
HAL Id: pasteur-02864611
https://pasteur.hal.science/pasteur-02864611

Submitted on 17 Aug 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Experimenting with Trinucleotide Repeats: Facts and
Technical Issues
Guy-Franck Richard

To cite this version:
Guy-Franck Richard. Experimenting with Trinucleotide Repeats: Facts and Technical Issues. Guy-
Franck Richard. Trinucleotide Repeats : Methods and Protocols, 2056, Springer Science; Business
Media, LLC, pp.1-10, 2019, 978-1-4939-9783-1. �10.1007/978-1-4939-9784-8_1�. �pasteur-02864611�

https://pasteur.hal.science/pasteur-02864611
https://hal.archives-ouvertes.fr


Metadata of the chapter that will be visualized online

Chapter Title Experimenting with Trinucleotide Repeats: Facts and Technical Issues
Copyright Year 2020
Copyright Holder Springer Science+Business Media, LLC, part of Springer Nature
Corresponding Author Family Name Richard

Particle

Given Name Guy-Franck

Suffix

Division Department Genomes & Genetics, 
Institut Pasteur

Organization/University CNRS, UMR3525

Address Paris, France

Email guy-franck.richard@pasteur.fr
Abstract Trinucleotide repeats are a peculiar class of microsatellites involved in many 

neurological as well as developmental disorders. Their propensity to generate 
very large expansions over time is supposedly due to their capacity to form 
specific secondary structures, such as imperfect hairpins, triple helices, or 
G-quadruplexes. These unusual structures were proposed to trigger expansions 
in  vivo. Here, I review known technical issues linked to these structures, 
such as slippage during polymerase chain reaction and aberrant migration 
of long trinucleotide repeats during agarose gel electrophoresis. Our current 
understanding of interactions between trinucleotide repeat secondary structures 
and the mismatch-repair machinery is also quickly reviewed, and critical 
questions relevant to these interactions are addressed.

Keywords (separated 
by “ - ”)

Trinucleotide repeat - Secondary structure - PCR - Agarose gel electrophoresis 
- Mismatch repair



Guy-Franck Richard (ed.), Trinucleotide Repeats: Methods and Protocols, Methods in Molecular Biology, vol. 2056,
https://doi.org/10.1007/978-1-4939-9784-8_1, © Springer Science+Business Media, LLC, part of Springer Nature 2020

Chapter 1

Experimenting with Trinucleotide Repeats: Facts 
and Technical Issues

Guy-Franck Richard 

Abstract

Trinucleotide repeats are a peculiar class of microsatellites involved in many neurological as well as devel-
opmental disorders. Their propensity to generate very large expansions over time is supposedly due to their 
capacity to form specific secondary structures, such as imperfect hairpins, triple helices, or G-quadruplexes. 
These unusual structures were proposed to trigger expansions in vivo. Here, I review known technical 
issues linked to these structures, such as slippage during polymerase chain reaction and aberrant migration 
of long trinucleotide repeats during agarose gel electrophoresis. Our current understanding of interactions 
between trinucleotide repeat secondary structures and the mismatch-repair machinery is also quickly 
reviewed, and critical questions relevant to these interactions are addressed.

Key words Trinucleotide repeat, Secondary structure, PCR, Agarose gel electrophoresis, Mismatch 
repair

