

Corynebacterium rouxii sp. nov., a novel member of the diphtheriae species complex

Edgar Badell, Melanie Hennart, Carla Rodrigues, Virginie Passet, Mélody Dazas, Leonardo Panunzi, Valerie Bouchez, Annick Carmi-Leroy, Julie Toubiana, Sylvain Brisse

► To cite this version:

Edgar Badell, Melanie Hennart, Carla Rodrigues, Virginie Passet, Mélody Dazas, et al.. Corynebacterium rouxii sp. nov., a novel member of the diphtheriae species complex. Research in Microbiology, 2020, 171 (3-4), pp.122-127. 10.1016/j.resmic.2020.02.003 . pasteur-02862963v1

HAL Id: pasteur-02862963 https://pasteur.hal.science/pasteur-02862963v1

Submitted on 9 Jun 2020 (v1), last revised 18 Jun 2020 (v2)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0 International License

1	Corynebacterium rouxii sp. nov.,
2	a novel member of the <i>diphtheriae</i> species complex
3	
4	Edgar Badell ^{1,2,#} , Mélanie Hennart ^{1,#} , Carla Rodrigues ^{1,#} , Virginie Passet ¹ , Melody Dazas ¹ , Leonardo
5	Panunzi ¹ , Valérie Bouchez ¹ , Annick Carmi-Leroy ^{1,2} , Julie Toubiana ^{1,2,3} and Sylvain Brisse ^{1,2,*}
6	
7	¹ Institut Pasteur, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France
8	² National Reference Center for the Corynebacteria of the <i>diphtheriae</i> complex, Paris, France
9	3 Université de Paris, Department of General Paediatrics and Infectious Diseases, Necker-Enfants
10	malades University Hospital, AP-HP, Paris, France
11	
12	* Correspondence:
13	Sylvain Brisse
14	sbrisse@pasteur.fr
15	

Keywords: diphtheria, taxonomy, phylogeny, genome sequencing, MALDI-TOF

- 17 Abstract
- 18
- 19 A group of six clinical isolates previously identified as Corynebacterium diphtheriae biovar Belfanti,
- 20 isolated from human cutaneous or peritoneum infections and from one dog, were characterized by
- 21 genomic sequencing, biochemical analysis and MALDI-TOF mass spectrometry. The six isolates were
- 22 negative for the diphtheria toxin gene. Phylogenetic analyses showed that the six isolates (including
- 23 FRC0190^T) are clearly demarcated from *C. diphtheriae*, *C. belfantii*, *C. ulcerans* and
- 24 *C. pseudotuberculosis.* The average nucleotide identity of FRC0190^T with *C. diphtheriae*
- 25 NCTC11397^T was 92.6%, and was 91.8% with *C. belfantii* FRC0043^T. *C. diphtheriae* subsp.
- 26 *lausannense* strain CHUV2995^T appeared to be a later heterotypic synonym of *C. belfantii* (ANI,
- 27 99.3%). Phenotyping data revealed an atypical negative or heterogeneous intermediate maltose
- 28 fermentation reaction for the six isolates. MALDI-TOF mass spectrometry differentiated the new
- 29 group from the other *Corynebacterium* taxa by the presence of specific spectral peaks. *rpoB* sequences
- 30 showed identity to atypical, maltose-negative C. diphtheriae biovar Belfanti isolates previously
- 31 described from two cats in the USA. We propose the name Corynebacterium rouxii sp. nov. for the
- 32 novel group, with FRC0190^T (= CIP 111752^{T} = DSM 110354^{T}) as type strain.

