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Abstract 

Type I interferon (IFN-I) production by plasmacytoid dendritic cells (pDCs) occurs 

during acute HIV-1 infection in response to TLR7 stimulation, but the role of pDC-derived 

IFN-I in controlling or promoting HIV-1 infection is ambiguous. We report here a sex-biased 

interferogenic phenotype for a frequent single-nucleotide polymorphism of human TLR7, 

rs179008, displaying an impact on key parameters of acute HIV-1 infection. We show allele 

rs179008 T to determine lower TLR7 protein abundance in cells from women specifically, 

likely by diminishing TLR7 mRNA translation efficiency through codon usage. The 

hypomorphic TLR7 phenotype is mirrored by decreased TLR7-driven IFN-I production by 

female pDCs. Among women from the French ANRS PRIMO cohort of acute HIV-1 

patients, carriage of allele rs179008 T associated with lower viremia, cell-associated HIV-1 

DNA, and CXCL10 (IP-10) plasma concentrations. RNA viral load was decreased by 0.85 

log10 (95% CI, −1.51 to −0.18) among T/T homozygotes, who also exhibited a lower 

frequency of acute symptoms. TLR7 emerges as an important control locus for acute HIV-1 

viremia, and the clinical phenotype for allele rs179008 T, carried by 30%–50% of European 

women, supports a beneficial effect of toning down TLR7-driven IFN-I production by pDCs 

during acute HIV-1 infection. 
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Introduction 

The intracellular Toll-like receptors, TLR3, TLR7, TLR8 and TLR9 recognize 

autologous and microbial nucleic acids and are critical components of innate antiviral 

immunity (1). RNA and DNA ligands engaging the endosomal TLRs of plasmacytoid 

dendritic cells (pDCs), respectively TLR7 and TLR9, elicit a vigorous production of the type 

I interferons, IFN-a and -b (IFN-I) (2). Cell-associated and, less efficiently, cell-free HIV-1 

virions signal predominantly through TLR7 (3, 4), and elevated plasma IFN-I marks the 

acute and late chronic phases of HIV-1 infection (5, 6). 

Studies of macaques infected with simian immunodeficiency virus (SIV) to model 

the pathogenesis of human AIDS identified pDCs as the critical source of IFN-I in vivo (7-

10). Blocking the IFN-I receptor early during acute SIV infection increased the viral burden 

and led to distinctly shorter times to death from AIDS (11). Conversely, continued treatment 

with IFN-I resulted in increased SIV replication and accelerated CD4 T cell loss, suggesting 

that the time pattern of IFN-I signaling is determinant in the outcome of SIV infection (11). 

In line with the macaque model, depleting the pDCs of humanized mice prior to HIV-1 

infection boosted viral replication, and abolished serum IFN-I elevation and the expression 

of interferon-stimulated genes (12). These investigations are supportive of a beneficial role 

for IFN-I during early-stage HIV-1 infection, opposing the spread of the virus and its 

expansion within lymph nodes. Nonetheless, innate immunity might play a paradoxical role 

at the mucosal epithelial barrier shortly after HIV-1 entry by facilitating viral dissemination 

(13, 14). A double-edged effect of IFN-I is revealed also by the course of SIV infection in 

its natural host, such as African green monkeys, where the IFN-I response is toned down 

during the acute to chronic phase transition and the animals do not progress to AIDS despite 

patent viremia (15). The non-pathogenicity of SIV in African green monkeys is linked to 
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lower expression of interferon-stimulated genes in the blood and tissues (lymph nodes, gut) 

of this host during chronic SIV infection, by comparison with macaques and humans infected 

respectively with SIVmac and HIV-1 (15, 16). A deleterious role of pDC-derived IFN-I 

production has been illustrated also by the lymphocytic choriomeningitis virus (LCMV) 

murine model of persistent viral infection. Here, blockade of IFN-I signalling, induced even 

before infection, promoted viral clearance (17, 18). Long-term viral control brought about 

by early IFNAR-blockade was associated with down-regulation of IL-10 and PD-L1, 

improved CD4+ T cell function and restoration of lymphoid architecture (17, 18).  

These observations highlight the importance of the timing and duration of IFN-I 

signalling to the balance of its opposite antiviral and immunosuppressive effects during acute 

and chronic HIV-1 infection (19). We have exploited natural genetic variation to investigate 

the direct contribution of the TLR7-driven production of IFN-I by pDCs in the course of 

acute HIV-1 infection. Variation in the genes for TLR7 and the other nucleic acid-sensing 

intracellular TLRs is constrained by strong purifying selection against mutations suppressing 

or modifying the function of the encoded receptor (20). Single-nucleotide polymorphisms 

(SNPs) of the TLR7 gene, which is located on the X-chromosome, have nevertheless been 

associated with changes in parameters of HIV-1 infection (21, 22). We chose to study a 

frequent SNP of the TLR7 coding sequence, rs179008 (NM_016562.3:c.32A>T), which was 

found to be associated with higher viral load at set point and accelerated decline of CD4+ T 

cell counts in male patients, and with a diminished cytokine response to a TLR7 agonist in 

the leukocytes of male allele-T carriers (22). This SNP was also, intriguingly, associated 

with higher prevalence of HIV-1 infection in women (22). The minor allele rs179008 T is 

especially frequent among European populations, where 30%–50% of women are 

homozygous or heterozygous carriers, and common worldwide except East Asia. Moreover, 
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rs179008 is a missense SNP substituting a leucine for a glutamine (p.Gln11Leu) at protein 

level, which warrants enquiry into the impact of this variation on TLR7 biology. In this work, 

we analyzed the functional differences between the rs179008 alleles in the production of 

IFN-I by pDCs, and the mechanism of action of the SNP on TLR7 protein expression. In 

addition, we describe a pattern of association between this TLR7 polymorphism and key 

parameters of acute HIV-1 infection in women that supports the notion of a deleterious role 

for excess TLR7-driven IFN-I production during the early stages of infection. 
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Results 

TLR7-dependent IFN-a production is impaired in female carriers of rs179008 T. 

There is a strong sex-bias in the TLR7-driven production of IFN-a by human pDCs, with 

higher frequencies of IFN-a-producing cells in women than in men (23-25). We therefore 

investigated the impact of rs179008 in either sex separately. We first examined PBMC 

production of IFN-a in response to TLR7 agonists in male (i.e., hemizygous) carriers of 

either rs179008 allele, and in A/T heterozygous women relative to A/A homozygotes. In this 

context, the pDC fraction of PBMCs is solely responsible for the early-onset production of 

IFN-I (25, 26). We accordingly normalized IFN-a measurements to pDC numbers to 

quantify the effect of rs179008 in time-course experiments where male or female PBMCs 

were stimulated ex vivo with either R-837 (Imiquimod; a TLR7 ligand) or R-848 

(Resiquimod; a ligand of TLR7 and TLR8). Contrary to the earlier study (22), we observed 

no significant differences in IFN-a production between A/0 and T/0 males regardless of 

agonist dosage (Figure 1, A–C). In female PBMCs, by contrast, heterozygous carriage of 

allele T was associated with substantially lower production of IFN-a upon stimulation with 

either 1.5 µg/ml R-837 or 0.3 µg/ml R-848 (Figure 1, D and E). The response to 1.5 µg/ml 

R-848, possibly a near-saturation dose (26), showed a similar trend but differences by 

genotype were not statistically significant (Figure 1F). In line with previous reports of 

female-biased responses (23), PBMCs from A/A women consistently produced much more 

IFN-a than comparable male cells of A/0 genotype in response to R-848 or R-837 regardless 

of dosage (Supplemental Figure 1). IFN-a production by pDCs was thus selectively blunted 
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in female carriers of the rs179008 T allele, and the responses for the genotypes represented 

in these experiments ranked A/A > A/T > A/0 ≈ T/0. 