1 Introduction

Trinucleotide repeats are a peculiar class of microsatellites, 
extremely frequent in all eukaryotic genomes sequenced so far 
(reviewed in [1]). They became more famous almost 30 years ago 
when it was demonstrated that the large expansion of trinucleotide 
repeat tracts was linked to some neurological human pathologies 
[2–4] at the present time, trinucleotide repeat expansions are 
involved in more than two dozen human neurological disorders, 
including Huntington disease, Steinert disease (myotonic 
dystrophy type 1), fragile X syndrome, and Friedreich’s ataxia. 
These disorders are monogenic, one single locus is responsible for 
the disease in association studies, although cis- and trans-acting 
genetic factors are known to modulate trinucleotide repeat 
instability in human cells as well as in model systems (reviewed in 
[1, 5–9]). Therefore, each disease is associated to the expansion of 
one single trinucleotide repeat tract at one single genomic location; 
for example, CTG triplets are expanded in Steinert disease, GAA in 
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Friedreich’s ataxia, CGG in fragile X syndrome, etc. (Fig.  1). 
Interestingly, other microsatellites besides trinucleotide repeats 
were also found to be responsible for several disorders: CCTG tet-
ranucleotide repeats in myotonic dystrophy type 2, ATTCT and 
TGGAA pentanucleotides or GGCCTG hexanucleotides in spino-
cerebellar ataxias type 10, 31, and 36, respectively, and GGGGCC 
hexanucleotide repeat in amyotrophic lateral sclerosis (ALS) 
(Fig. 1). Note also that the expansion of a 12-bp GC-rich minisat-
ellite is associated to progressive myoclonic epilepsy, a rare epilep-
tic syndrome including seizures together with progressive 
neurological decline.

The molecular mechanism responsible for these large expan-
sions is not totally understood, but past experiments in model sys-
tems (bacteria, yeast, mouse, and human cells) showed that de 
novo repeat-templated DNA synthesis was prone to generate con-
tractions and expansions of the repeat tract: S-phase replication, 
double-strand break repair, nucleotide excision repair, and base 

CAGn
Huntington disease, DRPLA, SBMA
SCA types 1, 2, 3, 6, 7, 12, 17

Myotonic dystrophy type 2CCTGn

Spinocerebellar ataxia type 10ATTCTn

Spinocerebellar ataxia type 31TGGAAn

Spinocerebellar ataxia type 36GGCCTGn

Amyotrophic lateral sclerosis (ALS),
frontotemporal dementia (FTD)GGGGCCn

Myotonic dystrophy type 1, SCA8,
Huntington disease-like 2CTGn

10 100 1000Repeat copy number 10000

CGGn
Fragile X syndrome, Fragile X POI,
Fragile X TAS, FRAXE

GAAn Friedreich’s ataxia

(1)

Progressive myoclonus epilepsy 1
(EPM1)(2)CCCCGCCCCGCGn

Fig. 1 Microsatellite expansion disorders. For each microsatellite, the corresponding disease(s) are indicated, 
as well as normal (in blue) and pathological allele lengths (in red), on a logarithmic scale. Abbreviations used: 
DRPLA dentatorubral-pallidoluysian atrophy, SBMA spinal and bulbar muscular atrophy, SCA spinocerebellar 
ataxia, Fragile X POI Fragile X-associated primary ovarian insufficiency, Fragile X TAS Fragile X-tremor/ataxia 
syndrome, FRAXE Fragile X mental retardation syndrome. (1) The TGGAA pentanucleotide repeat is inserted 
within a low complexity (TAGAA)n (TAAAATAGAA)n repeat. (2) The expanded sequence in EPM1 is not a 
microsatellite but is technically considered to be a minisatellite (base motif >10 bp)
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excision repair all induce trinucleotide repeat instability in various 
experimental systems. It is not the purpose of the present chapter 
to describe molecular mechanisms involved in trinucleotide repeat 
instability; those have been thoughtfully reviewed in many places 
[1, 5–8]. I will rather try to focus on the peculiar properties of such 
sequences and on the technical issues raised by their study.