33 Introduction

34 The genus *Corynebacterium* currently includes approximately 111 species [1–3]. The most 35 important human pathogen of the genus is *Corynebacterium diphtheriae*, which causes diphtheria 36 [2,4]. C. diphtheriae is genetically heterogeneous [5–8] and four biovars were defined: Gravis, Mitis, 37 Belfanti and Intermedius [9–11], the latter being almost never reported in recent literature. In 2010, 38 maltose-non fermenting strains of C. diphtheriae biovar Belfanti were reported from two cats in the 39 USA, and were shown to have a divergent *rpoB* sequence [12]. In 2018, some biovar Belfanti isolates 40 were classified as a novel species, C. belfantii [3], with 94.85% average nucleotide identity (ANI) with 41 C. diphtheriae. Almost simultaneously, C. diphtheriae subsp. lausannense was also proposed for 42 strains of biovar Belfantii [13]. The tox gene, which codes for diphtheria toxin, is carried on a 43 corynephage that can lysogenize strains of C. diphtheriae. However, the tox gene was rarely reported 44 in isolates of biovar Belfanti [5,14,15] and no strain of C. belfantii or C. diphtheriae subsp. 45 lausannense was described as tox-positive [3][12]. The tox gene can also be harboured by strains of 46 C. ulcerans and C. pseudotuberculosis, two species that are phylogenetically close to C. diphtheriae 47 and C. belfantii [16]. Together, the above-mentioned species constitute a single phylogenetic clade nested within the Corynebacterium genus. We refer to this clade as the C. diphtheriae complex. 48 49 Here, we define the taxonomic status of six isolates initially identified as C. diphtheriae biovar 50 Belfanti, isolated from five human infections and one dog in France.

51 Material and Methods

We compared the six atypical clinical isolates, among which is strain FRC0190^T, with 13 *C. diphtheriae* strains of biovars Gravis or Mitis (including *C. diphtheriae* type strain NCTC 11397^T) and 8 strains previously [3] identified as *C. belfantii* (including the type strain FRC0043^T; **Table 1**; **Table S1**). Type strains of *C. ulcerans* (CIP 106504^T = NCTC 7910^T) and of *C. pseudotuberculosis* (CIP 102968^T = ATCC 19410^T) were also included for comparison.

57 Clinical samples or isolates were received at the French National Reference Centre for 58 Corynebacteria of the *diphtheriae* complex for isolation and/or characterization, respectively. Oxoid's 59 Tinsdale agar with supplement medium (Thermo Fisher Diagnostics, Dardilly, France) was used to isolate C. diphtheriae from clinical samples. Isolates were frozen in Brain-Heart-Infusion (BHI) 60 61 medium containing 30% of glycerol and stored at -80°C prior to this study. After thawing, isolates 62 were grown at 37°C on tryptose-casein soy agar plates during 24 hours. DNA was extracted from a 63 few colonies with the DNeasy Blood and Tissue kit (Qiagen, Hilden, Germany). The six isolates were 64 identified as C. diphtheriae by multiplex polymerase chain reaction (PCR) combining a dtxR gene fragment specific for C. diphtheriae [15] and a multiplex PCR [17,18] that targets a fragment of the 65 pld gene specific for C. pseudotuberculosis, the gene rpoB (amplified in all species of the 66 67 C. diphtheriae complex) and a fragment of 16S rRNA gene specific for C. pseudotuberculosis and C. ulcerans. The tox gene was also detected by PCR [19]. These PCR results were confirmed using a 68 69 more recent four-plex qPCR [20].

70 For biochemical identification, standard methods were used [21][14,22]. More specifically, 71 strains were characterized for pyrazinamidase, urease, nitrate reductase and for utilization of maltose 72 and trehalose using API Coryne strips (BioMérieux, Marcy l'Etoile, France) and the Rosco 73 Diagnostica reagents (Eurobio, Les Ulis, France) following provider's recommendations. The Hiss 74 serum water test was used for glycogen fermentation. Briefly, this test was performed as follows. 75 Solution A was obtained by dissolving 500 mg of bacteriological peptone (Oxoid, Hampshire, UK; ref. 76 LP0037) in 100 mL of distilled water, adding 100 mg of Na2HPO4 (Sigma-Aldrich, Saint-Louis, 77 Missouri, USA; ref: S7907), and homogenizing and heating the mixture until boiling. After cooling to 78 room temperature, 18 ml of sterile horse serum were added and mixed. In parallel, solution B was 79 prepared by adding 430 mg of acid fuchsin (Sigma-Aldrich, Saint-Louis, Missouri, USA, ref: F8129) 80 into 86 mL of distilled water, after which 14 mL of 30% NaOH (ThermoFisher Scientific, Waltham, 81 Massachusetts; ref. S/4950/PB15) were added. Solution B was stored up to 15 days in the dark. To 82 prepare the complete Hiss serum water sugar medium, 780 μ L of solution B were added to the total 83 volume of solution A. The pH was adjusted to 7.7 using HCl 5N (Sigma-Aldrich, Saint-Louis,

