
HAL Id: pasteur-02866790
https://pasteur.hal.science/pasteur-02866790v1
Preprint submitted on 12 Jun 2020 (v1), last revised 15 Jun 2020 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

Phylogenetic background and habitat drive the genetic 1
diversification of Escherichia coli

Marie Touchon, Amandine Perrin, Jorge A Moura de Sousa, Belinda
Vangchhia, Samantha Burn, Claire L O’Brien, Erick Denamur, David Gordon,

Eduardo Rocha

To cite this version:
Marie Touchon, Amandine Perrin, Jorge A Moura de Sousa, Belinda Vangchhia, Samantha Burn, et
al.. Phylogenetic background and habitat drive the genetic 1 diversification of Escherichia coli. 2020.
�pasteur-02866790v1�

https://pasteur.hal.science/pasteur-02866790v1
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr


1 

 

Phylogenetic background and habitat drive the genetic 1 

diversification of Escherichia coli 2 

 3 
Marie Touchon1*, Amandine Perrin1,7, Jorge André Moura de Sousa1, Belinda Vangchhia2,3, 4 

Samantha Burn2, Claire L. O’Brien4, Erick Denamur5,6, David Gordon2, Eduardo PC Rocha1  5 

 6 

1 Microbial Evolutionary Genomics, Institut Pasteur, CNRS, UMR3525, 25-28 rue Dr Roux, Paris, 7 

75015, France. 8 
2 Ecology and Evolution, Research School of Biology, The Australian National University, 116 Daley 9 

Road, Acton, ACT, 2601, Australia. 10 
3 Department of Veterinary Microbiology, College of Veterinary Sciences & Animal Husbandry, Central 11 

Agricultural University, Selesih, Aizawl, Mizoram, 796014, India. 12 
4 School of Medicine, University of Wollongong, Northfields Ave Wollongong, NSW 2522, Australia. 13 
5 Université de Paris, IAME, UMR 1137, INSERM, 75018, Paris, France. 14 
6 AP-HP, Laboratoire de Génétique Moléculaire, Hôpital Bichat, 75018, Paris, France. 15 
7 Sorbonne Université, Collège doctoral, F-75005 Paris, France. 16 
 17 
* To whom correspondence should be addressed. Email: mtouchon@pasteur.fr 18 

Keywords: local adaptation, gene repertoire, mobile genetic elements, horizontal gene 19 

transfer, freshwater isolates 20 

 21 

  22 

.CC-BY-NC-ND 4.0 International licensepreprint (which was not certified by peer review) is the author/funder. It is made available under a
The copyright holder for thisthis version posted February 13, 2020. . https://doi.org/10.1101/2020.02.12.945709doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.12.945709
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 

 

Abstract  23 

Escherichia coli is a commensal of birds and mammals, including humans. It can act as an 24 

opportunistic pathogen and is also found in water and sediments. Since most population 25 

studies have focused on clinical isolates, we studied the phylogeny, genetic diversification, 26 

and habitat-association of 1,294 isolates representative of the phylogenetic diversity of more 27 

than 5,000, mostly non-clinical, isolates originating from humans, poultry, wild animals and 28 

water sampled from the Australian continent. These strains represent the species diversity 29 

and show large variations in gene repertoires within sequence types. Recent gene transfer is 30 

driven by mobile elements and determined by habitat sharing and by phylogroup 31 

membership, suggesting that gene flow reinforces the association of certain genetic 32 

backgrounds with specific habitats. The phylogroups with smallest genomes had the highest 33 

rates of gene repertoire diversification and fewer but more diverse mobile genetic elements, 34 

suggesting that smaller genomes are associated with higher, not lower, turnover of genetic 35 

information. Many of these small genomes were in freshwater isolates suggesting that some 36 

lineages are specifically adapted to this environment. Altogether, these data contribute to 37 

explain why epidemiological clones tend to emerge from specific phylogenetic groups in the 38 

presence of pervasive horizontal gene transfer across the species. 39 
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Introduction 41 

The integration of epidemiology and genomics has greatly contributed to our understanding 42 

of the population genetics of epidemic clones of pathogenic bacteria. However, the forces 43 

driving the emergence of these lineages in species where most clades are dominated by 44 

commensal or environmental strains remain unclear. Escherichia coli is a commensal of the 45 

gut microbiota of mammals and birds (primary habitat)1-3, and has been found in host-46 

independent secondary habitats including soil, sediments, and water4-7. Yet, some E. coli 47 

strains produce virulence factors endowing them with the ability to cause a broad range of 48 

intestinal or extra-intestinal diseases (pathotypes) in humans and domestic animals8-13. Many 49 

of these are becoming resistant to multiple antibiotics at a worrisome pace14,15.  50 

Studies on E. coli were seminal in the development of bacterial population genetics16. They 51 

showed moderate levels of recombination in the species3,17-19, and a strong phylogenetic 52 

structure with eight main phylogroups, among which four (A, B1, B2 and D) represent the 53 

majority of the strains and four others (C, E, F and G) are rarer20-22. Strains differ in their 54 

phenotypic and genotypic characteristics within and across phylogroups2,3,23,24, and their 55 

isolation frequency depends on factors such as host species, diet, sex, age25-27, body mass28, 56 

but also climate29,30, and geographic location31. Strains of phylogroups A and B1 appear to 57 

be more generalists since they can be isolated from all vertebrates2 and are often isolated 58 

from secondary habitats7,32-35. E. coli strains able to survive and persist in water 59 

environments usually belong to the B1 phylogroup7,33,34. In contrast, the extraintestinal 60 

pathogenic strains usually belong to phylogroups B2 and D36-38. Genome size also differs 61 

among phylogroups, with A and B1 strains having smaller genomes than B2 or D strains23.  62 

The phylogenetic vicinity of geographically remote E. coli isolates, and the co-isolation of 63 

phylogenetically distant strains, supports the hypothesis that strains circulate rapidly39,40. The 64 

genome of the species is also remarkably plastic, since only about half of the average 65 

genome is present across most strains of the species (core or persistent genome) and the 66 

pan-genome vastly exceeds the size of the typical genome41-44. Interestingly, the rapid 67 
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circulation of strains and the high plasticity of their genomes have not erased the 68 

associations of certain clades with certain isolation sources. In consequence, such 69 

associations might reflect local adaptation16,45, which would suggest frequent genetic 70 

interactions between the novel adaptive changes and the strains’ genomic background.  71 

Understanding how the evolution of gene repertoires is shaped by population structure and 72 

habitats requires large-scale comparative genomics of samples with diverse sources of 73 

isolation representative of natural populations of E. coli. Most of the efforts of genome 74 

sequencing have been devoted to study pathogenic lineages and very few genomic data are 75 

available for commensal strains, especially in wild animals, and environmental strains. Here, 76 

we analysed the genomes of a large collection of E. coli strains collected across many 77 

human, domestic and wild animal and environmental sources in different geographic 78 

locations from the Australian continent. This collection is dominated by non-clinical isolates, 79 

corresponding to the main habitats of the species. We sought to understand the dynamics of 80 

the evolution of gene repertoires and how it was driven by mobile genetic elements. The 81 

analysis of the isolation sources in the light of phylogenetic structure and genome variation 82 

suggests that adaptation varies with the habitat and the phylogenomic background. This 83 

contributes to explain why known epidemiological clones of the species emerge from specific 84 

phylogenetic groups, even though virulence strongly depends on the acquisition of virulence 85 

factors by horizontal gene transfer.  86 
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Results 87 

Very rapid initial divergence of gene repertoires becomes linear with time 88 

We sequenced and annotated the genomes of 1,294 E. coli sensu stricto strains selected 89 

from more than 3,300 non-human vertebrate hosts, 1,000 humans and 800 environmental 90 

samples between 1993 and 2015, chosen to represent the phylogenetic diversity of the 91 

species (Materials and Methods, Fig. 1a, Supplementary Notes). All samples were collected 92 

by a single team, spanning a 20 year-period, from different regions in a single isolated 93 

continent (Australia). The origin of each strain was accurately characterized and the 94 

genomes were uniformly annotated and analyzed using the same bioinformatics processes. 95 

The strains were isolated from humans, domesticated and wild animals, representing the 96 

primary habitat of E. coli, and from freshwater, representing its secondary habitat3. Less than 97 

22% of the samples were recovered from clinical situations. A series of controls confirmed 98 

that the sequences were of high quality and contained the known essential genes 99 

(Supplementary Notes). The genomes varied widely in size from 4.2 to 6.0 Mb (average 5 100 

Mb), but had similar densities of protein-coding sequences (~87%) and GC content (50.6%, 101 

Supplementary Fig. 1 and Supplementary Table 1).  102 

 103 

The pan-genome contained 75,890 gene families that were classified as persistent (3%, 104 

gene families present in ≥ 99% of the genomes), singletons (44%, present in a single 105 

genome), or accessory (the remaining) (Fig. 1b, Supplementary Fig. 2). The persistent gene 106 

families are a tiny fraction of the pan-genome, but account for half of the average genome. 107 

They were used to build a robust phylogeny of the species, which was rooted using genomes 108 

from other species in the genus (Supplementary Fig. 3). In contrast, singletons are almost 109 

half of the gene families of the pan-genome, but less than 1% of the average genome. As a 110 

consequence, the pan-genome is open, as measured by the fit to a Heaps’ law model46, and 111 

increases on average by ~26 protein coding genes with the inclusion of a new genome 112 

.CC-BY-NC-ND 4.0 International licensepreprint (which was not certified by peer review) is the author/funder. It is made available under a
The copyright holder for thisthis version posted February 13, 2020. . https://doi.org/10.1101/2020.02.12.945709doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.12.945709
http://creativecommons.org/licenses/by-nc-nd/4.0/


6 

 