We assessed also the effect of rs179008 on the frequency of IFN-a- or TNF-a-

producing pDCs following stimulation with TLR7 ligands, using the flow cytometric 

strategy in Supplemental Figure 2. We stimulated PBMCs with GagRNA1166, a HIV-1-derived 

synthetic RNA ligand of TLR7 and TLR8 (24), in parallel to the imidazoquinoline 

compounds, R-837 and R-848. IFN-a-producing pDCs were boosted most efficiently by 

GagRNA1166 and R-848, and TNF-a-producing pDCs by R-837 (Supplemental Figures 2 and 

3). Consistent with the data in Figure 1, carriage of the T allele was associated with a reduced 

frequency of IFN-a-producing pDCs in women but not in men (Figure 1, G-I). The most 

prominent genotypic bias in women occurred with R-848 and GagRNA1166 (Figure 1, G and 

H) along with the largest male-female differences in the frequency of IFN-a-producing 

pDCs (Figure 1, G-H). No significant impact of the T allele was observed in the frequency 

of TNF-a producing pDCs, and a small sex bias was observed only upon PBMC stimulation 

with GagRNA1166 (Supplemental Figure 3C). This argues against a general dysfunction of 

pDCs in allele T carriers, and suggests that the rs179008 genotype fine-tunes the TLR7-

driven production of IFN-a in female pDCs specifically. 

Female pDCs expressing the rs179008 T allele produce less IFN-a. The immune 

cells of women express either one or both alleles of TLR7 in mosaic fashion, as the allele on 

the inactive X chromosome may evade repression (27). More than half of the cells express 

monoallelic transcripts, and we developed an assay to determine whether IFN-a production 

following TLR7 engagement depends, at the cellular level, on the expressed rs179008 allele. 

PBMCs from A/T heterozygous women were stimulated with either R-848 or GagRNA1166; 
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next, pDCs were labeled for lineage-specific markers, surface-immunostained for self-

secreted IFN-a, and sorted into IFN-apos or IFN-aneg pDC pools (Figure 2A) that were 

analyzed for the proportions of transcripts from either allele (Figure 2, B–D). In a group of 

healthy women, IFN-a-secreting pDCs displayed enrichment in allele-A TLR7 transcripts 

relative to same-donor IFN-aneg cells, as measured by an allele-specific PCR assay (27) 

(Figure 2D) and corroborated by deep-sequencing of the TLR7 amplimers (Figure 2E). These 

experiments demonstrated a depressed interferogenic response to TLR7 engagement in 

female allele T-expressing pDCs, relative to the allele A-expressing cells from the same 

donor. 

The rs179008 A>T substitution determines reduced protein expression in vitro. In 

assessing the mechanism of the allelic bias in interferogenesis, neither in silico predictions 

nor PCR amplification of the relevant TLR7 cDNA region indicated differences in TLR7 pre-

mRNA splicing (Supplemental Figure 4, A and B). Likewise, modelling of mRNA folding 

failed to map the polymorphic base to regions of RNA secondary structure. Importantly, we 

ruled out a negative effect of the SNP on TLR7 mRNA abundance (Supplemental Figure 4, 

C and D). The substitution of a hydrophilic glutamine by a hydrophobic leucine residue 

(p.Gln11Leu) occurs within the N-terminal signal peptide of TLR7, which determines the 

co-translational translocation of the nascent protein to the ER. Combined analysis of the 

amino acid sequence with the SignalP 4.1 and SignalP 3.0 software (see Methods) predicted 

a 26-amino acid signal peptide for both alleles with a more favorable score for the Leu11 

(rs179008 T) allele (0.837 versus 0.748 on a 0–1 scale, with a 0.450 threshold). The 

difference in scores is consistent with the longer span of the hydrophobic h-region of the 

signal peptide, Leu11– Ile21 in the Leu11 variant protein versus Ile12–Ile21 in the Gln11 allele 

(Figure 3A), because the central h-region is critical to the interaction of a signal peptide with 
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the signal recognition particle and with the ER pore complex (28, 29). Overall, this argued 

against a deleterious effect of the Gln to Leu substitution per se on signal peptide function. 

To experimentally address the functional fitness of the TLR7 signal peptide, we 

engineered a pair of secretion reporter vectors encoding a secreted alkaline phosphatase 

(SEAP) with its autologous signal peptide replaced by amino acids 1–30 from TLR7; the 

vectors were identical except for the single-nucleotide change in codon 11 (Figure 3A). 

Transfection experiments on human embryonic kidney (HEK) 293T cells showed a ≈ 20% 

decrease in the activity of the secreted reporter enzyme for Leu11 (T) relative to the Gln11 

(A) form (Figure 3B). A second vector pair carried a mutated codon 1 to force translation 

initiation at a second in-frame AUG (Met5). Conservation of Met5 among placental mammals 

suggested alternative TLR7 translation initiation at this site; in addition, this Met codon 

opens the main reading frame in a minor alternative splicing isoform of TLR7 mRNA (30). 

These vectors retained approximately 70% of measured SEAP activity in cell culture 

supernatants, and again showed lower activity for the Leu11 version (Figure 3B). These 

results evidenced lower activity attributable to the A-to-T change specifically, but were in 

contradiction with the hierarchy of scores from the in silico signal peptide predictions. 

We transfected HEK 293T cells with expression vectors for each TLR7 variant 

tagged with a C-terminal HA or FLAG epitope and analyzed recombinant TLR7 expression 

by Western blot. In line with the SEAP reporter experiments, we observed a 30% to 40% 

decrease in TLR7 synthesis for the Leu11 (rs179008 T) form relative to the Gln11 protein 

(Figure 3, C and D). Next, we co-expressed FLAG-tagged TLR7 c.32A with either c.32A or 

rs179008 T HA-tagged TLR7 to analyze TLR7 intracellular dimers. Immunoprecipitation 

with anti-FLAG antibodies followed by Western blot analysis with anti-HA antibodies 
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confirmed that the rs179008 A>T substitution was associated with decreased TLR7 protein 

synthesis and homodimer formation in vitro (Figure 3, E and F). 

The effect of rs179008 on translation is related to codon usage bias. The CTA 

(CUA) Leu11 codon is the least frequent (7%) of the six leucine codons in H. sapiens genes, 

according to the Codon Usage Database (31). Relative codon usage positively correlates 

with translation efficiency and the abundance of the corresponding anticodon tRNAs 

(reviewed in ref. (32)). In allele  rs179008 T, our analysis of the adaptation of the 5ʹ end of 

the TLR7 coding sequence to the human codon usage bias (Supplemental Figure 5) predicted 

the Leu11 CUA codon to be the first low-adaptiveness codon (33) met by the elongation-

competent ribosome under the 5ʹ-to-3ʹ scanning model for translation (34). As such, this 

codon could throttle translation efficiency through a longer ribosome residence time (35) 

relative to the higher-adaptiveness Gln11 CAA codon of rs179008 A. To explore the 

hypothesis of a codon effect on translation, we introduced single-nucleotide mutations (CTA 

to CTC, CTT, or CTG) in the Leu11 TLR7-SEAP reporter plasmid to generate a set of four 

expression vectors differentiated by their synonymous CTN Leu11 codon. By encoding the 

same protein (Figure 3G), codon-specific effects were dissected from signal peptide function 

in the reporter system. SEAP reporter activity was positively correlated with relative codon 

usage (Figure 3H), with the most (CUG) and least frequent (CUA) codons at opposite ends 

of the range of activities. Codon 11 is thus a likely control point for TLR7 translation, and 

this effect could involve interference with translation initiation, the rate-limiting step in 

protein synthesis, owing to the proximity of the polymorphic codon to the 5ʹ end of the TLR7 

coding sequence (36). 

The T allele lowers TLR7 protein expression in female PBMCs specifically. We 

recently characterized a commercially available monoclonal antibody to the C-terminus of 
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human TLR7 that correctly detects natural and recombinant TLR7 in Western blotting, but 

not TLR7 modified with a C-terminal epitope tag (reference (27) and Supplemental Figure 

6). We quantified by this method the full-length (140-kDa) and proteolytically mature (75-

kDa) forms of TLR7 in a deconvolution experiment to characterize the principal TLR7-

producing cell populations among steady-state PBMCs (Figure 4, A and B). Most of the 

TLR7 signal came from CD14+ monocytes, followed by pDCs and then by B cells, with 

regard to both the full-length and mature forms of TLR7 (Figure 4C). A small proportion of 

TLR7 (< 5%) came from the CD14− CD19− BDCA4− cell fraction mainly comprising T 

lymphocytes and NK cells. When the densitometric data were expressed on a per-cell basis 

(Figure 4D), pDCs exhibited the highest level of full-length TLR7, with a 100-fold 

enrichment over unsorted PBMCs, followed by CD14+ monocytes and B cells. A similar 

hierarchy was found for the mature form of TLR7.   