84 Missouri, USA; ref. H1758). 100 mg of glycogen (Acros Organics, Geel, Belgium, ref: 422950050) 85 were then added. The solution was mixed and distributed in 3.5 mL aliquots in 5 mL glass tubes, and 86 sterilized at 108°C during 30 minutes. This medium was conserved up to 6 months at $5^{\circ}C + 3^{\circ}C$. To 87 perform the glycogen test, a loopful (10 µL) of a bacterial culture from Columbia blood agar or 88 Tryptose-Casein-Soy agar was introduced into a tube containing 3.5 mL of sterile Hiss serum water 89 sugar medium. Results were read manually after homogenization of the suspension and incubation at 90 $37^{\circ}C + 2^{\circ}C$ during 24 h. Strains NCTC 12077 and NCTC 764 were used as positive and negative 91 controls, respectively (expected results: dark pink and light pink, respectively).

92 The biovar of isolates was determined based on the combination of nitrate reductase (positive 93 in Mitis and Gravis, negative in Belfanti) and glycogen fermentation (positive in Gravis only).

94 Antimicrobial susceptibility was characterized by the disk diffusion method using impregnated 95 paper disks (Bio-Rad, Marnes-la-Coquette, France) and minimum inhibitory concentrations were 96 determined using ETEST strips (BioMérieux, Marcy l'Etoile, France). The sensitivity was interpreted 97 using CA-SFM/EUCAST V.1.0 (Jan 2019) criteria for Corynebacterium (https://www.sfm-98 microbiologie.org/wp-content/uploads/2019/02/CASFM2019 V1.0.pdf). Susceptibility was tested for 99 the following antimicrobial agents: fosfomycin, vancomycin, kanamycin, gentamycin, penicillin G, 100 oxacillin, amoxicillin, imipenem, cefotaxime, clindamycin, azithromycin, spiramycin, clarithromycin, 101 erythromycin, clindamycin, ciprofloxacin, trimethoprim-sulfamethoxazole, trimethoprim, sulfonamide,

102 pristinamycin, rifampicin and tetracycline.

103 MALDI-TOF mass spectrometry was used for identification confirmation. For this purpose, an 104 overnight culture on Trypto-Casein-Soy Agar (TSA) (37°C) was used to prepare the samples 105 accordingly to the ethanol/formic acid extraction procedure proposed by in the manufacturer

106 recommendations (Bruker Daltonics, Bremen, Germany). The cell extracts were then spotted onto an 107 MBT Biotarget 96 target plate, air dried and overlaid with 1 μ L of a saturated α -cyano-4-

108 hydroxycinnamic acid (HCCA). 24 mass spectra per strain were acquired on a Microflex LT mass

109 spectrometer (Bruker Daltonics, Bremen, Germany). Re-analysis of the spectra was performed for the

110 purpose of this work. Spectra were first preprocessed by applying smoothing and baseline subtraction

111 with FlexAnalysis software using default parameters, exported as text files from the Brucker system

112 and then imported and analyzed in a dedicated BioNumerics v7.6.3 (Applied-Maths, Belgium)

113 database following the protocol described by Rodrigues et al. [23]. To allocate proteins to the specific

114 peaks detected, we extracted all the molecular weights from the genomes of the type strains

