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Lyam Baudry 1,2,3†, Théo Foutel-Rodier 1,2,3†, Agnès Thierry 1,2, Romain Koszul 1,2* 
and Martial Marbouty 1,2*

1 Institut Pasteur, Unité Régulation Spatiale des Génomes, UMR3525, CNRS, Paris, France, 2 Institut Pasteur, Center of 
Bioinformatics, Biostatistics and Integrative Biology (C3BI), Paris, France, 3 Sorbonne Université, Collège Doctoral, Paris, France

Characterizing the complete genomic structure of complex microbial communities 
would represent a key step toward the understanding of their diversity, dynamics, and 
evolution. Current metagenomics approaches aiming at this goal are typically done by 
analyzing millions of short DNA sequences directly extracted from the environment. 
New experimental and computational approaches are constantly sought for to improve 
the analysis and interpretation of such data. We developed MetaTOR, an open-source 
computational solution that bins DNA contigs into individual genomes according to their 
3D contact frequencies. Those contacts are quantified by chromosome conformation 
capture experiments (3C, Hi-C), also known as proximity-ligation approaches, applied to 
metagenomics samples (meta3C). MetaTOR was applied on 20 meta3C libraries of mice 
gut microbiota. We quantified the program ability to recover high-quality metagenome-
assembled genomes (MAGs) from metagenomic assemblies generated directly from the 
meta3C libraries. Whereas nine high-quality MAGs are identified in the 148-Mb assembly 
generated using a single meta3C library, MetaTOR identifies 82 high-quality MAGs in the 
763-Mb assembly generated from the merged 20 meta3C libraries, corresponding to 
nearly a third of the total assembly. Compared to the hybrid binning softwares MetaBAT 
or CONCOCT, MetaTOR recovered three times more high-quality MAGs. These results 
underline the potential of 3C-/Hi-C-based approaches in metagenomic projects.

Keywords: metagenomics Hi-C, gut microbiome, Hi-C, metagenomics binning, metagenomic analysis, binning 
algorithm, metagenome-assembled genomes

INTRODUCTION

Microbial communities hold important roles in ecosystems regulation (Philippot et al., 2013; Edbeib 
et al., 2016; Coutinho et al., 2018; Rosado et al., 2019), such as the human gut (Cho and Blaser, 
2012). Understanding the behaviors of these communities is a complex task, and one important 
step toward this objective relies on the characterization of the genomes of the different species 
within (Long et al., 2016). Indeed, the genome sequence allows to infer metabolic pathways and, 
by extension, provide indications about the species lifestyle in the environment. Supported by 
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high-throughput sequencing technologies dropping costs and 
backed by increasingly powerful computational resources, the 
field of metagenomics aims at exploring ecosystems through 
the analysis of DNA sequences extracted directly from the 
environment to gain insights on microbial population diversity 
and dynamics (Spang et al., 2015; Hug et al., 2016; Paez-Espino 
et al., 2016; Castelle and Banfield, 2018). Characterizing complete 
or near-complete genomes remains however difficult to achieve, 
depending to some extent to the popularity and complexity of 
the ecosystem studied (Olson et al., 2017; Quince et al., 2017; 
Sieber et al., 2018). An important aspect of metagenomics studies 
therefore consists in developing computation approaches to 
characterize genomes in metagenomics data (Albertsen et al., 
2013; Alneberg et al., 2014; Frank et al., 2016; Sieber et al., 2018).

Most computational approaches rely on the composition 
and/or co-abundance of sequences recovered from multiple 
samples to pool (bin) them together (Alneberg et al., 2014; Wu 
et al., 2014; Kang et al., 2015; Lu et al., 2017; Graham et al., 2017; 
Laczny et al., 2017). Composition-based method groups together 
sequences that display similar metrics, such as GC content and/
or tetra- and/or penta-nucleotide frequencies. Co-abundance-
based approaches trace the relative amount of sequences over 
multiple samples and group together those with similar coverage 
variation. Co-abundance is very effective when multiple samples 
of the same ecosystem are available under different conditions. 
Today, most metagenomics binning pipeline consists in hybrid 
approaches combining both strategies to improve the confidence 
of the resulting sequences bins (Alneberg et al., 2014; Wu et al., 
2014; Kang et al., 2015; Graham et al., 2017; Lu et al., 2017). 
However, caveats and limitations remain. First, grouping 
sequences based on their similarities imply a strong assumption 
regarding the homogeneity of the genomes’ composition. This 
hypothesis is therefore not valid when horizontal transfer or 
introgression of genetic material takes place between species 
with (highly) divergent sequence compositions. For instance, 
the GC content of prophages and of their bacterial genomes host 
can differ widely. Co-abundance-based methods require multiple 
samples and large amounts of data to be fully effective, which 
can be impractical and/or costly. In addition, if several multiple 
species share the same genetic elements, co-abundance-based 
methods will also fail to identify the association of these elements 
with the different species.