Next, we quantified by Western blotting the impact of the T allele on TLR7 protein 

expression within PBMCs of different rs179008 genotypes (Supplemental Figure 6E). 

PBMCs from women heterozygous (A/T) and homozygous (T/T) for the T allele expressed 

significantly less TLR7 protein than A/A women (Figure 4E). We observed no significant 

differences between A/0 and T/0 male donors (Figure 4E). By contrast, we observed a 

significant two-fold excess of full-length TLR7 in A/A women over A/0 men (Fig 4E), and 

a trend in the same direction for the 75-kDa mature form (Fig 4E), in agreement with our 

earlier work (27) noting greater TLR7 protein levels in female than in male human PBMCs. 

The hypomorphic effect of rs179008 T on TLR7 protein expression is maintained 

in post-menopausal women. The functional responses of pDCs from women decrease after 

menopause as they are partly dependent on estrogen-receptor signaling (25, 37). Pre-

menopausal plasma levels of estradiol, which range between 50 and 65 pg/ml in women of 
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various ethnicities (38), decline below 20 pg/ml within one year after the final menstrual 

period in the majority of Caucasian women (38). Plotting the TLR7 protein quantitation data 

in Figure 4E against the age of donors (Figure 5A), however, failed to show a dependency 

of the quantitative effect of rs179008 on age. Only a modest positive correlation [r = 0.397, 

p = 0.036] was observed here for mature TLR7 expression in A/A women (Figure 5A). In 

men, TLR7 expression was non-correlated with age or with the rs179008 allele (Figure 5A).  

The median age of women at the final menstrual period is 51.5 years (38). In our data 

for likely post-menopausal women, above 53 years of age, A/A women displayed markedly 

higher levels of the full-length and mature forms of TLR7 than the carriers of allele T (p < 

0.001; Figure 5B). These results show that the hypomorphic effect of rs179008 T on TLR7 

protein expression is present on either side of menopause, which supports the hypothesis that 

this effect is not primarily dependent on estrogen signaling.  

The T allele is associated with reduced clinical parameters of HIV-1 infection in 

women. In studying the effect of rs179008 on HIV-1 infection, we explored the previously 

reported association (22) with the acquisition of HIV-1 by women in two separate case-

control settings, restricted to Caucasian women to minimize genetic diversity regarding 

rs179008 allele frequency distribution and other potential genetic determinants. The ANRS 

EP53 X-LIBRIS study compared a cohort of female Caucasian patients infected by sexual 

transmission before menopausal status (n = 90), and a control group (n = 90) of healthy 

women from the same age stratum and geographical origin (Toulouse, France). The second 

comparison involved adult Caucasian females infected by sexual transmission included in 

the French ANRS PRIMO multicenter cohort (n = 151) upon diagnosis of primary HIV-1 

infection, and a control group (n = 87) of healthy females from throughout France. Neither 

comparison supported a significant genetic association of rs179008 with HIV-1 acquisition 
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through the sexual route in women, and a meta-analytical combination of the two studies 

pointed to non-association (OR = 1.00, 95% CI 0.67–1.51; Supplemental Figure 7). 

By contrast, we observed an association between rs179008 and clinical parameters 

of primary infection at the time of cohort inclusion. Women of Caucasian and African 

ethnicity of the ANRS PRIMO cohort were analyzed together to expand the number of cases 

to n = 220. Carriage of rs179008 T was associated with a lower plasma viral load with 4.6 

log10 RNA copies/ml (IQR 3.7–5.3) for the combined A/T and T/T genotypes versus 5.0 

log10 RNA copies/ml (IQR 4.2–5.6) among A/A homozygotes (p = 0.045, Wilcoxon’s test). 

Cell-associated HIV-1 DNA was also reduced in women harboring rs179008 T: 3.1 log10 

DNA copies/106 PBMCs (IQR 2.6–3.6) for the combined A/T and T/T genotypes versus 3.4 

log10 DNA copies/106 PBMCs (IQR 2.9–3.8) among A/A homozygotes (p = 0.038, 

Wilcoxon’s test).  The frequencies of circulating CD4+ and CD8+ T cells were not 

significantly different between carriers and non-carriers of allele rs179008 T (Table 1). We 

next looked for potentially greater contrasts by comparing the opposite A/A and T/T 

homozygous genotypes (Table 1). We controlled for the confounding of RNA viral loads 

dependent on time since infection by using a fractional polynomial regression (Supplemental 

Figure 8 and Supplemental Note 2). The regression model showed a difference of −0.85 log10 

(95% CI, −1.51 to −0.18), a 7-fold decrease in viral load, for the T/T relative to the A/A 

genotype (p = 0.013; regression p-value). In addition, only 50% of T/T homozygotes (5 out 

of 10) displayed symptomatic infections at inclusion, versus 78.2% (115 out of 147) among 

the A/A patients (p = 0.056; Fisher’s exact test). Among the commonly reported clinical 

signs and symptoms of primary HIV-1 infection (39) are tonsillitis and pharyngitis, which 

were absent among T/T patients (Supplemental Table 1). 
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We measured additional plasmatic parameters of HIV-1 infection and the immune 

response, namely IFN-a and CXCL10 (IP-10) among the 10 T/T PRIMO patients plus 

randomly-drawn subsets of the A/A and A/T groups (n = 41 for each genotype; n = 92 total). 

IP-10 was used as a surrogate marker enabling more robust detection and quantitation than 

IFN-I; in the PRIMO sub-cohort, detectable IFN-a was in fact associated with significantly 

higher IP-10 values (Supplemental Figure 9). Splitting the sub-cohort based on the 

symptomatic or asymptomatic presentation of primary HIV-1 infection resulted in two 

groups displaying clear, significant differences with each other in respect to RNA viral load 

and cell-associated HIV-1 DNA, IP-10 levels, and detectable IFN-a. All these parameters 

were lower in the asymptomatic fraction (Supplemental Table 2), which, as noted above, 

was enriched among the rs179008 T/T relative to the A/A patients. This sub-cohort showed 

the previously noted association of rs179008 T carriage with lower values for RNA viral 

load and cell-associated HIV-1 DNA, confirming that the randomly-drawn subsets were 

representative of the source group. We also observed a trend for lower IP-10 values (Figure 

6A and Supplemental Table 3). These three parameters were in positive correlation with one 

another (Figure 6B). Thus, the comparisons of the rs179008 T carrier (A/T, T/T) and non-

carrier (A/A) groups, revealed significant differences for RNA viral load combined with 

cell-associated HIV-1 DNA, for IP-10 combined with cell-associated HIV-1 DNA (Figure 

6B), and for the combination of the three parameters (p = 0.023, Hotelling’s T2 test). Lastly, 

mean RNA viral load among T/T patients was here 0.97 log10 units lower than in rs179008 

A/A patients in the data adjusted for time since infection, a 9-fold difference (p = 0.025; 

Student’s t-test).  

Genetic association with HIV-1 viral load in the wider context of TLR7 

polymorphism. rs179008 is one of a group of frequent TLR7 SNPs within a 40-kb linkage 
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disequilibrium (LD) block on the X chromosome (Figure 7A). Pairwise LD is moderately 

high (r2 = 0.63) between rs179008 and the frequent intronic tag SNP, rs179012, previously 

associated with HIV-1 set-point viral load (21), but weak (r2 = 0.04) between rs179008 and 

a frequent functional SNP in the 3ʹ UTR of TLR7, rs3853839 (Figure 7, A and B), in genetic 

association with the risk of developing systemic lupus erythematosus (40). We carried out 

an estimation analysis to compare the effect of each SNP on HIV-1 viral load among the 

PRIMO female patients (n = 220) (Figure 7C). For rs179008, we again observed a clear 

difference in mean viral loads between the opposite A/A and T/T homozygous genotypes 

(Figure 7C, I), as expected from our earlier comparisons (Table 1). By contrast, we found 

the difference between opposite homozygous genotypes to be very weak or absent for 

rs179012 (G/G versus A/A; Figure 7C, II) and rs3853839 (C/C versus G/G; Figure 7C, III). 