(Supplementary Fig. 2). Singletons are smaller than the other genes and tend to be located 113 

at the edge of contigs (44%). Hence, some of these singletons may result from sequencing 114 

and assembly artifacts (Supplementary Notes and Supplementary Fig. 4). When all the 115 

singletons were excluded, the pan-genome still remained open (Supplementary Fig. 2). Most 116 

singletons (80%) and accessory (74%) gene families, but also a surprisingly high number of 117 

persistent gene families (24%), lacked a clear functional assignment as given by the 118 

EggNOG database47 (Fig. 1c). Hence, we are still ignorant of the function, or even the 119 

existence, of many genes of the species.  120 

 121 

Fig. 1: The genetic diversity of Australian E. coli. 122 
 123 

 124 
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(a) Distribution of isolates per region and per source. (b) The pan-genome is composed of 75,890 125 
gene families, of which 33,705 are singletons (in green, present in a single genome), 2,486 persistent 126 
(in gold, present in at least 99% of genomes), the remaining being accessory (in grey). 29,657 gene 127 
families (39% of the pan-genome) were related to mobile genetic elements (MGE). (c) Percentage of 128 
the different EggNOG categories (see insert) in the persistent, accessory and singleton gene families 129 
and among genes associated to MGE. (d) [Top] Violin plots of the patristic distance computed 130 
between pairs of genomes. [Bottom] Association between GRR (Gene Repertoire Relatedness) and  131 
the patristic distance across pairs of genomes. Due to the large number of comparisons (points), we 132 
divided the plot area in regular hexagons. Color intensity is proportional to the number of cases (count) 133 
in each hexagon. The linear fit (black solid line, linear model (lm)) was computed for the entire dataset 134 
(1,294 genomes, Y=90.2-75.7*X, R2=0.49, P<10-4). The spline fit (generalized additive model (gam)) 135 
was computed for the whole (in black dashed line) or the intra-ST (in blue solid line) comparisons. 136 
There was a significant negative correlation between GRR and the patristic distance (Spearman’s rho 137 
= -0.67, P<10-4). (e) Histograms of the number of intra-ST (in blue) and inter-ST (in purple) 138 
comparisons at short evolutionary scales. (f) Violin plots of the intra-ST, inter-ST and inter-phylogroup 139 
GRR (%). (d-e-f) All the distributions were significantly different (Wilcoxon test, P<10-4), the same color 140 
code was used and described in (d).   141 

Traditional epidemiological studies of E. coli focused on multilocus sequence types (ST) 142 

and/or the O- and H-serotypes (often the O:H combination). These epidemiological units 143 

regroup strains in terms of sequence similarity in a few persistent genes (ST) or in key traits 144 

related to the cell envelope (the LPS structure and the flagellum). However, it is unclear if 145 

these types systematically regroup strains with similar gene repertoires. We identified 442 146 

distinct STs, of which 61% are represented by a single strain. A few STs are very abundant 147 

in our dataset: 20 include more than 10 genomes each and encompass 40% of the dataset. 148 

The intra-ST genetic distances are 10-times smaller than distances between other pairs of 149 

genomes (0.003 vs. 0.03, Fig. 1d). Yet, 6% of intra-ST comparisons have more than 0.01 150 

substitutions per position showing extensive genetic diversity at the genome level (Fig. 1e). 151 

Some O-groups are abundant, e.g., O8, O2 and O1 (each present in >50 genomes) but 152 

almost half of the groups occur in a single genome and 43% of the strains could not be 153 

assigned an O-group (even when the wzm/wzt and wzx/wzy genes were present). In contrast, 154 

most H-types were previously known (87%). We found 311 combinations of O:H serotypes 155 

among the 726 typeable genomes. Of these, 64% are present in only one genome,17% are 156 

in multiple STs and 7% in multiple phylogroups (e.g. O8:H10). Conversely, half of the 95 STs 157 

with more than one genome have multiple O:H combinations, e.g. ST10 has 24. These 158 

results confirm that surface antigens and their combinations change quickly and are 159 
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homoplasic. They also show extensive variation of gene repertoires within STs. The gene 160 

repertoire relatedness (GRR) between genomes (see Methods) decreases very rapidly with 161 

phylogenetic distance for closely related strains, as revealed by spline fits (Fig. 1d). Similar 162 

results were observed when removing singletons, which only account for on average 0.5% of 163 

the genes in genomes, suggesting that this result is not due to annotation or sequencing 164 

errors (Supplementary Fig. 6). As a consequence, 85% of the intra-ST comparisons have a 165 

GRR lower than 95% (corresponding to ~235 gene differences per genome pair), and some 166 

as little as 77% (Fig. 1f). Hence, even genomes of the same ST can differ substantially in the 167 

sequence of other persistent genes and in the overall gene repertoires.  168 

 169 

To check if the dataset is representative of the species and can be used to assess its 170 

diversity, we compared it with the ECOR collection48 and the complete genomes available in 171 

RefSeq (Materials). All datasets had similar nucleotide diversity (Supplementary Fig. 5a and 172 

Supplementary Table 1). Using rarefied datasets, to compare sets of same size, ours had the 173 

largest pan-genome, partly because of a larger number of singletons (Supplementary Fig. 174 

5b-d). Our dataset also had the highest a-diversity for the three typing schemes (STs, O-, H- 175 

serotypes, Supplementary Table 1). Since the gene repertoire diversity of E. coli in Australia 176 

is at least as high as that of ECOR and RefSeq, we studied the variation in gene repertoires 177 

beyond the intra-ST level. After the rapid initial drop in GRR described above, the values of 178 

this variable decrease linearly with phylogenetic distances (Fig. 1d). The average values of 179 

GRR given by the regression vary between 90% for very close genomes and 80% for the 180 

most distant ones. The variance around the regression line is constant and a spline fit shows 181 

few deviations around the regression line. This is consistent with a model where initial 182 

divergence in gene repertoires is driven by rapid turnover of novel genes. After this initial 183 

process, divergence in gene repertoires increases linearly with patristic distance.  184 
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Phylogroups vary in the rates of gene repertoire diversification  185 

We used the species phylogeny to study the associations between phylogroups and genetic 186 

diversity (Fig. 2a). The tree showed seven main phylogenetic groups very clearly separated 187 

by nodes with 100% bootstrap support. The 17 phylogroup C strains were all included within 188 

the B1 phylogroup and were thus grouped with the latter in this study. For the rest, the 189 

analysis showed a good correspondence between the assignment into the known 190 

phylogroups - A, B1, B2, D, E, F, and G – and the different clades of this tree. In line with the 191 

literature40, four major phylogroups were very abundant - A (24% of the dataset), B1 (24%), 192 

B2 (25%) and D (14%) – whereas the others were rarer. The nucleotide diversity of the 193 

phylogroups is very dependent on their phylogenetic structure, since some clades have more 194 

closely related clusters of strains than others (Supplementary Fig. 7). Nevertheless, 195 

nucleotide diversity, patristic distances, and Mash distances revealed similar trends: the 196 

phylogroup D exhibited the highest genetic diversity, followed by F, E, and then by the most 197 

abundant groups – A, B1 and B2 – which all have similar levels of diversity (Supplementary 198 

Fig. 7). The phylogroup G was the least diverse, but it is also poorly represented in our 199 

dataset (33 genomes from three STs). Overall, genetic diversity is proportional to the depth 200 

of the phylogroup, i.e. the average tip-to-MRCA distance, except for phylogroup F which is 201 

more diverse than expected (Fig. 2b). These results suggest that genetic diversity varies 202 

between phylogroups and that within phylogroups it is strongly affected by the time of 203 

divergence since the most recent common ancestor. 204 

  205 
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Fig. 2: The genetic and ecological structure of Australian E. coli population. 206 
 207 

 208 
(a) Phylogenetic tree of E. coli rooted using the genomes of other Escherichia (not shown for clarity). 209 
From the inside to the outside: the 7 main phylogroups (arcs covering the tree), the source of each 210 
genome (seven rows), and the size of the genomes (outer row, see insert legend). (b) Association 211 
between the nucleotide diversity per site (Pi, average and s.e) within phylogroup and their distance to 212 
their most recent common ancestor (MRCA). In each pylogroup, we averaged the nucleotide diversity 213 
(p) obtained for 112 core-genes, and the length branches (from tip-to-MRCA) of the species tree. (c) 214 
Association between the rarefied pan- and persistent-genomes in each phylogroup. We used 1,000 215 
permutations (genomes orderings) of 50 randomly selected genomes (rarefied datasets) to compute 216 
the pan- and the persistent-genomes in each phylogroup (ignoring the G group), and then averaged 217 
the results. (d) Principal component analysis of the pan-genome (matrix of presence/absence of each 218 
gene family across genomes). Each dot corresponds to a genome in the two first principal 219 
components (PC). The ellipse (90%) and barycenter of each phylogroup are reported. The 220 
percentages in the axis labels correspond to the fraction of variation explained by the PC. Panels (b), 221 
(c), and (d) have the same color code as (a). 222 

 223 
The sets of genomes of each phylogroup have large and open pan-genomes 224 

(Supplementary Fig. 8 and Supplementary Table 2). The sizes of these pan-genomes differ 225 

widely across phylogroups and are partly correlated to the number of genomes in the 226 

phylogroup, explaining why the phylogroup G has the smallest pan-genome (Supplementary 227 

Fig. 8). To control for the effect of sample size, we computed pan-genomes from 1,000 228 

random samples of 50 genomes for each phylogroup (ignoring the few strains of the G 229 

phylogroup, Fig. 2c and Supplementary Table 2). This revealed larger pan-genomes for 230 

phylogroups A, D, and B1 followed by E, B2 and F. Intriguingly, the larger the pan-genome of 231 
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a phylogroup, the smaller the fraction of its genes that are part of the persistent genome (Fig. 232 