Novel technologies, such as single-cell (Ji et al., 2017), long 
reads (Frank et al., 2016) or proximity ligation/chromosome 
conformation capture (3C) (reviewed in Marbouty and Koszul, 
2015; Flot et al., 2015), hold the potential to address some of 
these limitations. The latter approach, dubbed meta3C from the 
original 3C approach (Dekker et al., 2002), aims at quantifying 
and exploiting collisions between DNA loci over a population of 
species to identify those that share the same cellular compartment. 
Sequences belonging to the same genome display enriched contact 
frequencies compared to those belonging to different genomes, 
as shown by applying meta3C on controlled mixes of species 
(Burton et al., 2014; Beitel et al., 2014; Marbouty et al., 2014). 
Besides controlled mixes, meta3C successfully reconstructed 
genomes from truly unknown and complex ecosystems as well 
(Marbouty et al., 2014; Marbouty et al., 2017; Stewart et al., 2018). 

Not only near-complete genomes from microorganisms can be 
recovered from a single experiment, but additional information 
about the genomic structure of these microbial populations can 
be recovered as well, including plasmids (Marbouty et al., 2014; 
Press et al., 2017; Stalder et al., 2019) and phage-host infection 
spectrum (Marbouty et al., 2017). These studies suggest that 
meta3C and similar approaches hold the potential to 1) accurately 
bin genomes and episomal DNA molecules and 2) assign 
episomal DNA molecules to their respective hosts. However, 
comprehensive, end-to-end computational pipelines to process 
raw meta3C datasets remain sparse (Marbouty et al., 2017; 
DeMaere and Darling, 2019). Most analyses so far have focused 
on single mock communities, and quantifiable metrics are lacking 
to see how meta3C-like approaches truly compare—and possibly 
complement—traditional binning methods, notably regarding 
the quality, completeness, and accuracy of retrieved bins.

To address this need, we developed MetaTOR (Metagenomic 
Tridimensional Organisation–based Reassembly), a lean and 
scalable tool to investigate single or multiple proximity-ligation 
(i.e., 3C or Hi-C libraries) metagenomic experiments, from raw 
3C reads and assembly to bins. MetaTOR was applied on 20 
meta3C libraries of mouse gut samples collected over time. This 
first dynamic meta3C study allowed us to reconstruct dozens of 
complete genome sequences, and to compare the genomic bins 
recovered using MetaTOR with bins generated by binning software 
MetaBAT (Kang et al., 2015) and CONCOCT (Alneberg et al., 
2014). MetaTOR compared favorably with respect to the number 
of high-quality genomes recovered (Bowers et al., 2017) and the 
amount of binned sequences. In addition, 3C-based binning was 
less dependent on the quality of the metagenome assembly (in 
terms of fragmentation—i.e., contigs’ mean size, N50). Overall, 
MetaTOR is a robust tool to process proximity-ligation sequencing 
data, regardless the number of samples processed.

MATERIALS AND METHODS

Feces Sampling and meta3C Library 
Generation
The feces of three groups of two mice were sampled over 20 days 
as follows: days 2, 5, and 9 for cage n°1; days 2, 4, 5, 6, 7, 9, 10, 12, 
and 16 for cage n°2; and days 2, 5, 6, 7, 9, 11, 12, and 16 for cage 
n°3 (Supplementary Figure 1). The samples were immediately 
cross-linked after sampling in 30  ml of 1X tris-EDTA buffer 
supplemented with 3% formaldehyde (final concentration), 
for 1 h at room temperature with agitation. Formaldehyde was 
quenched by adding 10  ml of 2.5 M glycine during 20  min at 
room temperature with moderate agitation. Samples were then 
recovered by centrifugation, and pellets were stored at −80°C 
until processing. The libraries were then prepared and sequenced 
using pair-end (PE) Illumina sequencing (2 × 75 bp NextSeq) as 
described (Marbouty et al., 2014; Foutel-Rodier et al., 2018).