To control for confounding due to LD between rs179008 and rs179012, we considered 

rs179012-rs179008 diplotypes where the genotype for one of the SNPs was the same in the 

two groups of patients compared; in this way, the effect of the second SNP could be assessed 

while removing the effect of the first (Figure 7C, IV–V). This fully corroborated the direction 

and magnitude of the effect for rs179008 with independence from rs179012. Taken together, 

our biochemical and genetic association studies support the conclusion that rs179008 is a 

functional polymorphism of TLR7 in its own right.  
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Discussion 

We observed here that the rs179008 SNP of TLR7 exerts in female patients a 

significant effect on key parameters in the clinical course of HIV-1 acute infection. Although 

recent findings strongly suggest a detrimental effect of pDCs and IFN-I during the chronic 

phase of HIV-1 infection, the early-stage role of IFN-I produced by pDCs as a result of TLR7 

activation is still not fully understood (41). We have addressed this issue through the 

functional characterization of a frequent TLR7 SNP, rs179008, which we found to exert a 

quantitative effect on TLR7 protein synthesis and pDC IFN-I production in women 

specifically, and by analyzing the association of TLR7 polymorphisms with clinical 

parameters of HIV-1 infection. Our results demonstrate a protein-level and interferogenic 

cellular phenotype of rs179008. Carriage of the rs179008 T allele lowered ex vivo TLR7-

driven IFN-I production by pDCs from heterozygous A/T women relative to A/A 

homozygotes. Mechanistically, we show this allele to determine lower TLR7 protein 

expression in female leukocytes, which mirrors the reduced frequency of IFN-a-producing 

female pDCs. Lastly, we observed a beneficial association between the lower-

interferogenesis allele, rs179008 T, and lower levels of informative correlates of acute HIV-

1 infection severity in women. 

 These results may appear counter-intuitive in light of previous studies supporting a 

beneficial function of pDCs and IFN-I-signalling through the control of viral replication 

during acute infection in macaque and humanized mouse models (11, 12). The effects of 

innate immunity on HIV-1 infection, however, are complex and not consistently positive. 

The recruitment and activation of pDCs and monocytes in the vaginal mucosa of female 

macaques early after local SIV inoculation helps attract CD4+ T cells, which can then be 

infected to boost viral production and dissemination (13, 42). Conversely, prolonged 
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exposure to IFN-I is associated with unfavourable outcomes in chronic HIV and SIV 

infection (19). A deleterious effect is thus conceivable for TLR7-driven activation of pDCs 

and other innate immune cells even during acute-phase HIV-1 infection, by recruiting virus 

target cells at mucosal portals of entry (14), or initiating immunosuppressive pathways 

mediated by pDC-derived IFN-I (17, 18). Such early mechanisms might be toned down in 

women carrying the rs179008 T allele of TLR7, blunting the initial spread of the virus. Our 

results highlight that the dosage of IFN-a during acute HIV infection is critical. The effects 

of the polymorphism on the outcome of chronic HIV-1 disease deserve further 

investigations.  

We show also that this nonsynonymous polymorphism of the signal peptide controls 

protein dosage at the translational level through the mRNA sequence itself, rather than by 

altering signal peptide function. The connection of genotype to phenotype via translation is 

compatible with the expected loss of the protein’s allelic character when the signal peptide 

is co-translationally cleaved off on entering the ER. Overall codon usage in TLR7 is known 

to be markedly suboptimal (43), and translation of the mRNA relatively inefficient (43, 44), 

which makes translation a likely rate-limiting step in TLR7 expression. Local translation 

efficiency depends on the abundance of aminoacyl-tRNAs with compatible anticodons, and 

this is positively correlated with the relative usage of synonymous codons (45). Given the 5ʹ 

to 3ʹ mRNA scanning direction of ribosomes (34), the Leu11 CUA (rs179008 T) codon could 

play a translation rate-limiting role as the first rare codon in the path of a translation-

competent ribosome (Supplemental Figure 5). In addition, the ribosome at codon 11 may 

sterically hinder translation initiation, the rate-limiting step in protein synthesis, because the 

span between codons 1 and 11 is similar to the 20- to 30-nucleotide footprint of a ribosome 

(46) and less than the 32- to 39-nucleotide pitch of ribosomes in tightly packed polysomes 
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(47). This would be in line with evidence that the effect of non-optimal codons on translation 

efficiency is greatest near the 5ʹ end of the coding sequence (36). Further experimental work 

addressing translation directly will be necessary to confirm this mechanism. To our 

knowledge, the notion of a sex bias in regulatory mechanisms of translation has yet to be 

explored in the context of human biology, and it is uncertain whether the sex dependency 

we have observed in the TLR7 quantitative protein phenotype for rs179008 (Figure 4) could 

be mediated by translational regulation. The non-dependency of TLR7 quantitation on 

women age (Figure 5) strongly suggests that estrogens are not involved in the sex-biased 

phenotype, because this is observable beyond menopause despite the expected decline in 

estrogen levels (38). 

In agreement with earlier reports (23-25), we observed a sex bias in the TLR7-driven 

production of IFN-a by human pDCs, with higher frequencies of IFN-a-producing cells in 

women than in men. This was most noticeable when comparing women and men of similar 

A/A and A/0 rs179008 genotypes. The sex bias in the TLR7-mediated response of pDCs 

arises from mechanisms implicating estrogen signaling (25, 37, 48) and the X-chromosome 

complement (37). The X-linked TLR7 gene escapes X chromosome inactivation in female 

immune cells, including pDCs, and was associated with higher TLR7 protein expression in 

leukocytes from rs179008 A/A women compared with A/0 men (27). In line with the concept 

of TLR7 dosage-dependent effects determined at chromosome level, we found here the 

carriage of allele rs179008 T in females to be associated both with a decrease in TLR7 

protein relative to A/A homozygous pDCs, and with lower per-cell IFN-I production. Future 

studies of the functional response of pDCs from women should therefore consider the 

genotype for this polymorphism of TLR7.  
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Oh and coll. (22) identified rs179008 as a determinant of HIV-1 infection prevalence 

in women. Our observations fail to support an effect of the SNP on HIV-1 acquisition by the 

sexual route in women. This discrepancy might be explained by the small size of the healthy 

control group in that study (22), where the frequency of the T allele was clearly lower than 

in relevant reference populations, leading to over-estimation of effect size (49). In that study, 

the Leu11 (rs179008 T) allele of TLR7 was associated with more severe HIV disease 

progression in men (22). We show that this allele is not associated with lower constitutive 

TLR7 protein expression or pDC interferogenesis in men, as initially suggested by Oh and 

coll. (22), but we cannot exclude a sex-specific effect of rs179008 on TLR7 expression in 

other immune cell types important for the progression of chronic HIV-1 disease. In addition 

to B lymphocytes, pDCs and monocytes, TLR7 is expressed at lower levels in human CD4+ 

T cells (50), where TLR7 activation has been shown to induce anergy and to promote 

infection by HIV-1 (50). Conceivably, the polymorphism might alter HIV-1 disease 

progression through mechanisms dependent on sex, the phase of infection, and the immune 

cell population involved. A limitation of the present study is that data on HIV-1 patient 

cohorts are observational and circumscribed to women, which does not allow for a 

comparison with the longitudinal study of the effect of rs179008 on CD4+ T cell counts in 

men as previously reported by Oh and coll. (22).  

Our observations lead us to propose that increased dosage of TLR7 protein is 

conducive to a higher viral burden during acute HIV-1 infection in women, and correlates 

with a predictor of the speed of disease progression. The reduced TLR7 protein values and 

pDC interferogenesis associated with allele rs179008 T were accompanied by significantly 

lower viremia and cell-associated HIV-1 DNA measurements in women from the ANRS-

PRIMO cohort. We investigated also the association between rs179008 T and further clinical 
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parameters of HIV-1 infection, namely plasma IP-10 (CXCL10) and IFN-a levels, among a 

representative subset of these female patients. Plasma IP-10 is known to display a robust 

positive correlation with viral load (51-53), and is responsible for the recruitment of CXCR3+ 

target T cells, fueling viral dissemination and the establishment of a viral reservoir (54). 

