pericytes have been

shown to have an active role in this process (Figure 1a). Activa-

tion of pericytes by inflammatory cytokines such as TNF-a and

IL-1b increases their expression of the adhesion molecule

ICAM-1 and the chemokine CXCL1, which promote subEC

neutrophil crawling on pericyte processes to reach gaps between

adjacent pericytes [22��]. Capillary and arteriolar NG2+ peri-

cytes express TNFR, TLR2, TLR4, and NLRP3, allowing

them to sense microbes as well as injury and respond by

upregulating chemoattractants to promote monocyte and neu-

trophils migration and survival [23]. Expression of TLRs and

upregulation of chemokines in response to injury has also been

reported in PDGFRb+ pericyte-like cells of the lung [24].

Pericytes production of IL-1b and IL-18 in NLRP3-dependent

and MyD88-dependent pathways has been shown to control

inflammatory and fibrotic responses in the kidney [25�]. Chronic

activation of pericytes by inflammatory mediators such as TNFa

and IL-17, and their consequent production of cytokines, che-

mokines and proteases, leads to microvascular remodeling and

pathologic neutrophils recruitment, a hallmark of human neu-

trophilic dermatoses [26,27].
www.sciencedirect.com 
Macrophages
Macrophage accumulation is a critical component of pulmonary

artery remodeling associated with pulmonary hypertension

(PH), a chronic vascular disease. In PH, adventitial fibroblasts

were shown to activate and polarize macrophages toward a pro-

inflammatory phenotype in a mechanism dependent on IL-6,

STAT3 and HIF1a [28]. Activation of adventitial fibroblasts

toward a pro-inflammatory and proliferative state in pathology

has been shown to involve miR-124 and Sonic Hedgehog

[29,30]. In rodents model of arterial injury, perivascular admin-

istration of mesenchymal cells overexpressing VEGF around

injured arteries increased adventitial blood vessels and macro-

phage recruitment [31]. In a model of atherosclerosis, single-cell

RNA sequencing of aortic adventitia from wild type and ApoE

(apolipoprotein E)-deficient mice identified a pro-inflammatory

subset of adventitial fibroblasts expressing chemokines such as

CCL2, essential for the recruitment of monocytes, further

suggesting a causal role for adventitial fibroblasts in inflamma-

tion [32] (Figure 1b).

A current hypothesis is that MSCs promote repair by decreasing

inflammation. While the underlying mechanism(s) are still

unclear, production of IGF-2 by human MSCs under low oxygen

conditions was recently shown to be sufficient to alter the

metabolic commitment of macrophages and induce anti-inflam-

matory responses in a model of experimental autoimmune

encephalomyelitis [33��]. In vitro, umbilical cord-derived MSCs

have been shown to alter the differentiation of human mono-

cytes through lactate-mediated metabolic reprogramming

toward anti-inflammatory macrophages [34]. In a murine model

of graft-versus-host disease (GvHD), MSCs apoptosis induced

by recipient cytotoxic cells, or clearing of apoptotic MSCs by

phagocytes, was an essential step to initiate MSC-induced

immunosuppression [35�]. Similarly, phagocytosis of infused

human MSCs by monocytes induced phenotypical and func-

tional changes, which subsequently modulate cells of the adap-

tive immune system [36]. TNF-stimulated gene-6 (TSG-6), an

inflammation-associated secreted protein that has diverse tissue

protective and properties, has been shown to play a role in the

anti-inflammatory capacities of MSCs. TSG-6-deficient MSCs

have decreased proliferation capacity and display altered expres-

sion of several transcription factors and cytokines controlling

inflammation, including IL-6 [37,38].

Innate lymphoid cells
Interleukin-33 (IL-33) is a major cytokine in type 2 immunity,

and regulates the number and activity of ILC2s, Tregs and

eosinophils which express the IL-33 receptor ST2. The pres-

ence of ST2+ Tregs and ILC2s in the white adipose tissue

(WAT) is essential to maintain immune and metabolic homeo-

stasis and avoid chronic low-grade inflammation, a hallmark of

obesity and related metabolic diseases. In addition to epithelial,

mesothelial or endothelial sources, several studies have identi-

fied mesenchymal cells as a major source for IL-33 in different

organs including the WAT. Recent studies showed that ILC2s

are preferentially localized around blood vessels in multiple

organs, in proximity to PDGFRa+ mesenchymal cells expres-

sing IL-33 and TLSP [39�], suggesting a specific niche for

ILC2s (Figure 1b). Supporting this hypothesis, depletion of
Current Opinion in Immunology 2020, 64:50–55
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Figure 2
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Proposed functions for mesenchymal cells of the perivascular niche.