Read Processing and Assembly
The first 10 bp of each read correspond to custom-made 
amplification primers allowing to remove PCR duplicates from 
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the read pool (Marbouty et al., 2015). Those 10 bp were removed 
afterwards, and the resulting 65-pb sequences were filtered and 
trimmed using cutadapt (Martin, 2011). Quality was controlled 
with FastQC, and a total of 813 million PE reads were kept in 
total (over the 20 samples). Reads from libraries sampled from 
1) cage 3 at day 2, 2) cage 3 with all samples, and 3) all cages 
with all samples were then used to perform three independent 
assemblies using MEGAHIT v1.1.1.2 (Li et al., 2015) with 
default parameters. Contigs under 500 bp were discarded from 
further analyses.

Assemblies Analysis
Contigs from the three assemblies were analyzed with the 
MG-RAST pipelines (Meyer et al., 2008). The metagenomics 
RAST server allows automated annotations of complete or draft 
microbial genomes and provides information on phylogenetic 
and functional classification of the contigs. It also provides an 
alpha diversity measurement of the assembly.

Alignment Step and Network Generation
Filtered reads were aligned independently in single-end mode 
using Bowtie2 v2.2.9 (option—very-sensitive-local) against 
one of the assemblies. For each sample, both alignment files 
were sorted and merged using the SAMtools and pysam 
libraries. Ambiguous alignments and alignments with mapping 
quality under 20 were discarded. All pairs of reads for which 
both reads aligned unambiguously on two different contigs 
were kept to generate the network. Contigs were considered 
as nodes, and the values of the edges (i.e., the weight) of the 
network were determined by counting the number of non-
ambiguous alignments bridging the corresponding two contigs. 
Normalization was computed by dividing the edge value by the 
geometric mean of the nodes’ coverage (i.e., contigs’ coverage). 
Contig coverage was calculated using MetaBAT 1 v0.32.5 script: 
jgi_summarize_bam_contig_depths with a contig size limit of 
500 bp for every set of reads.

Louvain Clustering
We showed before that the updated implementation of the 
Louvain community method provided in (Blondel et al., 2008) 
was a promising approach to identify subnetworks of contigs 
in the meta3C network that display enriched contacts between 
themselves (Marbouty et al., 2014). The Louvain algorithm was run 
400 times on each network, using the classical Newman-Girvan 
criterion. Nodes that systematically clustered together for each of 
the first 100 iterations were pooled together in core communities 
(CCs), as described previously (Marbouty et al., 2017).

CCs Validation/Evaluation and Taxonomic 
Annotation
CCs above 500 kb were evaluated for completeness and 
contamination using CheckM version 1.0.7 (Parks et al., 2015). 
A CC was validated as a bin if its contamination rate range under 
10%. CheckM was also used to assign taxa, at the class level, to 
validated bins using the lineage workflow.

MAGs Evaluation
Validated bins were further evaluated following the standards 
to classify MAGs as high quality, medium quality, or low 
quality (Bowers et al., 2017). tRNA were searched with 
tRNAscan-SE 2.0 (Lowe and Eddy, 1997) (option -B). 16S and 
23S rRNAs were searched using METAXA2 (Bengtsson-Palme 
et al., 2015)(options: -g SSU and -g LSU, respectively). We used 
RNAmmer-1.2 (Lagesen et al., 2007) (options: -S bacteria -m tsu) 
to look for 5S RNA. Bins were considered high-quality draft if 
they had 18 or more different tRNAs and at least one of each 
rRNA gene.

Recursive Louvain Clustering
Partially complete CCs (> 70% completion) with contamination 
levels upper than 10% were selected for recursive binning. Briefly, 
the partition step was re-run 10 times on these contaminated 
CCs (i.e., on their corresponding sub-network), yielding groups 
of smaller CC (i.e., sub-CCs) which were then re-processed in 
the binning step to assess for their quality.

Pipeline Comparison
CONCOCT v1.0.0 (Alneberg et al., 2014) and MetaBAT 1 v0.32.5 
(Kang et al., 2015) were run on the same set of reads and assemblies, 
using the different time samples for differential coverage. 
Resulting bins above 500 kb were retrieved and compared with 
MetaTOR’s for completeness and contamination using CheckM. 
CONCOCT was run with the following parameters –r 65 -s 100. 
MetaBAT 1 was run with default parameters.

RESULTS

Algorithmic Principles Underneath the 
MetaTOR Pipeline
MetaTOR (https://github.com/koszullab/metaTOR) aims at 
providing the most accurate overview of genome content of 
a population, starting from as little as one meta3C library, 
while taking full advantage of additional libraries if available. 
It’s structured around four main steps: alignment, partition, 
annotation, and binning (Figure 1). MetaTOR was purposely 
designed to maintain a high level of modularity and flexibility, so 
that users can supply their own intermediary inputs and tweak 
parameters to their liking at every step. This can save both time 
and resources. If starting from the raw data, all needed is the 
meta3C PE files and an assembly of the microbial community 
obtained either directly from the meta3C reads (as described in 
this work and in Marbouty et al., 2014; Marbouty et al., 2017) or 
from a DNA library generated independently (Figure 1A).