Elevated blood IP-10 during primary HIV-1 infection predicts rapid disease onset more 

robustly than peak viremia or the CD4+ cell nadir (53, 55). Although pDCs can produce IP-

10 through direct TLR7 stimulation, this cytokine can be indirectly induced in cells such as 

monocytes and mDCs by pDC-derived IFN-I (56, 57). We found here, as expected, that 

patients with detectable plasma IFN-a exhibited higher levels of IP-10, and that both IFN-a 

and plasma IP-10 were associated with symptomatic HIV-1 infection. Importantly, rs179008 

T was significantly associated with lower levels of a triad of positively correlated 

parameters: RNA viral load, the cell-associated HIV-1 DNA reservoir, and plasma IP-10. In 

addition, the higher frequency of asymptomatic clinical presentations at diagnosis for the 

T/T homozygous genotype implies a trend for a delayed onset of the symptoms of acute 

infection.  

Heritable quantitative variation of TLR7 dosage and function provides here valuable 

insights into the role of this receptor as a determinant of acute viral load. Our data point to 

TLR7 as a key effector molecule, with a dominant deleterious action of higher TLR7 dosage 

during acute HIV-1 infection in women. This, in turn, argues for a beneficial effect of toning 

down a too strong type I interferon response early on, even before the acute-to-chronic phase 

transition. Corroboration of the genetic association with disease parameters in those 

populations where the rs179008 T allele is frequent will be important.  
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Methods 

Patients and healthy controls. The X-LIBRIS patient cohort consisted of 90 non-

menopausal, HIV-1-positive Caucasian women aged 18 or older, infected by sexual 

transmission before menopausal status, and with sustained undetectable plasma viral load 

for a median of 7.5 years (IQR [4–10]) under combined antiretroviral therapy, followed up 

at the Purpan Hospital in Toulouse, France. The healthy control group for the X-LIBRIS 

cohort consisted of 90 non-menopausal Caucasian women, approximately age-matched to 

the patient group and from the same geographic area, and was exclusive of subjects suffering 

from immune dysfunction or from acute or chronic infection. An additional DNA sample 

panel representing 87 non-related healthy French women was sourced from the multicentric 

collections of the Centre d’Etude du Polymorphisme Humain (CEPH, Fondation Jean 

Dausset, Paris). The French ANRS-PRIMO CO6 cohort enrolls patients presenting with 

primary HIV-1 infection, as previously described (59). We selected female patients with 

available frozen PBMC or whole blood samples. All patients gave written informed consent. 

The date of infection was alternatively defined as the date of the incomplete Western blot 

minus one month, the date of diagnosis of symptomatic acute infection minus 15 days, or 

the midpoint between a negative and a positive HIV antibody test. Further blood samples of 

anonymous healthy blood donors were sourced from the Toulouse blood transfusion center 

(Etablissement Français du Sang) in compliance with French regulations.  

Genomic DNA extraction and SNP genotyping. Genomic DNA was extracted from 

cryopreserved or freshly isolated PBMCs using a NucleoSpin Tissue kit (Macherey-Nagel) 

and genotyped for TLR7 SNPs by a KASP allele-specific PCR assay (LGC Genomics) run 

on a LightCycler 480 II instrument (Roche). 
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Analysis of IFN-a  production by blood mononuclear cells. PBMCs were freshly 

isolated from whole blood by Pancoll (PAN-Biotech) gradient separation, and resuspended 

in R10 medium, i.e., RPMI 1640 (Sigma-Aldrich) containing 10% heat-inactivated fetal 

bovine serum (Sigma-Aldrich), 100 U/ml penicillin, 100 µg/ml streptomycin, and 2 mM L-

glutamine. The cells were seeded into 96-well plates (3 × 105 cells/well) and stimulated with 

either resiquimod (R-848; 1.5 µg/ml or 0.3 µg/ml) or imiquimod (R-837; 1.5 µg/ml; both 

from InvivoGen). IFN-a was quantified by ELISA (PBL Biomedical Laboratories) in culture 

supernatants sampled 6, 12 and 24 hours after stimulation. Supernatants from 24-hour cell 

cultures without any TLR7 ligands were used as controls. ELISA values were normalized to 

the percentage of pDCs in the respective PBMC preparation, and expressed as IFN-a 

produced per 103 pDCs as described elsewhere (25).  

Intracellular cytokine staining. Freshly isolated PBMCs (2.5 × 106 cells/ml) were 

alternatively stimulated with R-848 (0.3 µg/ml or 1 µg/ml), R-837 (1 µg/ml), or 30 µg/ml 

HIV-1-derived GagRNA 1166 synthetic oligoribonucleotides (24) (Eurogentec) complexed 

with 1,2-dioleoyloxy-3-trimethylammonium-propane (DOTAP; Roche), during 5 hours. 

Non-stimulated cells served as a negative control. Brefeldin A (eBioscience) was added for 

the last 3 hours of culture. Human PBMCs were surface-labeled with anti-BDCA-4-

allophycocyanin (Miltenyi Biotec), anti-CD123-phycoerythrin-cyanine 5 (BD Biosciences) 

and anti-Lin-FITC antibody conjugates (BD Biosciences). Cells were then fixed with 2% 

paraformaldehyde in phosphate-buffered saline (PBS), permeabilized with 0.5% saponin, 

and stained for intracellular cytokine production using anti-IFN-a-phycoerythrin (Miltenyi 

Biotec) and anti-TNF-a-Alexa700 (BD Biosciences) antibody conjugates. Flow cytometry 

analysis was performed on a BD Biosciences LSRII instrument, and pDCs defined as the 

Lin− CD123+ BDCA-4+ cell fraction (Supplemental Figure 2). The frequency of cytokine-
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producing pDCs was determined by subsequent data processing with the FlowJo software 

(FlowJo, LLC). 

Intra-individual analysis of the impact of rs179008 on IFN-a production by pDCs. 

Freshly isolated PBMCs (10 × 106 cells/ml) from healthy rs179008 A/T heterozygous 

women were stimulated for 5 hours with 1 µg/ml R-848 or with GagRNA 1166 complexed with 

DOTAP. Cells were then surface-labeled for IFN-a production using an IFN-a secretion 

assay from Miltenyi Biotec, according to the manufacturer’s instructions. Briefly, stimulated 

cells were coated with IFN-a capture reagent (anti-IFN-a monoclonal antibody conjugated 

to a cell surface-specific monoclonal antibody) and then incubated for 20 minutes at 37°C 

to allow IFN-a secretion. Cells were then surface-stained with IFN-a detection antibody 

(anti-IFN-a monoclonal antibody conjugated to phycoerythrin), and for BDCA-4, CD123 

and Lin as above. pDCs were then sorted on a FACSAria II instrument (BD Biosciences) 

into Lin− CD123+ BDCA-4+ IFN-a+ and Lin− CD123+ BDCA-4+ IFN-a− populations. RNA 

from both purified populations was extracted using the Absolutely RNA Nanoprep kit 

(Agilent Technologies) and retrotranscribed with the Maxima H Minus First Strand cDNA 

Synthesis kit (Thermo Fisher Scientific). The cDNA was subjected to target amplification 

using TLR7 PCR primers flanking the SNP (oligonucleotides 1F and 2R below) followed by 

KASP typing as above to determine the rs179008 allele of origin of TLR7 transcripts. The 

percentage of allele A expression in each cell population was given by the standard curve 

for the KASP PCR assay (Figure 2C) as a four-parameter logistic function of the log-ratio 

of the A and T fluorescence intensities. The curve was generated using genomic TLR7 PCR 

amplimers from male (hemizygous) A/0 and T/0 subjects in different mix ratios. 
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Analysis of pre-mRNA splicing. RNA from PBMCs was isolated and reverse-

transcribed as above. The exon 2-exon 3 splice junction in the TLR7 cDNA was amplified 

by PCR with forward primer 1F: 5ʹ-CCATGCCATCAAGAAAGTTG-3ʹ straddling the exon 

1-exon 2 junction, and reverse primer 2R: 5ʹ-TCTGTGCAGTCCACGATCA-3ʹ hybridizing 

155 base pairs downstream from the canonical TLR7 exon 2-exon 3 junction. PCR products 

were analyzed by agarose gel electrophoresis. 

Ultra-deep sequencing. A 273-nucleotide-long TLR7 cDNA fragment encompassing 

the position of the rs179008 SNP was generated by PCR as above. The PCR products were 

amplified on capture beads in water-in-oil emulsion micro-reactors, and pyrosequencing 

performed on a Roche 454 GS Junior system. The sequence reads were quantified with the 

GS amplicon variant analyser (Roche). 