2c). This suggests that differences of pan-genome sizes across phylogroups are caused by 233 

different rates of gene turnover in certain phylogroups. They affect all types of genes, even 234 

those at high frequency in the species.  235 

 236 

To quantify the similarities in gene repertoires, we analyzed the GRR values between 237 

phylogroups. The smallest values were observed when comparing B2 strains with the rest 238 

(Supplementary Fig. 10). Accordingly, a principal component analysis of the 239 

presence/absence matrix of the pan-genome shows a first axis (accounting for 23.6% of the 240 

variance) clearly separating the B2 from the other phylogroups (Fig. 2d). This shows that 241 

gene repertoires of B2 strains are the most distinct from the other groups, even if B2 is not a 242 

basal clade in the species tree. Hence, phylogroups differ in terms of their gene repertoires 243 

and in their rates of genetic diversification.  244 

Mobile genetic elements drive rapid initial turnover of gene repertoires 245 

Different mechanisms can drive the rapid initial diversification of gene repertoires. Mobile 246 

genetic elements encoding the mechanisms for transmission between genomes (using 247 

virions or conjugation) or within genomes (insertion sequences, integron cassettes) are 248 

known to transfer at high rates and be rapidly lost49-51. We detected prophages using 249 

VirSorter52, plasmids using PlaScope53, and conjugative systems using ConjScan54 250 

(Supplementary Figs. 11-13). These analyses have the caveat that some mobile elements 251 

may be split in different contigs, resulting in missed and/or artificially split elements. This is 252 

probably more frequent in the case of plasmids, since they tend to have many repeated 253 

elements55. Only two genomes lacked identifiable prophages and only 9% lacked plasmid 254 

contigs. We identified 929 conjugative systems, with some genomes containing up to seven, 255 

most often of type MPFF, the type present in the F plasmid. On average, prophages 256 

accounted for 5% and plasmids for 3% of the genomes (Fig. 3a). Together they account for 257 

more than a third of the pan-genomes of each phylogroup. We also searched for elements 258 
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capable of mobilizing genes within genomes: Insertion Sequences, with ISfinder56, and 259 

Integrons, with IntegronFinder57. Even if ISs are often lost during sequence assembly, some 260 

genomes had up to 152 identifiable ISs representing ~1% of the genome (Fig. 3a and 261 

Supplementary Fig. 13). A fourth of the ISs were in plasmids and very few were within 262 

prophages. We found integron integrases in 14% of the genomes, usually in a single copy. It 263 

is interesting to note that even if the frequency of each type of MGE varies across strains, 264 

each of them is strongly correlated with the frequency of the other elements (Fig. 3b). Hence, 265 

the typical E. coli genome has at least one transposable element, a prophage and a plasmid, 266 

the key tools to move genes between and within genomes. When genomes are enriched in 267 

one type of MGE, they tend to get simultaneously enriched in the remaining MGEs. 268 

 269 

Fig. 3: Genetic diversification across phylogroups.  270 
 271 

 272 
 (a) Percentage of genes associated with MGEs per genome (sum in first graph). (b) Spearman’s rank 273 
correlation matrix between the number of genes related to MGE (altogether or individually) and the 274 
genome size (in Mb and number of genes).  Color intensity and the size of the circle are proportional 275 
to the correlation coefficients. All values are significantly positive (P<10-4). (c) Differences in genome 276 
size when including or removing gene families associated to MGE (Wilcoxon test, P<10-4).  (d) 277 
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Number of accessory gene families associated to MGE present in one (i.e., phylogroup-specific) to 278 
seven phylogroups. The color code used corresponds to the Z-score obtained for the observed 279 
number (O) with respect to the random distribution (E) (see Methods) for each case with a color code 280 
ranging from blue (under-representation) to red (over-representation). The level of significance was 281 
reported: |Z-score| : * ([1.96-2.58[), ** ([2.58-3.29[, ***([3.29). (e) Heatmap where a cell represents the 282 
deviation (the difference) of the phylogroup to the rest. All values were  standardized by column. The 283 
color code ranging from blue (lower) to red (higher), with white (overall mean). The level of 284 
significance of each ANOM test was reported: * (P<0.05),  ** (P<0.01), *** (P<0.001). (f) Network of 285 
recent co-occurence of gains (co-gains) of accessory genes within and between phylogroups. Nodes 286 
are phylogroups and edges the O/E ratio of the number of pairs of accessory genes (from the same 287 
gene family) acquired in the terminal branches of the tree. Only significant O/E values (and edges) are 288 
plotted (|Z-score|>1.96). Under-represented values are in dash blue and over-represented in red (see 289 
Methods). 290 

What is the effect of these MGEs in the dynamics of E. coli genomes? First, the acquisition of 291 

MGEs affects the size of the genome. Those identified in this study account for ~8% of the 292 

genome size (Fig. 3c and Supplementary Fig. 14). Accordingly, the number of genes 293 

associated with MGEs was strongly correlated with genome size for every type of element 294 

(Fig. 3b). Second, MGEs increase the variability of genome sizes, since removing them 295 

decreases the coefficient of variation of the size of gene repertoires by 34% (expected 296 

increase of 4% under a Poisson model, Fig. 3c). Third, the increase in variance in genome 297 

size caused by MGEs is amplified by their short persistence times in the genome. No MGE-298 

associated gene family is sufficiently frequent to be part of the persistent genome, and most 299 

(85%) are present in less than 1% of the genomes. For example, 41% of the IS gene families 300 

are singletons (Supplementary Fig. 14). Adaptive genes acquired through the action of 301 

MGEs may become fixed in populations, but the lack of fixation of recognizable MGEs 302 

suggests that the long-term cost of MGEs themselves is significant and/or their contribution 303 

to fitness is low (or temporary).  304 

 305 

Is the distribution of MGEs associated with phylogroups leading to preferential paths of gene 306 

transfer? It has been suggested that homologous recombination is much rarer between than 307 

within phylogroups18. To test if this applies to the transfer of MGEs, we analyzed the 308 

distribution of the pan-genome gene families that are part of MGEs (excluding singletons, for 309 

the separate analysis of prophages and plasmids, see Supplementary Fig. 15). Even if these 310 
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genes are at low frequency in the pan-genome and are observed in a single phylogroup 311 

more often than expected by chance (Z-score>20, see Methods), 75% of the phage and 312 

plasmid gene families were found in more than one phylogroup and 8% were found in all 313 

phylogroups (usually at low frequency, Fig. 3d). Accordingly, the number of gene families 314 

present in two to six phylogroups is barely lower, even if significantly so, than expected by 315 

chance. These results suggest that there is frequent transfer of MGEs across the different 316 

phylogroups. To test this hypothesis more precisely, we used Count to infer gene gain and 317 

loss events in the phylogenetic tree of the species (see Methods). We found that half of the 318 

recent gene acquisitions, i.e., those that took place at the level of the terminal branches of 319 

the species tree, are in families of genes of MGEs. Conversely, the acquisitions at the 320 

terminal branches correspond to 40% of the MGE genes of the species. Hence, MGEs are 321 

key players in genome diversification at the micro-evolutionary scale. They are transferred 322 

across phylogroups and many of them, even if present in several strains, were acquired 323 

independently and have just arrived in their host genome.  324 

 325 

One might expect more genetic diversity in phylogroups with more MGEs and larger 326 

genomes. In apparent agreement with this hypothesis, genomes from phylogroups A and B1 327 

are significantly smaller than the others (Fig. 3e, col 1, ANOM tests, P<10-3) and have fewer 328 

MGE-associated genes (Fig. 3e, col 2, ANOM tests, P<0.05). However, these phylogroups 329 

also have the largest diversity of gene families associated to MGEs (Fig. 3e, col 3, in both 330 

the full and rarefied datasets, both ANOM tests, P<10-3), i.e. they encode fewer but more 331 

diverse MGEs. Furthermore, the phylogroups A and B1, in spite of having among the most 332 

recent common ancestors of the phylogroups (Fig. 2b), have the largest pan-genomes, the 333 

smallest persistent genomes, and the largest diversity of STs, and serotypes (Fig. 3e, in both 334 

the full and rarefied datasets, cols 4,5,9,10, ANOM tests, P<10-3). This intriguing pattern 335 

suggests that the smallest genomes have the highest turnover of genes, not the lower rates 336 

of transfer. To test this hypothesis, we took the quantification of gene gains and losses at the 337 

.CC-BY-NC-ND 4.0 International licensepreprint (which was not certified by peer review) is the author/funder. It is made available under a
The copyright holder for thisthis version posted February 13, 2020. . https://doi.org/10.1101/2020.02.12.945709doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.12.945709
http://creativecommons.org/licenses/by-nc-nd/4.0/


15 

 

terminal branches of the species tree and computed the number of these events per 338 

phylogroup. We found that phylogroups A and B1 have the highest number of gene gains 339 

and losses per terminal branch (Fig. 3e, cols 6-7). In parallel, we quantified the number of 340 

recently acquired (terminal branches) gene pairs (co-gains) from the same gene family within 341 

a phylogroup (Fig. 3e, col 8) and between phylogroups (see Methods, Fig. 3f). The results 342 

were represented as a graph where the edges represent significantly fewer (dashed lines) or 343 

higher (solid lines) number of co-gains than expected by chance. We found that phylogroup 344 