(NTCT11397^T, FRC0043^T and FRC0190^T) using a Biopython script 115

- 116 (https://biopython.org/DIST/docs/api/Bio.SeqUtils-module.html) and performed sequence alignments
- 117 with ClustalW for the candidate proteins.
- 118 Genomic sequencing was performed from Nextera XT libraries using a NextSeq-500
- 119 instrument (Illumina, San Diego, USA) with a 2 x 150 nt paired-end protocol. Contig sequences were
- 120 assembled using SPAdes v3.12.0 [24] (Table S1). JSpeciesWS [25] was used to calculate the BLAST-
- 121 based average nucleotide identity (ANIb). BLASTN was used to extract 16S rRNA and rpoB
- sequences from genome assemblies and to determine the presence or absence of the *narIJHGK* nitrate
- reduction gene cluster using as query the cluster of strain NCTC 13129 (RefSeq accession number:
- 124 DIP_RS13820 to DIP_RS13845) [26]. *rpoB* and 16S rRNA gene sequences of atypical *C. belfantii*
- strains from cats [12] were included for comparison. For genome-based phylogenetic analysis, the
- 126 pairwise *p*-distance (*i.e.*, proportion of aligned nucleotide differences) between each pair of genomes
- 127 was estimated based on Mash [27] using a multiple hit correction [28] with JolyTree
- 128 (<u>https://gitlab.pasteur.fr/GIPhy/JolyTree</u>). For 16S rRNA and rpoB gene sequences, sequences were
- aligned with MAFFT v7.407 [29] and the resulting alignment was used for phylogenetic tree inference
- 130 with IQ-TREE v1.6.7.2 [30] using the GTR+I+G4 model. Branch support was obtained after 1000
- 131 bootstrap replicates.

132 **Results and discussion**

Six isolates were isolated from five cutaneous lesions and one ascitic fluid sample (Table 1).
Strikingly, human cutaneous lesions were all ulcerations due to underlying chronic arteritis. Ascitic
fluid was sampled on a patient with a suspicion of spontaneous peritonitis. The dog was investigated in
the context of purulent orbital cellulitis.

137 The six isolates were tox negative (Table S1); more specifically, they were negative for 138 amplification of the expected 910-bp PCR product encompassing fragments A and B of the toxin gene 139 [19] and also negative for the amplification of a 117-bp region of diphtheria toxin fragment A [31] by 140 multiplex qPCR [20]. We also confirmed by BLASTN that the tox gene sequence (query: tox gene 141 sequence from strain NCTC 13129, RefSeq accession number: DIP RS12515) was absent from the 142 genomic assemblies. After species identification by multiplex PCR, the isolates were positive for dtxR 143 and rpoB and negative for C. ulcerans/C. pseudotuberculosis 16S rDNA and pld, leading to initial 144 identification as C. diphtheriae. Concordant with this identification, the six isolates were 145 pyrazinamidase, urease and trehalose negative. Upon biotyping, the isolates were nitrate and glycogen 146 negative, a pattern that corresponds to biovar Belfanti. Consistently, the *narKGHIJ* nitrate reduction 147 gene cluster was not detected from the genomic assemblies of these isolates and those of C. belfantii 148 (Table S2). The phenotypic aspect of colonies on Tinsdale or blood agar medium was undistinctive 149 from C. diphtheriae Mitis and Gravis and C. belfantii. However, we noted that similar to the Gravis 150 isolates, the colonies of the six atypical isolates looked dry and were friable on TCS medium. 151 Distinctively, the maltose test was negative for the six isolates using API Coryne (**Table S1**). The 152 same test was atypical using the Rosco Diagnostic method: results showed heterogeneous coloration 153 that was neither as yellow as the typically positive strains, nor as purple as the negative strains (Figure 154 S3). This atypical maltose result was not observed using API Coryne strips, with which the maltose 155 test was clearly negative for the six isolates. We noted that the four genes of the maltose utilization 156 pathway [32] are present and undisrupted in the six isolates, as in other members of the C. diphtheriae 157 complex. Further work is required to elucidate the mechanisms of maltose utilization and its 158 regulation, and why the two tests give different results.