2 Trinucleotide Repeats Form Secondary Structures In Vitro

In a seminal article by the McMurray laboratory, it was early dem-
onstrated that CAG, CTG, and CGG DNA repeats prone to expan-
sions exhibited the property to form stable imperfect hairpins 
in vitro [10] (Fig. 2a, b). This work was rapidly followed by others 
studying hairpin properties of single-stranded CTG [11], CAG and 
GAC [12], GTC [13], and CGG [14] trinucleotide repeats. It must 
be noted that RNA molecules containing CAG, CCG, CGG, or 
CUG triplet repeats also fold into stable hairpins in a test tube [15, 
16]. Subsequent studies showed that GAA/TTC repeats, involved 
in Friedreich’s ataxia, were shown to form a triple helix, containing 
both Watson–Crick and Hoogsteen bonds (Fig. 2c) [17, 18], a spe-
cific structure common to all polypurine- polypyrimidine tracts, as 
demonstrated by Sergei Mirkin more than 30 years ago [19]. In 
addition, CGG as well as GCC triplet repeats are able to fold into 
DNA tetraplex (or G4, or quadruplex), similar to structures formed 
at the end of human telomeres [20, 21]. Formation of a CAG or 
CTG hairpin on one DNA strand leads to a slipped-stranded struc-
ture in which one or more mung bean nuclease-sensitive hairpin(s) 
are visible as bulges by electron microscopy [22]. More recently, 
atomic force microscopy showed that very long CAG trinucleotide 
repeats of various lengths (111–415 triplets) exhibited unusual 
structural features such as convolutions as well as single and multi-
ple protrusions, suggesting that these structures were most proba-
bly multiple hairpins [23]. In all the above cases, the stability of the 
repeat-containing secondary structure increased with repeat length, 
making long trinucleotide repeats more prone to fold than shorter 
ones. Since the propensity to expansion was known to be tightly 
correlated to repeat size (the formerly called “Sherman paradox” 
[3]), soon emerged the idea that secondary structures could be 
triggering the expansion process [24].

3 Secondary DNA Structures and Mismatch Repair

The mismatch-repair system (hereafter abbreviated MMR), is con-
served from bacteria to man [25] and is involved in detecting syn-
thesis mistakes made by polymerases and signaling them to the 
repair machinery. In its absence, microsatellite instability exhibits 
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several hundredfold to thousandfold increases in Saccharomyces 
cerevisiae [26–28] and Schizosaccharomyces pombe [29]. Two kinds 
of damage are recognized by the MMR: base substitution and 
insertions or deletions (indels). They are processed by two slightly 
different machineries. The MSH2-MSH6 heterodimeric complex 
(MutSα) recognizes single base mismatches and small indels of 1–2 
nucleotides, whereas the MSH2-MSH3 heterodimer (MutSβ) rec-
ognizes larger indels. Bound MutS complexes subsequently recruit 
MutL complexes, the EXO1 exonuclease and the DNA synthesis 
machinery to repair the error (reviewed in [30]). When the first 
trinucleotide repeat disorders were discovered, mismatch repair 
became the first obvious candidate for a possible role in large repeat 
expansions. Soon, experimental assays were designed in yeast to 
detect large trinucleotide repeat length alterations. Very surpris-
ingly, it was shown that short CAG or CTG repeat tracts (25 trip-
lets) were not significantly more expanded or contracted in an 

Fig. 2 Secondary structures formed by different trinucleotide repeats. (a) CAG, CTG, and CCG hairpins formed 
by odd number triplets. Unpaired bases are colored. (b) CAG, CTG, and CGG hairpins formed by an even number 
of triplets. (c) Triple helix formed a GAA repeat tract. Watson–Crick pairings are shown by double lines, 
Hoogsteen pairings by single lines. (d) Tetraplex structure formed by CCG repeats. Guanosine quartets are 
shown in black. (Figure originally published by G.-F. Richard and reprinted with permission from the American 
Society for Microbiology [1])
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msh2 mutant as compared to wild type [31]. When slightly longer 
CAG repeat tracts were assayed, a modest twofold increase in con-
tractions was observed in an msh2 strain, far from the thousandfold 
destabilization of microsatellites in the absence of MMR [32, 33]. 
It must be noted here that trinucleotide repeats, like all microsatel-
lites, exhibit small length changes in MMR mutants, mainly +1 
or −1 triplet [34], but larger expansions or contractions did not 
seem to be significantly more elevated in MMR-deficient back-
grounds. However, when it comes to trinucleotide repeats, things 
are often more complicated than they seemed at first. In 1997, 
Christopher Pearson and Richard Sinden published a remarkable 
article in which they showed that purified MSH2 protein bound 
in vitro to CAG/CTG slipped-stranded structured DNA [35]. It 
was subsequently established that the MSH2-MSH3 complex 
bound CAG hairpins [36, 37], and that CAG and CTG repeats 
when more prone to contractions in transgenic mice deficient for 
the MSH2 protein [38, 39]. It was later demonstrated that the 
MSH2 ATPase activity was essential to generate repeat expansions, 
strongly suggesting that a functional MMR was indeed required to 
promote them [40]. Reinvestigation of CAG/CTG repeat tract 
dynamics in yeast showed that these sequences accumulated small 
incremental expansions over time, that were suppressed in an 
msh3Δ mutant background [41]. Finally, Msh2p was shown to be 
enriched in yeast cells at a CAG or CTG long repeat tract, in an 
MSH3-dependent manner [42]. All these data point to a role for 
the MutSβ complex in CAG/CTG repeat expansions. Similar 
results were observed for CGG/CCG repeats in a fragile X premu-
tation mouse model [43] and for GGA/TTC repeats in a 
Friedreich’s ataxia mouse model [44], but several questions remain 
open. Does MutSβ hairpin binding plays a stabilizing role, protect-
ing them from degradation or repair by the cellular machinery? Is 
the MMR also involved in repeat expansion for other microsatel-
lites? How do MutSβ-bound secondary structures interact with 
histones and with replication, recombination, and repair machiner-
ies? Is the expansion mechanism promoted by MutSβ iterative or 
saltatory? In other words, does it happen once or more than once 
in a short period of time? In any case, it seems that trinucleotide 
repeat-forming secondary structures activate the mismatch-repair 
machinery in such a way that it promotes their expansion, by a 
mechanism that still needs to be clarified.