B1 has significantly more co-gains of genes with other phylogroups than expected, while the 345 

inverse was observed for phylogroup B2. We reached similar results when considering only 346 

the co-gains associated with MGEs (Supplementary Fig. 15). These results are consistent 347 

with the separation of the B2 phylogroup from the others in the PCA analysis (Fig. 2d). They 348 

show that such separation is due to lower rates of transfer in B2, which leads to fewer co-349 

gains within the phylogroup and between this and the other phylogroups. In summary, 350 

phylogroups differ in terms of their genome size and in their rates of genetic diversification, 351 

the two traits being inversely correlated within the species. 352 

Not everything is abundant everywhere: the interplay between phylogroups 353 

and sources 354 

Frequent horizontal transfer across phylogroups could result in adaptation being independent 355 

of the strain genetic background, if there is a lack of epistatic interactions. While we observed 356 

that all isolation sources have strains from all phylogroups (Fig. 4a), different phylogroups 357 

are typically over-represented depending on the source (Fig. 4b). These observations match 358 

previous studies3, and suggest strong associations between the phylogenetic structure of 359 

populations and the natural habitats of strains.  360 

How much of the variability in gene repertoires is explained by the source of isolation of the 361 

strains? Genome sizes vary significantly across isolation sources. Strains isolated from 362 

poultry meat had the largest average genomes, followed by ExPEC strains. In contrast, 363 

strains from wild birds’ feces and freshwater had the smallest genomes (Fig. 2a and Fig. 4c, 364 
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col 1, ANOM tests, P<10-3). We showed above that genome size also varies across 365 

phylogroups. To understand the relative role of the two variables, isolation source and 366 

phylogroup, we made two complementary analyses. First, we compared the genome size of 367 

strains from different sources within each phylogroup. Even if the statistical power was 368 

sometimes low, this revealed trends similar to the ones observed across phylogroups 369 

(Supplementary Fig. 17). Second, we used stepwise multiple regressions to assess the 370 

effects of phylogroup and the strains’ source on its genome size. Both variables contributed 371 

significantly, and in almost equal parts, to the statistical model and together explained 36% of 372 

the variance (R2=0.36; P<10-4, Supplementary Table 3). We found similar results after 373 

removing MGE-associated genes (Fig. 4d and Supplementary Table 4). We conclude that 374 

both isolation source and phylogroup are equally associated with genome size. 375 

 376 
Fig. 4: Genetic diversification across sources 377 
 378 

 379 
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(a) Distributions of the sources in each phylogroup. (b) Association between phylogroups and sources. The ratio 380 
of the number of observed (O) genomes divided by the expected (E) number was reported for all comparisons 381 
with a color code ranging from blue (under-representation) to red (over-representation) (Fisher’s exact tests 382 
performed on each 2*2 contingency table). (c) Heatmap showing the associations between isolation sources and 383 
a number of traits. Each cell indicates the deviation (the difference) to the overall mean (in white). All values were 384 
standardized by column. By default, tests used standard ANOM (1). In presence of deviations from Gaussian 385 
distributions, we used non-parametric ANOM tests (2). We used ANOM for proportions (3). We represented the 386 
(O/E) ratio of the co-occurrence of gene pairs recently acquired (Co-gains) in each phylogroup with the same 387 
color code as in panel (b) (4). (d) Contribution of each variable (phylogoup and source) to the variance explained 388 
by the stepwise multiple regressions of genome size (for the component of MGEs or the remaining genome) on 389 
phylogroup and the isolation source. (e) Differences in diversity of gene families recently acquired across 390 
phylogroups (in black) and sources (in grey) for gene families associated to MGE or the remaining gene families 391 
(Wilcoxon tests, red dots (means)). In all panels : the level of significance of each test was reported: * 392 
(P<0.05),  ** (P<0.01), *** (P<0.001). 393 

 394 

Adaptation to a habitat depends on HGT, which is driven by MGEs. Hence, we studied the 395 

distribution of MGEs in relation to isolation sources. There are fewer MGE-associated genes 396 

in strains isolated from freshwater and wild birds’ feces, which have smaller genome sizes, 397 

and more in strains from ExPEC and poultry meat (Fig. 4c, col 2, ANOM tests, P<10-3, and 398 

Supplementary Table 5). We observed similar trends within each phylogroup even if the 399 

statistical power was low (Supplementary Fig. 17). The analysis of the relative contribution of 400 

phylogroups and isolation sources to the number of MGE-associated genes showed that the 401 

source of the strain accounted for the vast majority of the explained variance (90%, full 402 

model: R2=0.19; P<10-4, Fig. 4d and Supplementary Table 6). Accordingly, the number of 403 

MGE-associated gene families specific to a given source was higher than expected (Z-404 

score >17, Supplementary Fig. 15), and nearly one third of these source-specific families 405 

were observed in multiple phylogroups. When we focused on the number of co-occurring 406 

recently acquired gene pairs (encoding for MGE or not), we found that they are more 407 

frequent within most of the isolation sources than expected by chance (Fig. 4c, col 15, see 408 

Methods). These results suggest that the contribution of MGEs to genome size is primarily 409 

driven by isolate source rather than phylogroup membership.  410 

 411 

The previous result could arise from preferential co-gains of MGEs in an isolation source 412 

relative to a phylogroup. To test this hypothesis, we used the results from Count and built a 413 

matrix where for each gene family we indicate the acquisition or not of a gene in a terminal 414 
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branch of the phylogenetic tree. We then compared the clustering of these recent 415 

acquisitions by phylogroup and by isolation source using Shannon indexes (see Methods). If 416 

the hypothesis is correct, we expected higher clustering (lower diversity) across sources than 417 

across phylogroups. We observed slightly higher clustering across phylogroups than across 418 

sources, both for MGE-associated and for the other genes (Fig. 4e). We conclude that the 419 

contribution of MGEs to genome size depends largely on the isolation source but that this 420 

does not reflect systematic co-gains of MGEs in the same source.  421 

 422 

It is tempting to speculate that the association between the number of MGE-associated 423 

genes and isolation sources reflects selection for the acquisition of locally adaptive functions 424 

transferred by these MGEs. To test this, we searched for the presence of antibiotic 425 

resistance genes (ARGs) in our dataset using the reference databases. Many of these ARGs 426 

were in integrons (~3 per integron), which is well documented58, and genomes carrying 427 

integrons had more ARGs than the others (Wilcoxon test, P<10-4, Supplementary Fig. 18). 428 

Expectedly, integrons and ARGs were more prevalent in ExPEC and in poultry meat isolates 429 

(Fig. 4c, cols 7-8) and Supplementary Table 5). Similar results were observed in the 430 

analyses at the level of each phylogroup (Supplementary Fig. 18). The clear association of 431 

integrons and ARGs with human (or domesticated animals) isolates of E. coli independently 432 

of the phylogroups’ genetic background reinforces the idea that source-specific MGEs 433 

provide locally adaptive traits. 434 

 435 

To complement the previous results, we searched for the presence of other factors known to 436 

be adapative under specific conditions: virulence factors involved in antagonistic interactions 437 

with humans and colicins involved in intra-specific competition. Virulence factors (VFs) from 438 

VFDB are more prevalent in human strains with an excess in ExPEC isolates (ANOM test, 439 

P<10-3) and less frequent in strains isolated from freshwater and wild birds’ feces (ANOM 440 

test, P<10-3, Fig. 4c, col 9). While VFs are more concentrated in phylogroups B2, D, E and F 441 
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(ANOM test, P<10-2) as previously shown37, the trends regarding isolation sources are 442 

conserved within each phylogroup (Supplementary Fig. 19). In particular, within phylogroup 443 

B2, only human strains have a significantly higher average number of VFs (Supplementary 444 

Fig. 19) reinforcing previous results26. We also analyzed colicin gene clusters, which are 445 

agents of bacterial antagonistic competition and are often encoded in plasmids59. The 446 

average number of colicins identified using BAGEL360 (some of which are also included in 447 

VFDB) depends on the phylogroup of the strain, from an average of 2.8 genes in B2 strains 448 

to 0.4 in B1 strains. Interestingly, the water isolates have the fewest colicin genes, 449 

presumably because free diffusion of these proteins in water makes them inefficient tools of 450 

bacterial competition (Fig. 4c, col 10 and Supplementary Fig. 19). Thus, local adaptations 451 

resulting from the acquisition of novel genes by HGT, involving antagonistic interactions with 452 

other bacteria or with the host, are associated preferably with certain phylogroups. This may 453 

result from specific genetic interactions in the different genetic backgrounds. 454 

 455 
E. coli has usually been regarded as a contaminant from animal, mostly human, sources and 456 

used to test water quality. Yet, recent data suggests that some strains could inhabit aquatic 457 

environments61. Given the contrast between the primary and secondary habitats of E. coli, 458 

respectively guts of endotherms and aquatic environments, this would imply marked 459 

differences between the 285 freshwater strains and the others. Indeed, our results show that 460 

these strains are systematically different. They are over-represented in phylogroup B1 (43%), 461 

a phylogroup under-represented in all other sources of isolation (Figs. 2a,4b). On the other 462 

hand, they are under-represented in B2 (13%), a phylogroup over-represented in strains 463 

isolated from humans (this study) and other mammals2. The genome size of freshwater 464 

strains’ is the smallest among all groups of isolates and across phylogroups (Fig. 4c, col 1, 465 

Supplementary Fig. 17). Importantly, these strains show average pan-genome sizes in the 466 

rarefied dataset, suggesting that adaptation is not exclusively due to genome reduction (Fig. 467 

4c, col 11). This is also supported by the high number of gains and losses observed (Fig. 4c, 468 

cols 13,14), although these genomes have the fewest MGEs and often lack plasmids (Fig. 4c, 469 
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cols 2-6). Consistent with adaptation to this habitat, they have the smallest number of 470 

antibiotic resistance genes, virulence factors, and bacteriocins (Fig. 4d, cols 7-10) and 471 

Supplementary Fig. 18,19). In contrast, these strains show the highest diversity of STs and 472 