Quantification of TLR7 protein expression by Western blotting. Cell lysates were 

prepared in Laemmli sample buffer (Invitrogen), sheared through a 31G needle, and total 

protein quantified by a bicinchoninic acid protein assay (Pierce). Samples were heated for 

10 minutes at 70°C in the presence of a reducing agent (Invitrogen). Protein (20–25 µg per 

lane) were fractionated by SDS-PAGE on precast 4%–15% gradient gels (Bio-Rad), and 

transferred to Amersham Hybond 0.45-µm PVDF membranes (GE Healthcare). The 

membranes were blocked with 5% skim milk, 0.5% Tween-20 in PBS, probed overnight 

with antibodies to β-actin (mouse monoclonal IgG1, clone AC-15; Sigma), the human 

influenza hemagglutinin (HA) epitope tag (rat monoclonal IgG, clone 3F10; Roche), the 

FLAG epitope tag (mouse monoclonal IgG1, clone M2; Sigma), or the C-terminus of human 

TLR7 (rabbit monoclonal IgG, clone EPR2088(2); Abcam), and finally incubated with 

suitable peroxydase-conjugated secondary antibodies (Cell Signaling Technology). 

Chemiluminescent detection was carried out with Amersham ECL Select or ECL Prime 
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reagents (GE Healthcare) as necessary, and densitometric analysis performed with the Image 

Lab 5.0 software (Bio-Rad).  

TLR7 protein quantification in healthy subjects of the different rs179008 genotypes 

was performed on cryopreserved PBMCs. PBMCs were thawed and cultured at 37°C for 2 

hours before counting, cell lysate preparation and western blotting as above. The 

densitometric signals of the TLR7 145-kDa and 75-kDa forms were normalized to b-actin 

and then to an internal standard PBMC lysate that was loaded in each gel for inter-gel data 

normalization as described in Supplemental Figure 6.  

TLR7-SEAP reporter vectors. The signal peptide reporter vectors encoded a secreted 

alkaline phosphatase  (SEAP) where the autologous signal peptide was replaced by an allelic 

form of the human TLR7 signal peptide (Fig. 3A). The TLR7 and SEAP moieties connected 

at a proline residue analogous to Pro31 in TLR7 and to Pro20 in SEAP (GenBank U89937.1). 

Preparatory analyses with the SignalP 4.1 software (60) predicted in each case a signal 

peptide with a near-identical profile to that of the parental TLR7 form (not shown). The 

SEAP gene under the control of the human EF-1a promoter was released from pYSEAP 

(61) (Addgene plasmid #37326) as a 3.5-kb SpeI-SalI fragment and inserted into a modified 

pBC KS+ vector (Stratagene) to generate pYSEAP-JM562. Next, a 360-bp fragment of 

pYSEAP-JM562 overlapping the 5ʹ end of the SEAP coding sequence was excised with 

EcoRI and NdeI, and in-frame replaced by one of a series of synthetic TLR7-SEAP DNA 

fragments. The hybrid inserts were generated by successive PCR steps with the Phusion 

high-fidelity DNA polymerase (Thermo Scientific), and included 69 proximal nucleotides 

of the TLR7 5ʹ-untranslated region to preserve a predicted RNA stem-loop structure around 

the start codon (not shown). Initial TLR7 cDNA amplifications were seeded with reverse-

transcribed pDC or PBMC RNA from male donors carrying the relevant rs179008 allele. 
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Where necessary, single-base changes in TLR7 codon 1 or 11 (Fig. 3G) were introduced in 

the design of PCR primers: to force translation initiation at Met5, the major ATG initiation 

codon was made a TTG triplet; in the Leu11 synonymous versions, the natural CTA leucine 

codon was replaced by a CTC, CTT or CTG leucine codon; vectors for leucine codons TTA 

and TTG were not generated. In all plasmid constructs, any regions derived from synthetic 

DNA fragments were subjected to complete DNA sequencing to rule out unwanted sequence 

variation. The sequence of a prototypic TLR7-SEAP reporter vector has been deposited in 

the GenBank database under accession number KX035095. 

Metridia luciferase expression vector. Vector pPgk1-M.Luc was assembled by 

inserting the Metridia luciferase gene from pDonor-hβ-Actin-hMLuc (62) (a kind gift from 

Shawn Lupold) downstream from the murine Pgk1 promoter in pJM1950 (63), as a NcoI-

XhoI fragment replacing the initial EGFP gene. 

Plasmid transfection. Human embryonic kidney (HEK) 293T/17 cells (from ATCC, 

CRL-11268) were grown in Dulbecco's modified Eagle's medium (DMEM) supplemented 

with 5% or 10% heat-inactivated fetal bovine serum and 20 µg/ml gentamicin, and seeded 

into 24-well culture plates the day before transfection (105 cells/well in 1 ml of culture 

medium). Plasmid DNA was complexed with TurboFect cationic polymer transfection 

reagent (Thermo Scientific) according to the manufacturer's protocol. Briefly, 1 µg DNA in 

100 µl serum-free medium was mixed with 2 µl of TurboFect, and 15–30 µl of this 

transfection medium were added to a culture well. Transfection supernatants and cells were 

harvested 48 hours later and stored frozen at −20°C until use; for the firefly luciferase assay, 

the cells were lysed in 1× passive lysis buffer (Promega) and the lysates stored at −75°C. 

For transfection normalization, either a Metridia luciferase vector, pPgk1-M.Luc, or a firefly 
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luciferase vector, pGL4.23 (Promega) were mixed with the reporter vector to 10% of total 

DNA. 

Expression of full-length TLR7. Human TLR7 expression vectors were derived 

from pUNO1-hTLR7-HA3× (InvivoGen), encoding TLR7 (Gln11) tagged at its C-terminus 

with three tandem copies of the HA epitope. First, the neo gene was inserted into the NotI 

site of pUNO1-hTLR7-HA3×, and kanamycin selection was used in propagating the 

resulting plasmid and its children. Similar to the strategy for TLR7-SEAP plasmid assembly, 

synthetic DNA inserts were substituted for a restriction fragment to generate an allele T 

(Leu11) version of the the HA-tag vector (AgeI, ClaI); A and T versions with the natural 

(non-tagged) C-terminus of TLR7 restored (BspEI, NheI); and an allele A version with the 

HA3× tag replaced by three tandem copies of the FLAG epitope (BamHI, NheI). 

Transfection of HEK 293T/17 cells was performed as above in 24-well plates, with TLR7 

vector dosage adjusted by dilution with carrier plasmid DNA. Cells from replicate 

transfections were harvested after 48 hours for Western blot analysis. In parallel, a set of 

lentiviral vectors were assembled by subcloning the above native and epitope-tagged TLR7 

cDNAs into pWPXLd (Trono and coll., unpublished; Addgene plasmid #12258) upstream 

of an IRES-GFP cassette to achieve conditional GFP expression. Lentiviral particles were 

prepared in HEK 293T cells by a standard tri-transfection protocol, and pseudotyped with G 

glycoprotein from vesicular stomatitis virus (VSV-G). The lentiviral vector encoding the 

allele A form of native TLR7 was transduced into the human monocytic cell line, THP-1, 

where endogenous TLR7 protein is non-detectable by Western blot (Supplemental Figure 

7). The cells were sorted on the basis of GFP expression, induced to differentiate overnight 

in the presence of 10 ng/ml phorbol myristate acetate, and incubated with the TLR7 synthetic 

ligand, R-837 to confirm that recombinant TLR7 was functional. 
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TLR7 expression knock-down. A lentiviral vector encoding an shRNA targeting the 

3ʹ-untranslated region of the TLR7 mRNA was purchased from Sigma (MISSION 

TRCN0000364155), and transduced into GEN2.2 human pDC cells to generate (under 

puromycin selection) a subline with disabled TLR7 expression. GENshTLR7 cells, derived 

from the GEN2.2 pDC cell line by transduction with another TLR7-targeting shRNA vector 

(64); both lines were a gift from J. Plumas (EFS Rhône-Alpes, Grenoble). 