Regarding their antimicrobial susceptibility (**Table S3**), the six isolates were resistant to fosfomycin, as is typical of *Corynebacteria* [33], and were susceptible to all other tested antimicrobial agents with the following exceptions: FRC0284 and FRC0527 were resistant to penicillin (minimum inhibitory concentration: 0.19 mg/L), and FRC0412 was resistant to penicillin and cefotaxime (0.19 mg/L and 1.0 mg/L, respectively). 164 Genomic sequencing results showed that the six isolates had a genome size of 2.4 Mb on 165 average (Table S1), similar to C. diphtheriae biovars Mitis and Gravis isolates (average size: 2.45 166 Mb), but smaller than C. belfantii (average size: 2.7 Mb). A genome sequence-based phylogenetic tree 167 (Figure 1) revealed three main clades. The first one contained all C. diphtheriae Mitis and Gravis 168 isolates, whereas the second comprised all C. belfantii isolates, and the third comprised the six 169 maltose-atypical isolates. The mean ANIb value of atypical isolates was 92.4% with the C. diphtheriae 170 clade and was 91.4% with C. belfantii (Table 2). These data indicate that the six isolates forming the 171 atypical clade correspond to a distinct genomic cluster, separated by a level of nucleotide divergence 172 that is well above the currently accepted genomic species threshold of ~94-96% [34,35]. The atypical 173 clade was genetically homogeneous, with ANIb values among the six isolates ranging from 99.21% to 174 99.94% (Table 2). Phylogenetic analysis of *rpoB* and 16S rRNA coding sequences was consistent with 175 the distinction of the atypical isolates from C. diphtheriae and C. belfantii (Figures S1 and S2). 176 However, the 16S rRNA gene sequence alignment showed only 3 insertions and 4 nucleotide 177 substitutions shared among the six atypical isolates as compared to C. diphtheriae, resulting in low 178 resolution of phylogenetic relationships (Figure S1). We noted that *rpoB* and 16S rRNA sequences of 179 previously reported atypical biovar Belfanti isolates from cats in the USA [12] were indistinguishable 180 from those of the atypical isolates from France, suggesting that the cat isolates from the USA belong to 181 the same novel group. Supporting this observation, the USA cat isolates were also reported as maltose 182 negative [12].

183 Recently, it was proposed that the *C. diphtheriae* taxon should be subdivided into two 184 subspecies, *C. diphtheriae* subsp. *diphtheriae* and *C. diphtheriae* subsp. *lausannense* [13]. Here, we 185 observed that the ANI value between the type strains of *C. diphtheriae* subsp. *lausannense* and *C.* 186 *belfantii* was 99.3%. Besides, the former was positioned within the phylogenetic branch of *C. belfantii* 187 (**Figure 1, S1 and S2**), and the descriptions of both taxa are very similar [3,13]. Given that *C. belfantii* 188 was validly published in October 2018, a few months before the taxonomic proposal *C. diphtheriae* 189 subsp. *lausannense* was validated

190 (https://www.microbiologyresearch.org/content/journal/ijsem/10.1099/ijsem.0.003174; January 2019),

191 the latter subspecies appears to be a later heterotypic synonym of *C. belfantii*.

192 Based on the MALDI Biotyper Compass database version 4.1.90 (Bruker Daltonics, Bremen,

193 Germany), the six isolates were identified as C. diphtheriae. However, detailed analysis of their

194 spectra led to the identification of six pairs of biomarkers (12 peaks corresponding to the same

195 proteins, with either single and double-charged ion forms) corresponding to three different proteins

196 within the range 3255–9495 m/z, which were associated either with the group of six isolates or with C.

197 *diphtheriae* and *C. belfantii* (Figure S4, Table S4). We presumptively identified the specific

198 biomarkers as two ribosomal proteins, L30 and S20, and one putative stress response protein (CsbD).