O:H serotypes (Fig. 4c, cols 16,17, and Supplementary Table 5). The extreme genomic traits 473 

of isolates from water strongly suggest they are not the result of recent fecal contamination 474 

from other sources. Instead, they strongly suggest that these strains have changed to adapt 475 

to water environments. If so, this seems to have involved extensive horizontal gene transfer 476 

concomitant with streamlining, i.e. a high turnover of gene repertoires that resulted in 477 

genomes smaller than the average.  478 

  479 
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Discussion 480 

Many of the recent advances in the understanding of E. coli evolution focused on clinical 481 

isolates and placed a lot of emphasis on virulence and antibiotic resistance in a few clinically 482 

important lineages62-67. Yet, most strains of the species are commensal. Hence, most of the 483 

evolution of the species takes place in biotic contexts not associated with pathogenesis. 484 

Furthermore, while a lot of attention has been placed on the rates of homologous 485 

recombination in the chromosome of the species, it is now clear that HGT drives the 486 

evolution of virulence12,42,68,69 and antibiotic resistance70-72 in pathogenic strains as well as 487 

that of many other traits in commensal strains12. For example, MGEs were recently shown to 488 

be more important than point mutations for the colonization of the mouse gut by E. coli 489 

commensals73. Here, we aimed at providing a global picture of the evolution of the E. coli 490 

genomes with an emphasis on the variation of gene repertoires in strains from a variety of 491 

sources (environmental and geographic) across a single continent. This allowed us to study 492 

the joint effect of population structure and habitat on the variation of gene repertoires. Our 493 

study focused on E. coli isolates from Australia, but its genetic diversity was higher or 494 

comparable to other worldwide genome datasets, and its population structure was consistent 495 

with previous works16,40,74. This indicates that what we have observed is likely to be 496 

representative of the species as a whole. It also confirms previous reports of the large 497 

genetic diversity of the species and of the planetary circulation of all major lineages39,45,75. 498 

Finally, the functional annotation of the pan-genome shows that in spite of over 375,000 499 

papers citing E. coli in PubMed in 2019, we are still far from having discovered the full 500 

genetic diversity of E. coli and from knowing the function of many of its most frequent gene 501 

families.   502 

 503 

We started our study by quantifying gene repertoire diversification, which we found to follow 504 

a two-step dynamics. The very rapid initial diversification, where GRR quickly decreases to 505 

~90%, implicates substantial heterogeneity in terms of gene repertoires for strains that are 506 
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from the same sequence type and are almost identical in the sequence of persistent genes. 507 

Some of this divergence may be due to genome sequencing or assembling artifacts 508 

producing singletons and thus inflating pan-genomes. Yet, we have annotated all genomes in 509 

the same way. We also confirmed key results by excluding singletons, and showed that 510 

singletons represent only ~0.5% of a typical genome and that many of them have homologs 511 

in the databases. The frequency of singletons is only weakly correlated with the number of 512 

contigs in draft assemblies, a further sign that they are not just caused by sequencing or 513 

assembly issues (Supplementary Notes). Furthermore, our analysis of ancestral genomes 514 

showed that a large fraction of well-known MGEs, including phages, ISs and plasmids, were 515 

acquired very recently (inferred acquisition at the terminal branches of the phylogenetic tree). 516 

Some of these are singletons, whereas others are present across many phylogroups. They 517 

contribute directly to the rapid divergence of gene repertoires between separating lineages. 518 

Previous population genetics models applied to other clades observed the existence of 519 

genes that have rapid turnovers in genes76,77. Our results show that frequent acquisition of 520 

MGEs drives rapid diversification of gene repertoires even between strains that are almost 521 

indistinguishable by classical typing schemes.  522 

 523 

Following the abrupt initial loss of GRR between diverging lineages, we observed that the 524 

similarity of gene repertoires decreases linearly with time. Hence, it does not follow the 525 

negative exponential distribution that we proposed a decade ago42, which was based on a 526 

very small set of genomes that precluded the identification of the change of dynamics at 527 

small patristic distance. This change of dynamics resembles the accumulation of non-528 

synonymous mutations in genes under weak purifying selection. Comparisons between 529 

closely related strains reflect almost neutral accumulation of recent events whereas 530 

differences between distant strains are driven by purifying selection with occasional fixation 531 

of adaptive events78,79. In the present context, this suggests that either many integrations of 532 

genetic material are slightly deleterious or that there is rapid deletion of neutral genes. The 533 
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first hypothesis is consistent with the fitness costs associated with the acquisition of many 534 

MGEs80-82, and with our observation that most MGEs present in a genome were very recently 535 

acquired. The second hypothesis is consistent with the previous works suggesting the 536 

existence of mechanistic biases towards gene deletion in bacteria 83,84. Once most the recent 537 

transfer has been purged, by natural selection or gene deletion biases, GRR decreases 538 

linearly with divergence time and shows large variance around the regression line. The large 539 

variance indicates that some distantly related bacteria may have more similar gene 540 

repertoires than bacteria within the same sequence type. Importantly, the analysis does not 541 

suggest the existence of a point beyond which relatedness and gene flow change abruptly. 542 

Hence, these results do not suggest incipient sexual isolation within the species from the 543 

point of view of horizontal gene transfer. The analysis of gene flow associated with B2 strains 544 

should be placed in this context, it shows that this particular phylogroup has many MGEs and 545 

large genomes, but is recently exchanging less genetic material with strains from its own and 546 

from other phylogroups. This has placed it apart from the other phylogroups in terms of gene 547 

repertoires and in terms of preferential habitats. 548 

 549 

The rapid evolution of gene repertoires by HGT is consistent with the observation that 550 

plasmids, prophages and ISs are almost ubiquitous among E. coli. These elements 551 

contribute to the genome size and especially to its variability across strains, which supports 552 

our previous results50,85. While most MGEs are quickly lost from lineages, or drive the lineage 553 

extinct, the large influx of such elements can bring adaptive accessory traits such as 554 

antibiotic resistance genes71 and virulence factors86,87. They also pave the way for cooption 555 

processes88. The contribution of the MGE genes to genome size across the species is more 556 

strongly associated with the isolation source of the strains than with the phylogroup. However, 557 

the recent co-acquisition of MGEs by different strains is also associated with the phylogroup. 558 

This is consistent with a scenario where the abundance of MGEs in a genome is strongly 559 

dependent on the habitat, but their diversity also depends on the phylogroup. Since most 560 
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MGE genes arrived in the genome very recently, this suggests that habitat exerts a strong 561 

constrain on the flow of gene exchanges across E. coli strains, in line with the view that 562 

bacteria exchange more genes with those they coinhabit89,90.  563 

 564 

The need of favorable genetic backgrounds for certain local adaptation processes could 565 

explain the observed over-representation of some phylogroups in certain isolation sources. 566 

Virulence factors and antibiotic resistance genes provide relevant examples. In our dataset, 567 

the plasmids encoding virulence factors are often conjugative and should be able to circulate 568 

widely, but the virulent clones often concentrate in only a few phylogroups. Selection for 569 

antibiotic resistance is expected to be higher in the virulent clones, because these are the 570 

most targeted in the clinic. Hence, they endure stronger selection to keep the ARGs arriving 571 

in MGEs. These causal links result in preferential associations of genetic backgrounds with 572 

virulence factors and ARGs, and therefore with the frequency of pathogens in a given 573 

phylogroup. How much of these trends are due to epistatic interactions between novel genes 574 

and the genetic background and how much is due to availability of specific genes by 575 

horizontal transfer in certain sources remains to be quantified. In conclusion, these results 576 

contribute to explain why epidemiological clones tend to emerge from specific phylogenetic 577 

groups even in the presence of massive horizontal gene transfer. 578 

 579 

Genetic diversity, created by HGT, recombination, or mutation, affects a species' ability to 580 

adapt to novel ecological opportunities. The higher the diversity of gene repertoires in a 581 

population, the more likely that one of those genes will prove helpful in the face of 582 

environmental challenges such as antibiotics. We observed that the generalist phylogroups, 583 

such as A and B1, have broader pan-genomes than specialist phylogroups like B2. This was 584 

not expected based on their smaller genome sizes or the lower frequency of MGEs in their 585 

genomes. We propose that this reflects the high variability of the environments where they 586 

circulate and the consequent diversity of local adaptation processes. Phylogroup B2 strains, 587 
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by comparison, have developed very specific traits that may let them take advantage of 588 

some particular resources, e.g. they are better adapted to mammal gut environment2. This 589 

has resulted in large genomes that have diverged more from the other E. coli, as revealed by 590 

the PCA analysis, but that are overall more conserved (largest persistent-genome, smaller 591 

pan-genomes, fewer recent gene acquisitions). Altogether, these results suggest that the 592 

habitat and the phylogenetic structure jointly determine the size of genomes. The results also 593 

suggest the hypothesis that the large genomes of some phylogroups, like B2, are caused by 594 

a relative decrease in the rate of gene loss, not by an increase in the rate of gene gain. 595 

 596 

The integration of information on gene repertoires and population structure in strains 597 

sampled from diverse sources can shed light on the origin of environmental strains. This is 598 

illustrated by the identification of genomic traits in freshwater E. coli isolates that are very 599 

different from the average traits of the species and that suggest adaptation of certain 600 

lineages to this environment. For bacteria, freshwater environments are much more nutrient 601 

poor than the guts of endotherms, and it's interesting to note that strains associated with this 602 

environment have more streamlined genomes. This may represent at the micro-evolutionary 603 

scale, an adaptation similar to that observed in other bacteria adapted to poor nutrient 604 

environments that have small genomes and few MGEs91,92. These results are also consistent 605 

with recent studies showing that E. coli B1 strains can persist longer in water than strains of 606 

the other phylogroups, and that B1 persistent strains in water often encode very few 607 

virulence factors and antibiotic resistance genes7,33,34. Interestingly these strains have been 608 

shown to be able to grow at low temperatures7. The prevalence of B1 isolates has been 609 

observed in other environmental samples, such as drinking water or plants93. The 610 

characteristics observed in freshwater isolates might be general to this environment, since 611 

they were observed in strains from the B1 and from other phylogroups (Supplementary Figs. 612 