Enzyme assays. SEAP activity in transfection supernatants was fluorometrically 

quantitated in the presence of the substrate compound, 4-methylumbelliferyl phosphate (4-

MUP; Sigma), as described by Kolniak and Sullivan (65), with slight modifications. Firefly 

luciferase activity in cell lysates was assayed with Luciferase Assay System reagents from 

Promega according to the manufacturer’s instructions. Chemiluminescence was measured in 

triplicates over a 10-second period, with a 2-second delay, on a Berthold Centro LB960 

microplate luminometer. The Metridia luciferase assay involved 20 µl/well of transfection 

supernatant or a dilution thereof in PBS and 100 µl/well of substrate buffer: 6.3 µm 

coelenterazine (from Biaffin) in 220 mM sodium phosphate buffer, pH 7.2, with 0.1% bovine 

serum albumin, 100 mM NaCl, 2.5 mM EGTA, and 1.3 mM sodium azide; 

chemiluminescence was measured over 10 seconds, with a 0.1-second delay. Suitable 

positive control transfection supernatants were frozen at −20°C in aliquots, and used 

throughout as standards in the SEAP and Metridia luciferase assays. 

Quantitation of TLR7 transcripts. B cells were isolated from PBMCs with an 

immunomagnetic negative selection kit from STEMCELL Technologies. Total RNA was 

then extracted with the RNeasy Mini kit (Qiagen), and reverse-transcribed with Maxima 

reverse transcriptase (Thermo Scientific) using random hexamer primers. Real-time 
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quantitative PCR was performed in the presence of SYBR Green (Roche) on a LightCycler 

480 II instrument, and TLR7 expression determined by the ∆Ct method relative to the 

housekeeping gene, GAPDH. The PCR primer pairs were 

TACCTGGATGGAAACCAGCTACT and CAAGGCTGAGAAGCTGTAAGCTA (TLR7 

mRNA); AGCACCAGGTGGTCTCCTCT and CCAAATTCGTTGTCATACCAG 

(GAPDH mRNA). Kits and reagents were used according to the manufacturer’s instructions. 

Quantification of IFN-a and IP-10 in plasma from HIV-infected patients. The 

concentration of CXCL-10 (IP-10) was measured by a two-site sandwich ELISA 

(Quantikine kit, R&D Systems). The plasma concentration of IFN-a was determined on a 

Simoa HD-1 analyzer using the Simoa Human IFN-a kit (Quanterix, USA) following the 

manufacturer’s instructions. The lower limit of quantification for this assay was 0.014 pg/ml. 

Database sources. Recombination rate data from the Phase II HapMap project (66) 

were downloaded from ftp://ftp.ncbi.nlm.nih.gov/hapmap/recombination/2011-

01_phaseII_B37/. Lists of TLR7 polymorphisms, allelic frequencies, and individual 

genotype data were downloaded from the Ensembl database at http://www.ensembl.org/. 

Human codon usage data was from the Codon Usage Database (31) at 

http://www.kazusa.or.jp/codon/. 

Statistical tests and in silico analyses. Statistical analyses were performed using 

Stata 14 (StataCorp, College Station, TX), SAS 9.4 (SAS Institute, Cary NC), and Prism 6 

(GraphPad Software). All statistical tests were two-tailed and p-values <0.05 were 

considered to be statistically significant. Specialized analyses in the R computing 

environment were performed as described in Supplemental Note 2. Amino-terminal protein 

sequences were analyzed for the presence of a signal peptide and the location of the signal 
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peptide cleavage site using the SignalP 4.1 software (67) at 

http://www.cbs.dtu.dk/services/SignalP/, with the setting "Input sequences do not include 

TM regions" and default D-cutoff values. For a more sensitive prediction of the cleavage 

site (67), complementary analyses were performed with SignalP version 3.0 (68) at 

http://www.cbs.dtu.dk/services/SignalP-3.0/. Codon adaptation analysis of the 5ʹ-terminal 

region of the TLR7 coding sequence was performed with the gcua software at 

http://gcua.schoedl.de/seqoverall_v2.html. 

Study approval. The PRIMO cohort was previously registered with 

ClinicalTrials.gov under identifier NCT03148964. The X-LIBRIS cohort was previously 

registered with ClinicalTrials.gov under identifier NCT01952587. This study was conducted 

in adherence to the ethical principles of the Declaration of Helsinki, and approved by the 

relevant medical ethics board, Comité de Protection des Personnes Sud-Ouest et Outre-Mer 

I, Toulouse, France. Informed consent was obtained in writing from the patients and control 

subjects, and experiments were performed in accordance with institutional and regional 

guidelines.  
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Figures & Figure  legends 
 
 
 

 
 
 
Figure 1. Sex-specific effect of the rs179008 T allele on the IFN-a expression phenotype. 
(A–F) Quantitation of IFN-a in culture supernatants of male (A–C) and female (D–F) PBMCs 
stimulated ex vivo with TLR7 ligands as shown, sampled 6, 12 and 24 hours after stimulation, 
or 24 hours for non-stimulated (Unstim.) control cells. ELISA IFN-a values (pg/ml) were 
normalized to flow-cytometrically determined pDC numbers for each donor; see Supplemental 
Figure 2A for the Lin− CD123+ BDCA4+ gating strategy. Bar graphs show data as means ± 
standard error (SD). The number of donors by genotype is indicated in the plot legend. Groups 
were compared by a two-way ANOVA test followed by Sidak’s multiple comparisons test. 
N.D., not detectable, i.e., below the 30 pg/ml detection threshold of the assay. (G–I) Frequency 
of IFN-a-producing pDCs. Freshly isolated male and female PBMCs were stimulated with 0.3 
µg/ml R-848 (G), HIV-1-derived GagRNA1166 (H), or 1 µg/ml R-837 (I). The frequency of IFN-
a-producing pDCs was determined by flow cytometry as above. Each dot represents one donor; 
horizontal bars indicate mean values ± SD. Groups were compared by the Kruskal-Wallis test 
corrected for multiple comparisons by controlling the FDR (Benjamini-Hochberg method).  
 
 
 
 
 



 
 
Figure 2. Allele A enrichment among TLR7 transcripts from IFN-a-producing female 
pDCs. (A) Flow cytometric analysis of IFN-a-secreting pDCs. Freshly isolated PBMCs from 
heterozygous rs179008 A/T women were stimulated with either 1 µg/ml R-848 (n = 7 donors) 
or GagRNA1166 (n = 7 donors); next, pDCs were surface-stained for self-secreted IFN-a and 
sorted into IFN-apos and IFN-aneg subsets. (B) Within-donor comparisons of TLR7 transcripts 
from the IFN-apos and IFN-aneg pDC subsets using KASP allele-specific PCR; results from a 
representative experiment encompassing A/A and T/T homozygous control cells. (C) Standard 
curve for the KASP assay, giving the relative abundance of allele A in the TLR7 transcript pool 
as a function of the fluorescence intensities from the A and T allelic probes. (D) Percentages of 
allele A transcripts expressed in the IFN-apos and IFN-aneg cell populations, determined with 
the standard curve in (C). (E) Corroboration by deep-sequencing of the allelic proportions in 
the TLR7 cDNA amplimers from each sample in (D). Group comparisons in (D) and (E) by 
Wilcoxon’s paired signed-rank test. 



 
Figure 3. Decreased Leu11 (rs179008 T) TLR7 protein expression and secretion reporter 
activity. (A) N termini of the TLR7-SEAP fusions encoded by reporter plasmids, with an allelic 
Gln11 (rs179008 A) or Leu11 (rs179008 T) signal peptide from TLR7 joined to a signal peptide-
less SEAP moiety. Parallel vector pairs encoded TLR7-SEAP proteins starting at either Met1 
or Met5. (B) SEAP reporter activity in transfection supernatants of HEK 293T cells; paired 
allele-A and -T data from the same experiment. Wilcoxon’s paired signed-rank test. (C, D) 
Western blot analysis of HEK 293T cells transfected with varying amounts of expression 
vectors encoding Gln11 and Leu11 full-length TLR7 carrying a C-terminal HA peptide tag. 
Western blot and reporter enzyme data below are representative of at least three independent 
experiments. (D) Densitometry of TLR7-HA bands, normalized to b-actin. P-value from the 
ANCOVA test comparing the two series of expression values for the A and T vectors. (E, F) 
Western blot analysis of TLR7 dimers. HEK 293T cells were co-transfected with a fixed 
amount of FLAG-tagged TLR7 allele-A expression vector and decreasing amounts of allele-A 
or -T TLR7-HA vector. Proteins were immunoprecipitated (IP) with anti-FLAG antibody, and 
Western blots (WB) successively probed with anti-HA and anti-FLAG antibodies. (F) 
Densitometry of TLR7-HA bands normalized to TLR7-FLAG. (G) Synonymous-codon 
variants of the Leu11 TLR7-SEAP reporter vector. (H) SEAP versus control luciferase activity 
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in HEK 293T transfection supernatants for the synonymous vectors, plotted against the 
respective human codon usage frequencies. R2 value from a Pearson test for correlation analysis.  
 