In addition to their vascular role, pericytes and adventitial cells regulate inflammation and tissue homeostasis/repair by regulating recruitment and/

or activity of immune cells, in particular myeloid cells and innate lymphoid cells. Furthermore, specific subsets of perivascular mesenchymal cells

can act as progenitors for matrix-producing fibroblasts (following tissue injury) or lymphoid stromal cells such as TRCs, FDC, MRCs in lymphoid

organs development. MSC: mesenchymal stromal cells; TRC: T-zone reticular cells; FDC: Follicular dendritic cells; MRC: marginal reticular cells.
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the Gli1+ stromal lineage, which include PDGFRa+ cells,

decreased ILC2s infiltration in the lung and type 2 immunity

in a worm infection. In the adipose tissue, PDGFRa+ Sca-1+

mesenchymal cells have been shown to express high levels of

IL-33, and were involved in the maintenance of Tregs and

ILC2s [40,41]. Even though the relationship to blood vessels

was not investigated, an IL-33–producing immunomodulatory

mesenchymal subset was also described in the skeletal muscle,

intestine and pancreas [42–44]. IL-33 production by mesenchy-

mal cells is further upregulated by proinflammatory cytokines

such as TNF-a, IL-1b and IL-17 [42,45], suggesting a role for

perivascular mesenchymal cells in sensing the environment and

modulating inflammatory responses to maintain tissue homeo-

stasis. This hypothesis is consistent with recent single-cell

profiling data of the mouse and human colon that identified

distinct mesenchymal subsets upregulating IL-33 expression in

inflammatory conditions [46��].

Progenitors to specialized mesenchymal cells
Progenitors to lymphoid stromal cells
Secondary lymphoid organs, such as the spleen and the lymph

node (LN), as well as tertiary lymphoid tissues (tLT) induced

during chronic inflammation, contain strategically located sub-

sets of mesenchymal cells, also called lymphoid stromal cells,

that regulate lymphocyte migration, survival and antigen recog-

nition to develop adaptive immune responses [47,48]. Initially

described as composed of three mesenchymal subsets (T-zone

reticular cells (TRCs) in the T cell zone, follicular dendritic cells

(FDCs) in B cell follicles, and marginal reticular cells (MRCs) in

the subcapsular region [47]), recent single-cells RNAseq data

indicates a much broader mesenchymal diversity [49�,50�]. How

this extensive fibroblastic network develops and is remodeled

during immune responses is still unclear. Previous studies

showed that a network of FDCs can be generated from

PDGFRb+ cells (using PDGFRb-Cre mice), as well as from

adipose-derived perivascular stromal cells grafted into the renal

capsule [51]. Interestingly, this process required lymphotoxin

and TNF provided by B cells or lymphoid tissue inducer cells

(LTi), highlighting a bidirectional crosstalk between lymphoid

cells and their mesenchymal niche. Of note, PDGFRb is

broadly expressed on several mesenchymal cell types, which

is a general limitation to in vivo lineage tracing. Nevertheless,

expression of LTbR on perivascular mesenchymal progenitors

seems determinant for their fate (Figure 2). Accordingly, ex vivo
LTbR stimulation of PDGFRb+ adipocyte precursors isolated

from the fat pad blocks differentiation into adipocytes and

promotes upregulation of ICAM-1, VCAM-1 and CXCL13,

expressed by LN lymphoid stromal cells [52]. Using inducible

lineage tracing of cells expressing Fibroblast Activation Protein-

a (FAP), FAP+ LTbR+ progenitors localized in proximity to

blood vessels in the LN anlagen were recently shown to be a

source for TRCs, FDCs and MRCs in the adult LN [53]. In the

spleen, lineage tracing using constitutive Cre models identified

Nkx2+ or Islet1+ embryonic mesenchymal cells as progenitors to

adult mural cells, FRCs, FDCs and MRCs [54]. By further

combining inducible lineage tracing of CCL19+ cells and single-

cell RNAseq of spleen stromal cells, a recent study identified

progenitors to TRC, FDC, and MRC around the fetal splenic

artery stroma, which differentiate postnatally in a LTbR-
www.sciencedirect.com 
dependent fashion [50�]. The CCL19+ lineage plays a role also