16-18). If some E. coli lineages are indeed adapted to freshwater this radically changes the 613 

range of environments from where they can acquire novel genes and the selection pressures 614 
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that shape their subsequent fate. This finding also implies that environmental isolates are not 615 

necessarily the result of source-sink dynamics where E. coli strains evolve in relation to 616 

selection pressures linked to the host and environmental strains are just sinks where such 617 

strains find evolutionary dead-ends. Instead, the environment outside the host could have a 618 

significant impact on the evolution of E. coli subsequently colonizing human hosts.  619 

  620 
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Materials and Methods 621 

Strains: We used different collections of E. coli strains recovered in Australia between 1993 622 

and 2015 (for a more detailed description, see Supplementary Note and Supplementary 623 

Dataset1). The subset of strains selected for whole genome sequencing includes : (1) faecal 624 

strains isolated from various birds (N=195 strains), non-human mammals (N=135), and 625 

humans living in Australia (N=93); (2) clinical strains isolated during intestinal biopsies of 626 

patients with inflammatory bowel disease (N=172), or corresponding to human ExPEC 627 

strains collected from urine or blood (N=112); (3) poultry meat strains isolated from chicken 628 

meat products from diverse supermarket chains and independent butcheries (N=283); (4) 629 

and freshwater strains isolated from diverse locations across Australia (N=285). 630 

 631 
Sequencing: Of the 1,304 isolates, 70 were sequenced at Broad institute using the Roche 632 

454 GS FLX system, 70 were sequenced by GenoScreen (Lille, France) using the 633 

HiSeq2000 platform and the rest were sequenced at the Australian Cancer Research 634 

Foundation (ACRF) Biomolecular Resource Facility (BRF) of the Australian National 635 

University using the Illumina MiSeq platform.  636 

 637 
Assembling: Paired-end read files were processed and assembled with CLC Genomics 638 

Workbench v.9.5.3 (Illumina) using their de novo assembly algorithm with default parameters.  639 

All genomes sequenced by the Broad institute were available into the NCBI Assembly 640 

(www.ncbi.nlm.nih.gov/assembly/) or SRA (www.ncbi.nlm.nih.gov/sra/) databases. While, the 641 

rest of the assemblies was deposited into the European Nucleotide Archive (PRJEB34791). 642 

The accession number of each genome is reported in Supplementary Dataset1. 643 

 644 
Datasets: We used 4 datasets in this study. (1) The Australian dataset described above is 645 

the main dataset. (2) RefSeq dataset: We retrieved 370 E. coli complete genomes from 646 

GenBank Refseq (available in February 2018). (3) ECOR dataset: We retrieved 72 draft 647 
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genomes of the E. coli reference (ECOR) collection from DDBJ/ENA/GenBank48. Strains in 648 

this collection were isolated from diverse hosts and geographic locations and have been 649 

used for more than 30 years to represent the phylogenetic diversity of E. coli as they have 650 

been selected from over 2,600 natural isolates based on MLEE data17. (4) Outgroup 651 

dataset: We retrieved 65 other closely related Escherichia genomes from ENA/GenBank and 652 

sequenced 21 others on the Illumina MiSeq platorm (assembled as described above). They 653 

belong to Clade I (N=14), Clade II (N=2), Clade III (N=8), Clade IV (N=2), Clade V (N=14), E. 654 

fergusonii (N=8) and E. albertii (N=38) species. Only five of them were complete, others were 655 

draft genomes. In this study, these genomes (called hereafter outgroup genomes) were only 656 

used to root the Australian E. coli species tree. The general genomic features and the 657 

sequencing status of these 1,832 genomes are reported in Supplementary Dataset1.  658 

 659 
Data formatting: In an attempt to overcome the bias from different annotations all genomes 660 

of the four datasets were annotated using Prokka v.1.1194 which provided consistency across 661 

the entire datasets (with hmmer v.3.1b1, aragorn v.1.2.36, barrnap v.0.4.2, minced v.0.1.6, 662 

blast+ v.2.2.28, prodigal v.2.60, infernal v.1.1, ncbi_toolbox v.20151127, and signalp v.4.0). 663 

We performed three quality controls on genomic sequences of Australian and outgroup 664 

datasets (see Supplementary Note). A total of 10 E. coli draft genomes and one genome 665 

from clade V failed at least one of these tests and were removed from further analysis, 666 

leading to a final dataset of 1,294 Australian E. coli genomes and 87 outgroup genomes. The 667 

main characteristics of each draft genome are reported in Supplementary Dataset1. 668 

 669 
E. coli typing. Phylogroup. The phylogroup of each E. coli genome (from ECOR, RefSeq, 670 

and Australian datasets) was determined using the in silico ClermonTyping method20. 671 

Multilocus sequence typing (MLST). Sequence type (ST) was identified by the MLST 672 

scheme of Achtman10 using mlst v.2.16.1 (https://github.com/tseemann/mlst). We assigned 673 

STs for a large majority of genomes, i.e., for 99%, 96% and 97% of the ECOR, RefSeq and 674 

Australian genomes resp. Serotype. Serotype (O- and H-genotypes) was inferred with the 675 
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EcOH database95 using ABRicate v.0.8.10 (https://github.com/tseemann/abricate). Currently 676 

there are 220 E. coli O-groups and 53 H-types described in this database. While 99% of 677 

Australian genomes had H-group assigned, only 57% had O-group assigned even if wzm/wzt 678 

and wzx/wzy genes are present. All these results are reported in Supplementary Dataset1. 679 

 680 

Nucleotide diversity. The nucleotide diversity of the three datasets, i.e., ECOR, RefSeq 681 

and Australian, was computed from the multiple alignments of 112 core gene families 682 

present in all E. coli genomes of these three datasets, (see below), using the diversity.stats 683 

function from the PopGenome v.2.6.1 R package96. We also used these 112 core gene 684 

families to assess the nucleotide diversity for each phylogroup of the Australian dataset.  685 

 686 
ST and O:H diversity. The Shannon index was computed to assess the diversity of ST and 687 

O:H serotypes within each phylogroup and source. For this, we calculated their relative 688 

frequency in each group and then applied the function skbio.diversity.alpha_diversity from 689 

the skbio.diversity v.0.4.1 python package (http://scikit-bio.org/docs/0.4.1/diversity.html).  690 

 691 
Mash distances (M). Genome similarity. Due to the high cost of computing ANI97 via 692 

whole-genome alignment, we estimated genome similarity calculating the pairwise Mash 693 

distance (M) between all Australian genomes using Mash v.2.098. Importantly, the correlation 694 

between the Mash distances (M) and ANI in the range of 90-100% has been shown to be 695 

very strong, with M ≈ 1-(ANI/100)98. All the resulting Mash distances between E. coli 696 

genomes are well below 0.05, in agreement with the assumption that they all belong to the 697 

same species. The median is 0.027 and the maximal value is 0.04 (Supplementary Fig. 3). 698 

Australian E. coli reference genomes. The Mash distance was strongly correlated to the 699 

patristic distance in our dataset (spearman’s rho=0.92, P<10-4). We used it to select 100 700 

Australian E. coli strains representative of the species’ diversity (called hereafter reference 701 

genomes). Such reference genomes were used to root the Australian E. coli tree (to 702 

drastically reduce the computational time required to build the rooted tree). To select 703 
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representative genomes, we performed a hierarchical WPGMA clustering from the Mash 704 

distance matrix computed with all Australian E. coli genomes, and then we cut it off to have 705 

only 100 clusters. In each of these clusters, the genome with the smallest L90 was selected. 706 

This reference dataset contained all the phylogroups and was composed of: 15-A, 10-B1, 13-707 

E, 39-D, 11-F, 10-B2 and 2-G genomes. 708 

 709 

Identification of pan-genomes: Pan-genomes are the full complement of genes in the 710 

species (or dataset, or phylogroup) and were built by clustering homologous proteins into 711 

families. We determined the lists of putative homologs between pairs of genomes with 712 

MMseqs2 v.3.099 by keeping only hits with at least 80% identity and an alignment covering at 713 

least 80% of both proteins. Homologs proteins were then clustered by single-linkage100. We 714 

computed independently the pan-genome of each dataset, i.e., ECOR, RefSeq, Australian 715 

and of the 87 outgroups with the 100 Australian E. coli reference genomes. Each pan-716 

genome was then used to compute a matrix of presence-absence of gene families. Hence, 717 

gene copy number variations were not taken into account in this part of the study. The alpha 718 

exponent of Heap’s Law was used to infer whether a pan-genome is open or closed46. Thus, 719 

if α (alpha) < = 1, the pan-genome is open. In contrast, α (alpha) > 1 represents a closed 720 

pan-genome. This coefficient was computed using the heaps function of the micropan v.1.2 721 

R package101 with n.perm = 1000. Principal component decomposition of the Australian pan-722 

genome, i.e, the matrix of presence-absence of protein families was computed using the 723 

prcomp function from the stats v.3.5.0 R package. 724 

The pan-genome of each phylogroup and source was taken from the pan-genome of the 725 

species. The pan-genome of the MGE (called Pan-MGE) was also taken from the species 726 

pan-genome and contained only genes encoding for MGEs. 727 

 728 

Rarefaction of pan-genomes: The number of singletons was strongly correlated to the 729 

number of genomes analyzed in each phylogroup (Pearson’s correlation = 0.97, P<10-4), 730 
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indicating that the pan-genomes size depend on the number of genomes analyzed. Thus, to 731 

compare genetic diversity across datasets (e.g. phylogroups), we rarefied the genome 732 

datasets, i.e., each pan-genome was constructed with the same number of genomes in each 733 

comparison. To do this, 1,000 subsets of X genomes (X depending on the analysis, specified 734 

in the results section) were randomly selected for comparison in each group, resulting to 735 

datasets called hereafter rarefied datasets (Supplementary Fig. 8). 736 

 737 
Identification of persistent-genomes: Gene families that are persistent were taken from 738 

the analysis of pan-genomes.  A gene family was considered as persistent when it was 739 

present in a single copy in at least 99% of the genomes. We found 2,486 persistent gene 740 

families when considering the 1,294 Australian genomes, representing 52% of the average 741 

genome. 742 

 743 
Identification of core-genome:  The core genome was taken from the analysis of the pan-744 

genome.  A gene family was considered as core if it is present in one single copy in all the 745 

genomes. To assess the nucleotide diversity, we built a core-genome with all the genomes of 746 

the ECOR, RefSeq, and Australian datasets. It was composed of 112 core gene families. 747 