• [Align] (Figure 1B): First, meta3C reads are aligned 
independently along the contigs of the metagenome assembly 
using Bowtie2 (as aligners tend to leave out far-off alignments 
when run in PE mode). Contigs are then sorted, filtered for 
mapping quality, and merged into a global alignment file. The 
alignment is converted into a contact network stored in a plain 
text file [network.txt: column 1—node 1/column 2—node  

https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://github.com/koszullab/metaTOR


Recovering Bacterial Genomes Using metaTORBaudry et al.

4 August 2019 | Volume 10 | Article 753Frontiers in Genetics | www.frontiersin.org

FIGURE 1 | Continued

https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
www.frontiersin.org


Recovering Bacterial Genomes Using metaTORBaudry et al.

5 August 2019 | Volume 10 | Article 753Frontiers in Genetics | www.frontiersin.org

2/column 3—weight] to facilitate further third-party analysis. 
In the network, each node represents one contig, and each edge 
(a.k.a. weight) represents the contact score found between 
two contigs. This step integrates variable parameters such as 
enforcing a lower size limits for contigs or a normalization step. 
Normalization of the network typically uses contig coverage, 
but other normalizations can be implemented as well.

• [Partition] (Figure 1C): An iterative Louvain procedure 
is applied on the network file to partition the network into 
groups of contigs that consistently cluster together, i.e., “see” 
each other’s in space more often than their neighbors’ (Blondel 
et al., 2008; Marbouty et al., 2014; Marbouty et al., 2017). 
These clusters or CC constitute the matrix of the metagenomic 
binning. The number of iterations is a free parameter of the 
pipeline and can be set by the user. However, we noted that the 
number of CC stabilizes after a while with small oscillations 
around a fixed value, and therefore recommend enough cycles 
to reach that threshold.

• [Binning] (Figure 1D) CCs are then extracted (FASTA 
files) and their gene content assessed for completeness and 
contamination using CheckM (Parks et al., 2015). In parallel, 
the pipeline extracts sub-networks for each CC (i.e., network 
between the corresponding contigs). Extraction of each sub-
network allows the user to perform, if needed, a recursive 
procedure at this step on the defined contig group (i.e., CCs) 
(see Figure 1—“recursive procedure”). Indeed, some CCs 
exhibit both a high completion rate and a high contamination 
levels suggesting that they contain more than one genome. 
By applying the partition step only on their corresponding 
sub-network, it becomes possible to sub-partition using the 
Louvain algorithm these CCs into smaller ones (i.e., sub-CCs). 
This step typically breaks down the most contaminated CCs 
into smaller, low-contaminated sub-CCs. The retrieved sub-
CCs can also be evaluated using CheckM and validated as bins.

• [Annotation] (Figure 1F): Gene prediction is performed 
using Prodigal (Hyatt et al., 2010), and genes of interest are 
detected using HMM models publicly available (Albertsen 
et al., 2013; Guglielmini et al., 2014; Grazziotin et al., 2017). 
However, this step is independent from the others, and any 
annotation tool can be applied instead.

MetaTOR generates a set of annotated metagenomics bins 
and their corresponding FASTA sequences (in addition to the 
contact network) (Figure 1E).

Construction of meta3C Libraries and 
Generation of Metagenome Assemblies
To validate and compare the pipeline to classical metagenomic 
binning algorithms, we investigated the gut microbiota of various 

mice using meta3C libraries. Feces were sampled from three 
groups of two mice from the Institut Pasteur animal facility, over 
20 days (Materials and Methods) (Supplementary Figure 1). 
Twenty meta3C libraries (three from cage n°1, nine from cage 
n°2, and eight from cage n°3) were then generated as described 
(Marbouty et al., 2017) (Materials and Methods) using HpaII as 
restriction enzyme. Libraries were sequenced using PE Illumina 
2x75 bp Kits (Table 1) (NCBI BioProject PRJNA542645). After 
trimming and quality filtering, between 25 and 100 million PE 
reads were recovered for each of the samples (~813 million PE 
reads total).