4 Technical Issues to Be Considered When Trying to Amplify CAG/CTG 
Trinucleotide Repeats by PCR

A convenient way to analyze trinucleotide repeat length is by using 
two flanking primers to amplify the repeat tract by PCR. However, 
this approach is might be laborious due to possible slippage of the 
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newly synthesized strand over its template during the PCR reac-
tion itself, leading to amplification products of aberrant apparent 
sizes. One such example is shown in (Fig. 3). A (CTG)90 repeat was 
integrated into a yeast chromosome, at the SUP4 locus, and ampli-
fied by PCR using primers located upstream and downstream, 
close to the repeat tract. The PCR reaction was run in triplicate 
using the same genomic DNA as a template. In the three reactions, 
shorter products around 300 bp were detected as a smear migrat-
ing below the expected size of 496 bp. In addition, in reaction #3 
an additional band was visible below the main product, suggesting 
that slippage of a few repeat units occurred in one of the earliest 
PCR cycles (Fig. 3). This very frequent problem could be reduced 
by designing primers further away from the repeat tract, but in that 
case the total length of the final PCR product would become the 
limiting factor. With very large expansions, such as those observed 
in DM1, DM2, Friedreich’s ataxia, or ALS, the repeat tract length 
itself may be too large to be amplified by PCR, independently of 
the position of flanking primers and one has to use alternative 
methods such as Southern blot [42] or exotic PCR reactions [45] 
to estimate tract length. An example of a Southern blot used to 
analyzed trinucleotide repeat length is shown in (Fig. 4).

Another caveat of PCR amplification of trinucleotide repeat 
tracts results from allele length heterogeneity in template genomic 

SUP4::(CTG)90 SUP4
#1       #2      #3

100

200

300
400
500

1 000

3 000

MW 
(bp)

SUP4::(CTG)90

156 pb

496 pb

SUP4

#1       #2      #3

Fig. 3 PCR amplification of wild-type and CTG repeat-containing locus. The same genomic DNA was used as 
a template in triplicate PCR reactions (labeled 1, 2, and 3). A sharp unique band was obtained when the locus 
that does not contain a CTG repeat was amplified (SUP4). Nonreproducible bands and a smear were obtained 
when the CTG repeat-containing locus was amplified (SUP4::CTG90). Similar results were obtained with other 
primer sets located close to the repeat tract
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DNA. This is specially an issue if DNA was extracted from a tissue 
or a mix of tissues, and was not amplified clonally from a single cell 
(or a very small number of cells). In that case, one particular allele 
may be preferentially amplified, usually but not necessarily the 
shortest one, most often the most frequent allele in the population 
considered. This tends to underrepresent rare alleles present in the 
population and therefore gives a biased picture of trinucleotide 
repeat tract instability in the corresponding tissue or culture. To 
palliate this problem, small-pool PCR protocols were designed and 
optimized to amplify trinucleotide repeat tracts. In short, template 
DNA is diluted to a small number of genomes per reaction (typi-
cally ~5–10) and PCR is carried out on many individual reactions 
at the same time. This allows to determine more precisely the 
amount of trinucleotide repeat length variability within a DNA 
sample [46, 47].