Each gene family was aligned with mafft v.7.222 (using FFT-NS-2 method)102, and used to 748 

compute the average nucleotide diversity (p) in each dataset and within each phylogroup 749 

(see above). 750 

 751 
Functional assignment of the pan-genome: Gene functional assignment was performed 752 

by searching for protein similarity with hmmsearch from HMMer suite v.3.1b2103,104 on the 753 

bactNOG subset of the EggNOG v.4.5.1 database47. We have kept hits with an e-value lower 754 

than 10-5, a minimum alignment coverage of 50% of the protein profile, and when the majority 755 

(>50%) of non-supervised orthologous groups (NOGs) attributed to a given gene family 756 

pertained to the same functional group (category). The gene families that cannot be 757 

classified into any existing EggNOG clusters were grouped into the “unknown” category. Hits 758 
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corresponding to poorly characterized or unknown functional EggNOG clusters were grouped 759 

into the “poorly characterized” category.  760 

 761 

Phylogenetic analyses: We built a rooted phylogeny of the species in two steps. The 762 

phylogenetic species tree of Australian E. coli was reconstructed from the concatenated 763 

alignments of the 2,486 persistent proteins of the 1,294 Australian E. coli strains. Each of 764 

these protein families was aligned with mafft v.7.222 (using FFT-NS-2 method)102. At this 765 

evolutionary distance the DNA sequences provide more phylogenetic signal than protein 766 

sequences. Hence, we back-translated the alignments to DNA, as is standard usage. We 767 

built phylogenies from persistent genomes to avoid the loss of signal associated with the 768 

small core genomes. When a genome lacked a member of a persistent gene family, or when 769 

it had more than one member, we added a stretch of gaps (‘-‘) of same length as the other 770 

genes for it in the multiple back-translated alignments. Adding a few "-" has little impact on 771 

phylogeny reconstruction105. We have not removed recombination tracts from the multiple 772 

alignment because this has been shown to amplify errors in determining phylogenetic 773 

distances and it usually does not affect the topology of the tree106,107. If determination of the 774 

recombination was accurate in our >1,300 genomes dataset, this would have led to the 775 

exclusion of almost all the genes. The length of the resulting alignment for the species was 776 

2,298,168 bp. Each tree was computed with IQ-TREE multicore v.1.6.7108 under the 777 

GTR+F+I+G4 model. This model gave the lowest Bayesian Information Criterion (BIC) 778 

among all models available (option –m TEST in IQ-TREE). We made 1,000 ultra-fast 779 

bootstraps to evaluate node support (options –bb 1000 –wbtl in IQ-TREE) and to assess the 780 

robustness of the topology of each tree109.   781 

The phylogenetic tree of Escherichia genus was inferred from the persistent-genome 782 

obtained with the 87 outgroup genomes and the 100 E. coli reference genomes (see above) 783 

using the same procedure as the species tree. In this case, the persistent-genome is 784 

composed of 1,589 proteins families, and the resulting alignment of 1,469,523 bp. The genus 785 

phylogenetic tree was extremely well supported: all nodes had bootstrap support higher than 786 
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95%. Its topology was consistent with a previous study110 (Supplementary Fig. 3c). Then, we 787 

used it to precisely root the species tree (Supplementary Fig. 3d). 788 

The most recent common ancestor of each phylogroup: We identified the node 789 

corresponding to the most recent common ancestor (MRCA) for each phylogroup from the 790 

rooted species tree using the findMRCA function from the phytools v.0.6.44 R package. Then, 791 

the subtree of each phylogroup was extracted using the extract.clade from the ape v.5.2 R 792 

package111. The distance to the MRCA was computed from the length of branches in each 793 

subtree. It corresponds to the average depth (distance from the MRCA) of all genomes (tips) 794 

within a phylogroup, and was inferred using the depthTips from the phylobase v.0.8.6 R 795 

package (https://github.com/fmichonneau/phylobase).  796 

 797 
Evolutionary Distances: For each pair of genomes, we computed a number of measures of 798 

similarity : 1) The Patristic distance was computed from the length of branches in the 799 

Australian E. coli species phylogenetic tree. The patristic distance is simply the sum of the 800 

lengths of the branches that link two genomes (tips) in the tree, and was inferred using the 801 

cophenetic function from the ape v.5.2 R package111. They were computed between all pairs 802 

of genomes, of the same ST (intra-ST), of different ST (inter-ST) within identical phylogroup, 803 

or of different phylogroups (Inter-phylogroup). As expected, we found that the intra-804 

phylogroup (both intra-ST and inter-ST) patristic distances were significantly shorter than the 805 

inter-phylogroup (Wilcoxon test, P<10-4). 2) The Gene Repertoire Relatedness index (GRR) 806 

between two genomes was defined as the number of common gene families (the intersection) 807 

divided by the number of genes in the smallest genome112. It is close to 100% if the gene 808 

repertoires are very similar (or one is a subset of the other) and lower otherwise. 3) The 809 

Manhattan index between two genomes is the number of different gene families. If two 810 

genomes have identical gene content, the corresponding Manhattan index  is 0. 4) The 811 

Jaccard index between two genomes was defined as the number of common gene families 812 

(the intersection) divided by the number of gene families in both (the union). The Jaccard 813 

index between two genomes describes their degree of overlap with respect to gene family 814 
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content. If the Jaccard distance is 1, the two genomes contain identical protein families. If it is 815 

0 the two genomes are non-overlapping.  816 

To characterize the genetic diversification of each phylogroup of the Australian dataset, we 817 

computed the three different standard indexes: the GRR, the Jaccard, and the Manhattan 818 

indexes. All these indexes were highly correlated (Supplementary Fig. 9). Thus, only 819 

analyses with GRR were reported and illustrated in the main text. Note that we always used 820 

the matrix of presence/absence of gene families to compute all these indexes, meaning that 821 

multiple occurrences were not considered. This downplays the impact of IS on pan-genome 822 

size and makes more conservative estimates of GRR divergence. 823 

 824 
Reconstruction of the evolution of gene repertoires: We assessed the evolutionary 825 

dynamics of gene repertoires of the Australian genomes using Count (downloaded in 826 

January 2018)113 with the Wagner parsimony method. Due to the size of our dataset it was 827 

not possible to do the analysis using birth-death models, but our previous analyses revealed 828 

very few differences between the two methods in smaller datasets114. Wagner parsimony 829 

penalizes the loss and gain of individual family members (with relative penalty of gain with 830 

respect to loss of 1, option g = 1), and infers the history with the minimum penalty. Thus, 831 

from the pan-genome, i.e., the matrix of presence-absence of gene families, and the rooted 832 

species tree, Count inferred the most parsimonious gain/loss scenario of each gene family 833 

along the tree. At each tree node, Count detailed information about individual families: 834 

presence/absence, and family events on the edge leading to the node. Hence, we have 835 

reconstructed the gene content of ancestral genome at each node. At each terminal branch, 836 

the expected total number of recent acquisitions (HGT) was computed by summing all family-837 

specific gene gains obtained from the edge leading to the tip.  Among them, we identified 838 

MGE associated genes that were recently acquired in each genome. We applied a similar 839 

strategy to identify recent losses. 840 

 841 
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Distribution of accessory families across phylogroups (or sources): We counted the 842 

number of MGE-associated gene families across phylogroups (Fig. 3d) or sources 843 

(Supplementary Fig. 15). We excluded the singletons from this analysis to avoid over-844 

estimation of the number of families specific to one category. To test if some categories over-845 

represented or under-represented these genes, we made 1,000 simulations. In each 846 

simulation, we shuffled the phylogroup (or source) assignment of the genomes while keeping 847 

the same number of taxa in each category (phylogroups or sources). Thus, the presence of a 848 

gene family in a genome and its frequency in the pan-genome remains the same, only the 849 

phylogroup (or the source) of genomes changes. The Z-score obtained for the observed 850 

number in the real data with respect to the random distribution (from 1,000 simulations) was 851 

reported for each case with a color code ranging from blue (under-representation, Z-score<-852 

1.96) to red (over-representation, Z-score>1.96). 853 

 854 
Recent co-occurrence of gains (co-gains) of gene families within phylogroups. 855 

We counted the number of recently acquired gene pairs (co-gains) from the same pan-856 

genome gene family (see above) within and between phylogroups. Recently acquired genes 857 

were defined as those inferred as acquired in terminal branches using Count. To test if some 858 

phylogroups over-represented or under-represented these co-gains, we compared the 859 

observed number (O) within each phylogroup to the expectation (E) given by 1,000 860 

simulations. In each simulation, we shuffle the phylogroup assignment of the taxa (same 861 

approach as for the accessory gene families) and count the number of co-gains within and 862 

between phylogroups. For each phylogroup, we then divided the number observed in the real 863 

data (O) by the average number observed in the simulations (E), and computed the Z-score 864 

of the observed number (O) with respect to the random distribution (E). We considered an 865 

over(under)-representation significant when Z-score>1.96 (Z-score<-1.96). Note that the O 866 

and E numbers had to be previously normalized (divided by the total number of gene pairs, 867 

i.e. the sum of pairs within and between phylogroups, in the real data, and in each 868 
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simulation, resp.). We applied the same approach (i) considering only gene pairs encoding 869 

for MGEs (similar result as in Fig. 3), (ii) for sources (instead of phylogroups, Fig. 4). 870 