Meta3C sequences can be directly used to generate a de novo 
assembly without notable increase of false/chimeric contigs 
(Marbouty et al., 2014). Three assemblies (1, 2, and 3) using reads 
collected from cage 3/day 2, cage 3/all samples, and all cages/all 
samples, respectively, were generated using MEGAHIT (Li et al., 
2015) (Materials and Methods). After discarding contigs under 
500 bp, the three assemblies resulted in 61,600, 167,810, and 
237,868 contigs for a cumulated size of 146, 475, and 763 Mb, 
respectively (Table 2). These assemblies and their corresponding 
set of reads were used to test the binning pipelines MetaTOR, 
MetaBAT, and CONCOCT, and their output (Material and 
Methods). The number of species present in the total assembly 
(n°3) was estimated using MG Rast and the alpha diversity 
provided for the assembly (Meyer et al., 2008) (Material and 
Methods). In total, 268 bacterial genomes are predicted to be 
present in the global assembly.

FIGURE 1 | MetaTOR pipeline. Schematic representation of the MetaTOR pipeline. (A) MetaTOR is initialized with an assembly and a set of 3C/Hi-C PE reads. 
(B) [Align] will align, sort, and merge reads to deliver a network of contig interactions. (C) [Partition] will deconvolve the previously defined network using a Louvain 
iterative procedure and (D) [Binning] will retrieve CCs (FASTA file and corresponding sub-network) from selected partition to evaluate them using CheckM. At this 
step, it is possible to perform a recursive procedure on selected CCs to split them further into sub-CCs. (F) [Annotation] is an optional step that use HMM models to 
provide final annotations. (E) The final output of the pipeline is a set of annotated bins.

TABLE 1 | Meta3C libraries constructed and sequenced.

Sample Raw paired-end reads

Cage1-day1 79 868 626
Cage1-day2 38 728 350
Cage1-day3 33 173 429
Cage2-day1 40 380 356
Cage2-day2 62 424 123
Cage2-day3 31 436 086
Cage2-day4 34 124 320
Cage2-day5 48 472 570
Cage2-day6 36 129 310
Cage2-day7 32 608 370
Cage2-day8 43 473 731
Cage2-day9 67 768 796
Cage3-day1 108 114 353
Cage3-day2 39 719 377
Cage3-day3 37 792 067
Cage3-day4 36 805 550
Cage3-day5 34 529 306
Cage3-day6 59 092 136
Cage3-day7 28 833 461
Cage3-day8 30 521 091
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Binning of Metagenomes Using MetaTOR
Pairs of meta3C reads were aligned independently on their 
respective assembly to identify those for which both reads 
aligned on different contigs (parameters: MQT = 20; contig size 
limit = 500 bp). Normalized contact scores between contigs 
where computed by dividing the number of pairs bridging two 
contigs by the square root of the product of each contig coverage. 
For each assembly, this step generates a network of weighted 
connections between contigs (Table 3). Each network was 
subsequently partitioned into CCs through iterative Louvain 
partitioning. After ~100 cycles, the number of large CCs 
(>500 kb) reaches a plateau for the three networks (Figure 2A). 
Contacts between CCs appear low, suggesting that contigs 
interacting preferentially with each other’s were successfully 
pooled together (Figure 2B).

We analyzed, using CheckM (Parks et al., 2015), the gene 
content of the 17, 33, and 125 CCs > 500 kb from assemblies 
1, 2, and 3, respectively. Most CCs showed completion and 
contamination levels above 80% and under 10%, respectively 
(Figure 2C), suggesting that they contain near-complete 
bacterial genomes. Those CCs were annotated as valid bins or 
MAGs. However, a subset of CCs displayed high contamination 
rate, from 10% to more than 1,000% while showing high 
70/80% completion levels as well (4, 24, and 25 CCs for 
assemblies 1, 2, and 3, respectively) (Figure 2C). We suspected 
that these high contamination rates reflected the pooling of 
DNA contigs belonging to related species sharing conserved/
similar sequences. We therefore applied on these CCs an extra 
recursive procedure consisting of processing them with 10 
Louvain clustering steps. This generated sub-networks or sub-
CCs (Figure 2D) that often display high-quality signatures of 
bacterial genomes, showing that indeed the large, contaminated 
CCs correspond to mixes of near-complete bacterial genomes 
(Figure 2F). These sub-CCs also often belonged to the same 
taxonomic group, suggesting that indeed sequence homology 
between closely related species bridged these contigs together. 
A focus on assembly #3 shows that the computation generated 
1,001 bins > 10 kb corresponding to 724 Mb, among which 
686 Mb (95%), was included within 271 bins larger than 500 kb 
(Figure 2E). This number can be compared to the 268 genomes 

predicted to be present in the assembly (above; Materials and 
Methods). The average completion and contamination levels of 
these CCs are 65.8% and 2.4%, respectively (to compare with 
88.4% and 61.4% if the recursive procedure was not applied). 
MAG evaluation was performed (Bowers et al., 2017), resulting 
in 82 high-quality (< 5% contamination, > 90% completion 
and presence of the 23S, 16S, and 5S rRNA genes and at least  
18 tRNAs), 87 medium-quality (< 10% contamination 
and  > = 50% completion), and 96 low-quality MAGs (< 10% 
contamination and < 50% completion) (Table 4) (other MAGs 
display more than 10% of contamination; Supplementary Table 1).