in the stromal differentiation occurring in postnatal spleen

development [55]. FDCs and TRCs are generated in tLTs in

chronic inflammatory diseases [56], suggesting the possibility of

a general process beyond lymphoid organs. The development of

more specific lineage tracing system will be key to address this

question.

Progenitors to myofibroblasts
Tissue injury induces development and expansion of activated

mesenchymal cells expressing various levels of a-SMA (also

termed myofibroblasts), which locally produce extracellular

matrix (ECM), chemokines, cytokines and growth factors that

are essential for repair. Initially beneficial, failure to terminate

such a process leads to fibrosis, a pathological condition charac-

terized by accumulation of ECM, chronic inflammation and loss

of organ function. In the past few years, the development of

more specific lineage tracing systems has allowed to identify

perivascular mesenchymal cells as a major source for injury-

induced myofibroblasts in the skeletal muscle, skin, liver, kid-

ney, lung, bone marrow and spinal cord [1�,57–63]. In most

cases, the myofibroblast progenitor was localized within or in

proximity to the blood vessels wall, and expressed markers of

pericytes, adventitial cells or MSCs (recently reviewed in Ref.

[1�]) (Figure 2). As different lineage tracing models were used

(including FoxD1, ADAM12, Gli1, NG2 and Lrat, please see

review [1�] for additional details on the lineage tracing models

and injury models) it is still unclear to which extent these

populations overlap. Nevertheless, these findings highlight a

predominant role for perivascular mesenchymal cells in the

scarring/fibrotic process. A number of cytokines such as TGFb,
PDGFs and IL-13 have been shown to be involved in the

differentiation toward myofibroblasts [64]. In murine models

of acute injury in the lung and liver, it has recently been shown

that macrophage-derived amphiregulin induces the integrin-aV-

mediated conversion of latent TGF-b into its bioactive form

which, in turn, promotes the differentiation of pericytes into

myofibroblasts, leading to tissue re-vascularization and wound

healing [65��]. These data further highlight the crosstalk of the

immune system with perivascular mesenchymal cells to orches-

trate tissue repair and inflammation. Going one step further,

Dias et al. recently showed that, in addition to decreasing fibrosis

after spinal cord injury [61], proliferation inhibition of a profi-

brotic subset of pericytes (through cell-specific deletion of

floxed KRas in mice with HRas and NRas null alleles in the

Glast-CreERT2 transgenic mice) is sufficient to promote axonal

regeneration and functional recovery after CNS injury [66��].
These data further suggest that targeting specific subsets of

perivascular mesenchymal cells might represent an efficient

approach to improve tissue regeneration and function after

injury.

Conclusion
Mesenchymal cells localized in the perivascular space regulate

tissue homeostasis and immune cells by several mechanisms. As

blood vessels are ubiquitous, such a strategic position may allow

key functions for mesenchymal cells during development, and

in injury to ensure a rapid and localized inflammatory response.

In particular, these cells not only promote immunity but also
Current Opinion in Immunology 2020, 64:50–55
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suppress immune responses when repair is needed. Both pro-

cesses lead to tissue pathologies when dysregulated, indicating

that mesenchymal cells may be targeted for therapeutic inter-

vention. A major challenge will be to target specifically patho-

logical subsets of mesenchymal cells while preserving the pro-

immune, vascular and regenerative functions of the other sub-

sets. This objective requires a better understanding of the

functional diversity and lineage relationship between pericytes,

adventitial fibroblasts and MSCs in vivo, an issue that is hin-

dered by the paucity of specific markers for each population.

However, singlecell RNA sequencing and in situ RNA sequenc-

ing provide powerful new methods to solve such roadblocks and

advance mesenchymal cells as new therapeutic targets [67,68].
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