 871 
Network of co-occurrence of gains (co-gains) of gene families across phylogroups. 872 

All co-gains (see above) were split into all possible combinations of phylogroup pairs (21 873 

combinations). To test if these co-gains are over- or under-represented between 874 

phylogroups, we compared the observed number (O) between each phylogroup to the 875 

expectation (E) given by 1,000 simulations with the same strategy as above. As before, we 876 

normalized the observed and expected numbers by the total number of co-gains in each 877 

simulation, calculated the (O/E) ratio, and the Z-score of each observed value in the real data 878 

with respect to the random distribution (E). The network was drawn using the igraph v.1.2.2 879 

R package (https://igraph.org/r/) with the circle layout option, where nodes are phylogroups, 880 

edges are (O/E) values for which the Z-score is significantly different from zero. The width of 881 

the edges is proportional to the (O/E) value and the color is blue for under- and red for over-882 

representation (Fig. 3f). We applied the same approach considering only gene pairs 883 

encoding for MGEs (Supplementary Fig. 16). 884 

 885 
Gene family diversity: We computed Shannon indexes to assess the diversity of each gene 886 

family recently acquired (terminal branches) across phylogroups and across sources (Fig. 887 

4e). If diversity is low, this means that acquisitions are clustered by phylogroup or source 888 

(depending on the analysis). For this, we calculated the relative frequency of each gene 889 

family recently acquired within each phylogroup (vs. each source). It is simply the number of 890 

genomes (within a phylogroup) with at least one acquisition divided by the total number of 891 

genomes in the phylogroup. We therefore obtained 2 vectors per gene family (one for 892 

phylogroups and one for sources) each containing 7 frequencies (for each phylogroup or 893 

each source) and then applied for each vector the function diversity from the vegan v.2.4.6 R 894 

package (https://github.com/vegandevs/vegan). If the index is 0, recent acquisitions of genes 895 
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of the family are limited to a single group (phylogroup or source).  The higher the index, the 896 

more scattered the acquisitions of the family's genes are (across phylogroups or sources). 897 

 898 
Statistics: All basic statistics were performed using R v 3.5.0, or JMP-13. (i) Analysis of 899 

means: We used ANOM to compare group means to the overall mean, when the data were 900 

approximately normally distributed. In cases where the data were clearly non-Gaussian and 901 

could not be transformed, we used the nonparametric version of the ANOM analysis, i.e., 902 

ANOM with Transformed Ranks. It compares each group’s mean transformed rank to the 903 

overall mean transformed rank. In both, we used the methods implemented in JMP-13. (ii) 904 

Pairwise Wilcoxon Rank Sum Tests were computed using the pairwise.wilcox.test function 905 

from the stats v.3.5.0 R package. We used the Bonferroni correction during multiple 906 

comparison testing. (iii) Fisher's exact tests were computed using the fisher.test function 907 

from stats v.3.5.0 R package. They were performed for testing the null of independence of 908 

rows (phylogroups) and columns (sources) in a 2x2 contingency table. (iv) Correlation 909 

coefficients. Pearson’s and Spearman’s rank correlation rho were computed using the cor 910 

function from stats v.3.5.0 R package. The correlation matrices were represented using the 911 

corrplot v.0.84 R package (https://cran.r-project.org/web/packages/corrplot/index.html). (v) 912 

Smooth regression: We used the generalized additive model (gam) smoothing method from 913 

the mgcv v.1.8.23 R package (https://cran.r-project.org/web/packages/mgcv/index.html). (vi) 914 

Stepwise multiple regressions were computed with JMP-13. This standard statistical 915 

method consists in a stepwise integration of the different variables in the regression by 916 

decreasing order of contribution to the explanation of the variance of the data115. We used 917 

the forward algorithm and the BIC criterion for model choice in the multiple stepwise 918 

regressions. The P-values associated with each variable were assessed using an F-test. 919 

 920 
Identification of Mobile Genetic Elements (MGEs): Prophages: Prophages were 921 

predicted using VirSorter v.1.0.352 with the RefSeqABVir database in all genomes from 922 

Australian and RefSeq datasets, as a control. The least confident predictions, i.e., categories 923 
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3 and 6, were excluded from the analyses in both datasets. The prophage-associated 924 

regions in drafts are more numerous and shorter than in complete genomes (Supplementary 925 

Fig. 11). These results reveal that such regions are sometimes split in assemblies. In 926 

complete genomes, the cumulative size of the prophage-associated regions (X) is highly 927 

correlated with the number of prophages (Y) present in the genomes (Y=1.2923362 + 928 

1.6767.10-5 X, R2=0.91, P<10-4, Supplementary Fig. 11). Hence, we used this linear equation 929 

to estimate the number of prophages in drafts using the cumulated size of prophage regions 930 

in the draft genomes. Plasmids: In the RefSeq dataset, all the extrachromosomal replicons 931 

were considered as plasmids. In the Australian dataset, plasmid sequences were identified 932 

using PlaScope v.1.353 with the database dedicated to E. coli. PlaScope provides a method 933 

for plasmid and chromosome classification of E. coli contigs. It has the specificity to select a 934 

unique assignment to each contig of a draft genome to plasmid, chromosome or unclassified. 935 

The number (~16, max: 124) and size (~9 kb, max: 166 kb) of contigs predicted as plasmid 936 

were highly variable (Supplementary Fig. 12) in the Australian dataset. Their size is much 937 

smaller than that of the average plasmid in complete genomes (~80 kb), reflecting the split of 938 

plasmids across different contigs because of the presence of repeated sequences, e.g. IS 939 

elements. Hence, we have not attempted to estimate the exact number of plasmids per 940 

genome and focus our analysis on the number of genes predicted to be in plasmid contigs. 941 

MGEs (Plasmids + Prophages): We found 11,864 gene families specifically related to 942 

plasmid elements, 14,188 to prophage elements, and 2,599 shared by both (9% of the MGEs 943 

gene families). In complete genomes, prophage and plasmids elements account for half of 944 

the pan-genome, of which 1 third were singletons. The large fraction of singletons from 945 

MGEs confirms that these elements are extremely diverse and evolved very rapidly, which 946 

underlines the difficulty of accurately detecting them and probably leads to their under-947 

estimation in draft genomes. Loci encoding conjugative or mobilizable elements were 948 

detected with the CONJscan module of MacSyFinder116, using protein profiles and definitions 949 

following a previous work54,117. 87% of conjugative systems and 75% of putative mobilizable 950 
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elements were located on contigs predicted as plasmids by Plascope.  Integrons were 951 

identified using IntegronFinder v.1.5 with the –local_max option57. 186 integron-integrase (intI) 952 

were detected with one quarter located at the edges of contigs. We only found one copy per 953 

genome. They were often located on very short contigs (20 proteins on average), and five 954 

make all the contigs. Most (86%) were located on contigs predicted as plasmid by Plascope, 955 

the remaining were on unclassified contigs. Except for the latter, intI genes were always 956 

located next to ARGs. IS elements were identified using ISfinder56. Only hits with an e-value 957 

lower than 10-10, a minimum alignment coverage of 50% and with at least 70% identity were 958 

selected, we extracted the IS name of the best hit. Therefore, we identified 47,592 genes 959 

encoded for IS elements, among them 43% were located at the edges of contigs 960 

(20,329/47,592). They represented 1,006 gene families (~1% of the pan-genome), of which 961 

41% were singletons. Only 13% were multigenic protein families (i.e., with more than one 962 

member in at least one genome). Among them, 9 protein families were found in more than 10 963 

copies in at least one genome, i.e., ISEc1 (10 copies), IS1397 (11), ISSoEn2 (11), IS621 (11), 964 

IS2 (15), IS629 (17), IS200C (17) IS1203 (18), and the most extreme case IS1F (107). Very 965 

large numbers of ISs, usually a sign of recent proliferation, was restricted to a small number 966 

of genomes (Supplementary Dataset1), but this may be an under-estimate caused by the 967 

loss of ISs in the assembling process. ISs were often fragmented, characterized by 968 

numerous singletons, and six times more frequently present at the edges of contigs than 969 

expected by chance. All the results are reported in Supplementary Dataset1. 970 

 971 

Antibiotic resistance genes (ARG) were detected using 2 curated databases of antibiotic 972 

resistance protein: Resfinder v.3.1118 and ARG-ANNOT v.3119. Therefore, we used BlastP 973 

and selected the hits with an e-value lower than 10-5, with at least 90% of identity and a 974 

minimum alignment coverage of 50%. We found a strong positive correlation between the 975 

number of ARGs per genome using each database (pearson’s r=0.97, P<10-4). The main 976 

difference is the additional detection of three ARGs by ARG-ANNOT, i.e., AmpC2, AmpH, 977 
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Mfd, which are persistent in Australian dataset and normally do not confer antibiotic 978 

resistance in E. coli.  All the results are reported in Supplementary Dataset1.  979 

 980 

Virulence factors (VF) were identified using VFDB (downloaded in February 2018, 120). The 981 

two databases, i.e., VFDB_setA and VFDB_setB were used independently. We used BlastP 982 

and selected the hits with an e-value lower than 10-5, at least 70% of identity and minimum 983 

alignment coverage of 50%. We found 1,332 (vs. 3481) gene families encoding virulence 984 

factors with the setA (vs. setB). In spite of these differences, we found qualitatively similar 985 

conclusion with the 2 sets because they are very correlated (pearson’s r=0.97, P<10-4). All 986 

the results are reported in Supplementary Dataset1. 987 
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