Comparison With Hybrid Binning 
Algorithms
To evaluate how MetaTOR compares to existing binning 
approaches, we ran MetaBAT (v.1; Kang et al., 2015) and 
CONCOCT (Alneberg et al., 2014) on assemblies #1, #2, and 
#3 using the same filtered PE reads, allowing each pipeline to 
take advantage of the information from differential coverage 
across the independent experiments. The metric used to assess 
the efficiency of the three programs is their CheckM output 
(i.e., levels of completion and contamination) and the number 
of high-/medium-/low-quality MAGs (Figure 3 and Table 3). 
For the three assemblies, MetaTOR retrieved 9, 41, and 82 
high-quality MAGs, compared to 0, 3, and 22 with MetaBAT 
and 0, 11, and 12 with CONCOCT. MetaTOR also retrieved 
more bins exhibiting a high completion/low completion rate 
(90–10%) (Figure 3). The mean completion and contamination 
rates of bins characterized by MetaBAT using the 20 libraries 
were slightly better (respectively, 74% and 1.7%) than the 
ones obtained using MetaTOR (respectively, 65.8% and 2.4%) 
(Figure 3), but this could be due to the greater number of 
bins (>500 kb) obtained using MetaTOR (MetaBAT = 172; 
MetaTOR  = 271) (Table 4). To compare further the output 
of MetaTOR and MetaBAT and their ability to reconstruct 
genomes from different phyla, we analyzed the taxonomic 
annotations of assembly #3 with the taxonomy of all the bins 
above 500 Kb retrieved for this assembly (Supplementary 
Figure 2). The bins generated by both softwares were highly 

TABLE 2 | Assembly metrics. Only the metrics concerning assemblies filtered for the contigs above 500 bp are shown.

PE reads (filtered) Total size (contigs > 500 bp) Contigs > 500 bp N50 (contigs > 500 bp)

Assembly #1 (cage 3—day 2) 100,258,683 146,319,508 bp 61,666 6,176 bp
Assembly #2 (cage 3—samples x 8) 330,324,521 475,681,220 bp 167,810 7,578 bp
Assembly #3 (samples x 20) 813,376,239 763,455,888 bp 237,868 12,339 bp

TABLE 3 | Network features.

PE reads (filtered) Mapped PE reads Intercontig interactions Weighted interactions

Assembly #1 100,258,683 67,994,798 6,457,842 1,322,003
Assembly #2 330,324,521 215,768,714 30,206,795 8,505,609
Assembly #3 813,376,239 541,384,131 96,546,376 77,577,924
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consistent with the assembly annotation suggesting that they do 
not present particular taxonomic bias in their binning process. 
To evaluate MAGs, 16S and 23S rRNA were searched in 
assembly #3 using METAXA2 (Bengtsson-Palme et al., 2015). 
A total of 507 23S rNRA and 304 16S rRNA were found but 
only 213 and 143, respectively, were located on contigs longer 
than 1 kb. As CONCOCT and MetaBAT only use contigs upper 
1 kb, this severely decrease the amount of potential rRNA found 
in their bins and could explain why they were only able to bin 
very few high-quality drafts according to MiMAG standards 
(rRNA were very often the limiting factor to classify bins in that 
category) (Bowers et al., 2017). We then wonder if our method, 

which can bin contigs regardless of their size, shows better 
results concerning low-covered and/or highly fragmented 
genomes. We looked at the relation between completion for 
bins with a contamination rate lower than 10% and assembly 
statistics for those bins (Figure 4). Whereas we could not see 
clear differences between MetaBAT and MetaTOR when we 
look at the bins’ mean coverage (Figure 4B–D), it appears 
clearly that the contigs’ fragmentation is a limiting factor for 
MetaBAT as observed when we plotted the completion rate in 
function of the N50 (Figure 4A–C). These observations suggest 
that MetaTOR is able to accurately bin relatively fragmented 
genomes and correctly assign contigs smaller than 1 kb.