5 Aberrant Trinucleotide Repeat Tract Mobility on Agarose Gels

In addition to artifacts due to PCR slippage, trinucleotide repeats 
may show abnormal mobility in agarose gels. This has been known 
for a long time, since more than 20 years ago it was shown that 
migration of an expanded CGG allele from a fragile X patient 

(CTG)92

(CTG)72

(CTG)52

(CTG)32

(CTG)12

1000 bp

750 bp

1 2 3 4 5 6 7 8 9 10 11 12
CTG

ladder

Clone #

Fig. 4 Southern blot to determine CTG repeat tract length. DNA was prepared and the gel was run, transferred, 
and hybridized as previously described [42]. The repeat tract length of 12 independent yeast clones was 
analyzed (#1 to 12). To the right is a molecular weight ladder corresponding to the number of expected triplets. 
In this strain, the CTG repeat tract should normally be around 100 triplets. This is the case for clones #1, 2, 8, 
and 10, all other clones exhibiting contractions of variable lengths. Note that clone #1 shows a number of faint 
discrete bands of lower molecular weight, indicating repeat tract mosaicism
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(>200 CGG triplets) in an agarose gel was aberrant when the gel 
and running buffer were supplemented with 5  μg/ml ethidium 
bromide during electrophoresis. When the gel was stained after 
migration the CGG-containing band migrated at the expected 
position according to its molecular weight. However, when stain-
ing occurred during gel electrophoresis, the expected band 
migrated as a diffuse smear of molecules [48]. The author con-
cluded that when precise CGG repeat tract length determination 
was important, staining of agarose gels should be performed after 
the migration, for unambiguous results.

Quite surprisingly, the opposite observation was made with 
CTG repeats. Recently, Gomes-Pereira and Monckton showed that 
PCR products amplified from CTG-containing templates migrated 
in agarose gels as discrete bands when electrophoresis was per-
formed in the presence of 0.2 μg/ml ethidium bromide. This held 
true for repeat lengths ranging from five to 200 CTG triplets. On 
the contrary, when electrophoresis was performed without ethid-
ium bromide and the gel was stained afterward, smeary additional 
bands of higher molecular weights were detected above the expected 
repeat size [49]. Additional experiments supported the hypothesis 
that these smears corresponded to slipped-stranded molecules 
formed during sequential cycles of denaturation-polymerization 
performed during the PCR reaction. It was not completely clear, 
though, how the presence of ethidium bromide during electropho-
resis completely suppressed the detection of such molecules. 
Nevertheless, the authors concluded that precise repeat tract length 
determination by electrophoresis in agarose gels of CTG trinucleo-
tide repeats should always be performed in the presence of ethid-
ium bromide, to avoid such artifacts.

GAA trinucleotide repeats form triple helices (Fig.  2c) and 
plasmids carrying such repeats were shown to exhibit aberrant 
mobility in agarose gels, a retarded band of high molecular weight 
being detected at different ethidium bromide concentrations [50]. 
At the present time, it is unclear whether other microsatellites 
expanded in human disorders also exhibit similar properties, but it 
should be kept in mind that precise size determination of trinucle-
otide repeat tract length by agarose gel electrophoresis should be 
considered with extreme care.

In conclusion, all studies on trinucleotide repeats had to face 
these technically challenging features: frequent repeat size changes, 
stable secondary structure formation, and aberrant mobility in aga-
rose gels. Most of the analytical molecular methods developed to 
study trinucleotide repeats aimed at circumventing these obstacles. 
Several of them are extensively described in the present book and 
will hopefully be useful to researchers in the many areas of this 
fascinating field.
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