 

 
 
Figure 4. Quantification by Western blotting of TLR7 protein in PBMC subpopulations. 
(A) Gating in the flow cytometric isolation from cryopreserved PBMCs of CD14+ monocytes, 
CD19+ B lymphocytes, CD123+ BDCA4+ pDCs, and the CD14− CD19− BDCA4− cell fraction 
for Western blot analysis. (B) Representative blot for a single human donor. In each lane, the 
number of cells in the sample was proportional to the relative abundance of the cell type among 
total PBMCs. Neg, CD14− CD19− BDCA4− cell fraction. (C) Relative contribution from each 
cell type. Densitometric analysis of TLR7 for nine different donors. The 140- and 75-kDa forms 
were quantitated separately and normalized to same-donor signals for total PBMCs. (D) 
Densitometry normalized to the number of cells represented in each lane, displaying per-cell 
quantities of TLR7 in the different cell types. (E) TLR7 quantitation in total cryopreserved 
PBMCs from female or male donors classified by rs179008 genotype. The TLR7 densitometric 
signal was first normalized to b-actin and then to the corresponding values of a standard PBMC 



cell lysate as described in Methods. Data presented as a box spanning the 25th to 75th percentiles, 
with the line in the middle of the box plotted at the median and whiskers going down to the 
smallest value and up to the largest; “+” denotes the mean. P-values from Kruskal-Wallis test 
corrected for multiple comparisons by controlling the FDR (Benjamini-Hochberg method). 
 
 
 

 
 

 

 
 
 
 
Figure 5. The rs179008 T allele lowers TLR7 protein expression in PBMCs from both pre- 
and post-menopausal women. (A) Expression data for the 140- and 75-kDa forms of TLR7 
presented in Figure 4E, plotted here against donor age. The dashed line represents the median 
age of the final menstrual period (51.5 years) (38). Spearman’s correlation coefficients and 
corresponding p-values are shown when p < 0.05. Some significant regressions were observed 
for women (p<0.0001) but not men. (B) Women above the age of 53 were selected for further 
comparisons of TLR7 protein expression between A/A homozygotes (n = 7) and T-allele 
carriers, A/T (n = 6) and T/T (n = 1) as indicated. P-values from Mann-Whitney tests.  
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 

 
 
 
 
 
Figure 6. Effect of the rs179008 genotype on IP-10 and HIV-1 nucleic acid measurements 
across a PRIMO sub-cohort. ELISA quantitation of IP-10 was performed on the ten PRIMO 
female patients of rs179008 T/T plus randomly-drawn subsets of A/A and A/T women from 
the same cohort (n = 92 total). (A) Estimation plots comparing rs179008 genotype groups 
against the A/A baseline with regard to viral load, HIV-1 cell-associated DNA (n = 83 total) 
and IP-10 values. Top, raw data groups with mean ±standard deviation shown as a gapped line. 
Effect size is plotted underneath as the difference in means and its 95% CI estimated by 
bootstrap resampling; the shaded curve denotes the resampling distribution. (B) Pairwise 
relationships between the three HIV-1 infection parameters. Pearson’s r correlation coefficient 
and the regression line are shown on each scatter plot, together with the bivariate mean and its 
95% confidence ellipse for A/A homozygotes and for carriers of allele rs179008 T. P-values 
from Hotelling’s T2 test on the difference of mean vectors between the two groups. 
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Figure 7. Effect of TLR7 SNPs on viremia during HIV-1 primary infection. (A) Map of 
TLR7 and SNPs with minor allele frequency > 0.1, including the three SNPs analyzed for 
association with viral load. Blue line, recombination rates from the Phase II HapMap project. 
(B) Heatmap of pairwise linkage disequilibrium (r2) for the frequent SNPs in (A) ordered by 
position along TLR7. Allelic frequencies and r2 values were derived from individual genotypes 
for the European populations in the 1000 Genomes Project Phase 3. (C) Estimation plot 
comparing viremia values between PRIMO females of opposite homozygous genotypes for 
rs179008, rs179012 and rs3853839. See Supplemental Note 1 for the parsing of genotype and 
diplotype notations. To control for linkage disequilibrium between rs179012 and rs179008, 
sections (IV) and (V) compare homozygous rs179012-rs179008 diplotypes: (IV) compares 
opposite rs179012 genotypes while keeping the rs179008 genotype uniform, and (V) compares 
opposite rs179008 genotypes given a uniform rs179012 genotype. Data may be duplicated 
across plot sections. P-values from Student’s t-tests, two-sided. 
 
	  

BA

X chromosome coordinates, GRCh37 (bp)

R
e
co

m
b
in

a
tio

n
 r

a
te

 (
cM

/M
b
)

12859000 12890000 12921000

0

20

40

60

80

| | | | | | || || ||| ||| |
rs3853839

rs179008
rs179012

TLR7 

SNPs

rs5935418

rs1266329

rs112932659

rs112564035

rs138988440

rs179022

rs179021

rs179018

rs179017

rs179016

rs179013

rs179012

rs179011

rs179010

rs179009

rs179008

rs3853839

0 0.2 0.4 0.6 0.8 1

r 2

C

A/A
n=147

T/T
n=10

AT/AT
n=10

AA/AA
n=36

G/G
n=78

A/A
n=65

GA/GA
n=78

AA/AA
n=36

C/C
n=141

G/G
n=12

lo
g

1
0
 R

N
A

 c
o
p
ie

s/
m

l

8

6

4

2

I II III IV V

rs179008 rs179012 rs3853839 rs179012-rs179008 rs179012-rs179008

T/T minus A/A A/A minus G/G G/G minus C/C AA/AA minus GA/GA AT/AT minus AA/AA

1

0

−1

−2

D
iff

e
re

n
ce

 o
f 
m

e
a
n
s

p=0.024 p=0.83 p=0.94 p=0.55 p=0.025



 
Table 1. Association between rs179008 genotypes and parameters of primary HIV-1 
infection in women 

 
 
1 Categorical data expressed as case counts, and percentages with 95% CI. Fisher’s exact test. 
2 Data for continuous variables represented by the median and IQR. Wilcoxon’s test, two-
sided. 
 
 
 

 

 
A/A  
(n = 147) 

 
A/T and T/T 
(n = 73) 

 
A/A vs A/T + T/T 
p-value (FDR) 

 
T/T 
(n = 10) 

A/A vs T/T  
p-value (FDR)  

 
Notes 

Symptomatic primary 
infection  

115 (78%, 71–84) 59 (81%, 70–88) 0.73 (0.95) 5 (50%, 24–76) 0.056 (0.17) 1 
 

CD4+ T lymphocytes 
(cells/mm3) 

564 (413–714) 
(n = 146) 

543 (392–766) 
(n = 72) 

0.95 (0.95) 538 (418–724) 0.95 (0.95) 2 

CD8+ T lymphocytes 
(cells/mm3) 

902 (634–1386) 
(n = 145) 

997 (646–1204) 
(n = 72) 

0.84 (0.95) 987 (691–1418) 0.73 (0.95) 2 

Ratio CD4+ : CD8+ 0.58 (0.36–0.88) 
(n = 145) 

0.65 (0.43–0.88) 
(n = 72) 

0.54 (0.95) 0.53 (0.30–1.0) 0.91 (0.95) 2 

Viral load (log10 HIV-1 RNA 
copies/ml) 

5.0 (4.2–5.6) 4.6 (3.7–5.3) 0.045 (0.17) 4.4 (2.9–4.8) 0.059 (0.17) 2 

Cell-associated HIV-1 DNA 
(log10 copies/106 cells) 

3.4 (2.9–3.8) 
(n = 122) 

3.1 (2.6–3.6) 
(n = 65) 

0.038 (0.17) 3.0 (2.7–3.5) 
(n = 9) 

0.21 (0.50) 2 

Time since infection (days) 44 (35–61) 
Range 14–172 

51 (38–70) 
Range 20–183 

0.062 (0.17) 52 (47–58) 
Range 30–103 

0.30 (0.60) 2 