FIGURE 2 | MetaTOR partitioning of a complex microbial community. (A) Evolution of the number of CCs, ordered by size categories, during 400 Louvain 
iterations for assembly n°3 (20 samples). Color represents the amount of DNA in a given CC. Blue: 10 to 100 kb. Red: 100 to 500 kb. Green: > 500 kb.  
(B) Contact matrix encompassing the 224 largest CCs ordered by size, after 100 Louvain iterations (1 pixel = 200 kb). Y-axis: cumulated DNA size.  
(C) Completion (red) and contamination (blue) of the 129 CCs containing more than 500 kb after 100 Louvain iterations. Dashed lines: thresholds used to 
process CCs through a recursive procedure (completion threshold: upper 70%; contamination threshold: upper 10%). (D) Contact map of a highly contaminated 
CC (CC #3—100% complete—1,400% contaminated) before (left) and after (right) the recursive procedure (10 iterations; 1 pixel: 20 kb). Left map: contigs are 
ordered by size. Right map: sub-CCs are ordered by size. (E) Completion and contamination of the 269 CCs and sub-CCs bigger than 500 kb defined after the 
whole procedure. Red: completion. Blue: contamination. (F) Completion (red) and contamination (blue) levels of the sub-CCs retrieved from the original CC #3 
after recursive procedure (10 iterations).
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DISCUSSION

We previously showed that a blind analysis of meta3C/
proximity-ligation reads generated from controlled and 
unknown, complex mixes of species could be used to 
characterize efficiently their genomes (Marbouty et al., 2014; 
Marbouty et  al., 2017). In the present work, we extend our 
original approach by developing a scalable computational 
pipeline, MetaTOR, and applying it on multiple samples 
of meta3C gut microbiota libraries. Compared to binning 
programs MetaBAT and CONCOCT, MetaTOR was able to 
retrieve more high-quality MAGs from highly fragmented 
assemblies. This work shows that physical collisions between 
DNA sequences represent an objective, quantitative measure 
to cluster these molecules together. This approach could 
therefore nicely complement or replace popular approaches 
that exploit sequence composition correlations or abundance 
co-variation. This remains true even when 20 independent 
experiments were used, highlighting the interest to include 
room for some meta3C experiments in future metagenomics 
projects, regardless of the number of planed libraries. Meta3C-
like methods have only been applied to microbial rich samples 
so far (mice and human gut, cow rumen, sewage) (Marbouty 
et al., 2017; Stewart et al., 2018; Stalder et al., 2019) and still 
need to be improved in order to be applied to sample with 
low concentration of microorganisms. The time needed to 
generate a meta3C library is 3 days, and up to 16 libraries can 
be generated in parallel (Foutel-Rodier et al., 2018). It is also 
likely that commercial kits will be available relatively soon, 
which will boost the amenability of the approach. The cost of 
a single library is estimated to ~50€ (not including processing 
and sequencing of the library). Therefore, we believe this 
approach is well suited for a variety of metagenomics projects.

A limitation of the present work consists in the size of the 
reads sequences, 65 bp, whereas most metagenomics studies 

sequence longer reads (150 bp). This is probably a disadvantage 
for the two binning programs we tested as the assembly quality 
is technically lower than what it would have been if computed 
with longer reads. On the other hand, one could also argue that 
meta3C/MetaTOR can therefore be performed using cheaper, 
short-read sequencing approaches and still provide good 
results. However, more tests are needed to fully characterize the 
influence of assembly quality on the different programs in light 
of MetaTOR results.

To improve the assembly, regardless of the read length, it 
is also possible to apply the approach used in Marbouty et al. 
(2017), which consists in mapping back the total reads (including 
ambiguous ones originally discarded) back to contigs of one bin. 
These reads are then used to generate a new assembly for each 
individual bin. Although time consuming, we showed that this 
approach improved the assembly statistics of each bin (Marbouty 
et al., 2017).

The large networks derived from different meta3C libraries 
contain several highly connected sub-networks poorly connected 
to each other. Highly modular networks such as those are 
known to be well-suited for community detection algorithm like 
Louvain (Blondel et al., 2008). Moreover, the “iterative Louvain” 
procedure allows us to identify sets of sequences that contact 
each other. However, there are limits to the current iterative 
Louvain implementation. First, all modularity optimization 
algorithms tend to over-cluster nodes when the network reaches 
a certain size threshold, regardless of the underlying patterns. 
This well-documented property is known as the “resolution 
limit” (Fortunato and Barthélemy, 2007). However, it can be 
sidestepped by running the partitioning process recursively on 
the network corresponding to the studied sub-network. Since 
it should be comparatively small and under the scale at which 
the aforementioned limit becomes visible, the clusters found 
inside will separate again and yield bins as normal. The recursive 
procedure applied in the present work appears as highly effective 

TABLE 4 | Comparison of MetaTOR, CONCOCT, and MetaBAT results.

Assembly #1 (148 Mb) Assembly #2 (483 Mb) Assembly #3 (763 Mb)

Nb Size (bp) Nb Size (bp) Nb Size (bp)

Metator 10 kb < bins < 100 kb 284 7,537,821 807 21,139,528 617 15,175,457
100 kb < bins < 500 kb 43 11,319,827 144 30,749,287 106 22,963,515 
Bins > 500 kb 56 119,111,306 183 399,972,204 271 685,955,810
Low-quality MAGs 31 36,042,593 97 107,071,523 96 128,486,895
Medium-quality MAGs 16 47,397,754 39 131,055,387 87 285,670,443
High-quality MAGs 9 35,670,959 41 140,967,746 82 259,541,396

MetaBAT 10 kb < bins < 100 kb 0 0 0 0 0 0
100 kb < bins < 500 kb 18 5,703,905 55 17,583,986 65 24,087,225
Bins > 500 kb 36 82,290,484 126 284,973,235 172 420,081,339
Low-quality MAGs 14 12,478,196 44 52,797,176 95 36,277,628
Medium-quality MAGs 21 61,439,633 73 202,719,703 143 322,230,178
High-quality MAGs 0 0 3 5,488,345 22 58,276,800

CONCOCT 10 kb < bins < 100 kb 11 432,808 25 1,040,872 24 1,122,733
100 kb < bins < 500 kb 7 1,351,308 23 6,275,583 6 5,193,580
Bins > 500 kb 29 120,778,514 126 412,598,588 195 673,338,423
Low-quality MAGs 8 17,152,380 41 76,579,222 42 70,748,222
Medium-quality MAGs 11 25,303,368 49 134,612,509 114 358,231,099
High-quality MAGs 0 0 11 49,146,272 12 47,807,957
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with a clear increase in the number of high-quality MAGs 
retrieved.

A second limit comes from the stringent definition of CCs 
that consist of sequences that always, systematically cluster 
together. As a result, a single “jump” of a contig out of a cluster 
during one of the iterations will lead to its exclusion from the 
final CCs. While this allows contamination reduction, a number 
of meaningful sequences could still incidentally be excluded 
from the bin. Indeed, mobile or repeated elements (e.g., phage, 
prophages, or plasmids) shared by different species will likely 
be excluded from their corresponding CCs. This limitation can 
be overcome a posteriori as follows. First, annotation pipelines 
such as VirSorter (Roux et al., 2015) or PlasFlow (Krawczyk 
et al., 2018) allows to identify contigs carrying such sequences. 
Second, the bacterial hosts of these contigs can be inferred using 
the contact network as described in (Marbouty et al., 2017), 

and/or with the help of the Louvain clustering score (computed 
from the iterative procedure, and corresponding to the number 
of times two CCs are grouped together). A detailed analysis of 
overlapping communities would be very useful in the future 
to study such associations and bring a new tool in the study of 
interactions between genomic entities in microbial communities.

Our pipeline is flexible: although it was developed to take 
advantage of the Louvain algorithm, other clustering algorithms 
yielding nondeterministic community identifiers (e.g., a 
community detection algorithm with a different modularity) 
can be used instead with no side effects on the rest of the 
pipeline.

Proximity-ligation assays were originally developed 
to capture the 3D folding of microbial or mammalian 
chromosomes (Dekker et al., 2002; Lieberman-Aiden et 
al., 2009). Derivative applications of these techniques were 

FIGURE 3 | Comparison of MetaTOR, MetaBAT, and CONCOCT. CheckM output comparison for the three binning methods applied on the three assemblies tested 
in this work. (A) Assembly 1 (one meta3C library). (B) Assembly 2 (eight libraries). (C) Assembly 3 (20 libraries). Box plot for completion (left) and contamination 
(middle) and histogram of retrieved MAGs (right) are presented for the three binning methods. Only MAGs over 500 kb and harboring less than 10% of 
contamination are analyzed.
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developed and applied to solve or improve genomics techniques 
such as chromosome-level scaffolding (Kaplan and Dekker, 
2013; Burton et al., 2013; Marie-Nelly et al., 2014), haplotype 
reconstruction (Selvaraj et al., 2013), or centromere annotation 
(Marie-Nelly et al., 2014). Haplotype phasing is a particularly 
interesting development to combine with metagenomics data 
since strains from the same species remain challenging to 
characterize. This requires both an improvement in meta3C 
like capture yield to increase the resolution in coverage of the 
contigs, as well as the integration of computational haplotype 
phasing programs.
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