199 Consistently, their amino-acid sequences differed between the C. rouxii on the one hand, and

200 *C. diphtheriae/C. belfantii* on the other hand (Figure S5). Based on the current dataset, the specificity

and sensitivity of peak distribution among the three species ranged between 95–100% and 76–100%,

respectively (**Table S4**). MALDI-TOF MS thus allows the discrimination between *C. rouxii* and *C.*

203 *diphtheriae/C. belfantii*. These results warrant future updates of reference MALDI-TOF databases to
 204 incorporate the novel taxon.

Based on the above results, the isolates of the novel clade represent a novel species, which we propose to name *Corynebacterium rouxii*.

Description of *Corynebacterium rouxii* sp. nov. (rou'.xi.i. N.L. gen. n. *rouxii*, of Roux, a French
 scientist and former director of Institut Pasteur who made critical contributions to diphtheria toxin
 discovery and antitoxin treatment).

210 C. rouxii conforms biochemically to the description of C. diphtheriae strains belonging to 211 biovar Belfanti [2,21], except that strains are negative for maltose fermentation (API Coryne), being 212 nearly negative or weakly positive with the Rosco Diagnostica maltose test. Key characteristics that 213 distinguish C. rouxii from other members of the C. diphtheriae complex are specific MALDI-TOF MS 214 biomarkers as described herein. The G+C content of C. rouxii genomes ranges from 53.2% to 53.3%, 215 with a value of 53.3% for the type strain. So far, strains were isolated from 5 humans and a dog in 216 France, as well as from two related cats in the USA. The type strain is $FRC0190^{T}$ (= CIP 111752^{T} = DSM 110354^{T}), isolated in 2013 from a foot 217

ulceration reported in Cahors, France. The genome accession number of strain FRC0190^T is
 ERS3795540.

220	Conflict of Interest
221	The authors declare that the research was conducted in the absence of any commercial or financial
222	relationships that could be construed as a potential conflict of interest.
223	
224	Author Contributions
225	Conceived the study: SB. Performed the experiments: EB, CR, VP, MD, ACL. Analyzed the data:
226	MH, CR, LP, VB, SB. Curated data: VB, MD, EB, JT, SB. Wrote the initial draft of the manuscript:
227	SB, CR, JT. Commented on working versions of the manuscript and agreed on the final version of the
228	manuscript: all.
229	
230	Funding
231	This work was supported financially by Institut Pasteur and Public Health France (Santé publique
232	France, Saint-Maurice, France).
233	
234	Abbreviations
235	ANI: average nucleotide identity; MALDI-TOF: matrix-assisted laser desorption/ionisation time-of-
236	flight
237	
238	Acknowledgments
239	We thank the "Plateforme de Microbiologie Mutualisée" from Institut Pasteur for genomic sequencing,
240	and Prof. Alain Le Coustumier (Centre hospitalier de Cahors, France) for sending the original culture
241	of strain FRC0190 ^T .
242	
243	Data Availability
244	Sequence data generated in this study were deposited in the European Nucleotide Archive database
245	and are accessible under project number PRJEB22103. The EMBL (GenBank/DDBJ) accession

- numbers of the genomic sequences released in this study are ERS3795539 to ERS3795544. The
- 247 annotated genomic sequence of strain FRC0190^T was deposited in the European Nucleotide Archive
- and is available under accession number ERZ1195831. *rpoB* and 16S rRNA gene sequences were also
- submitted individually under accession numbers MN542347 to MN542352 and MN535982 to
- 250 MN535987, respectively.
- 251
- 252

253 **References**

- Yu Q-L, Yan Z-F, He X, Tian F-H, Jia C-W, Li C-T. *Corynebacterium defluvii sp.* nov., isolated from
 Sewage. J Microbiol 2017;55:435–9. https://doi.org/10.1007/s12275-017-6592-3.
- [2] Bernard, KA, Funke, G. Family I. Corynebacteriaeceae. Bergey's Manual of Systematic Bacteriology:
 Volume 5: The Actinobacteria, Springer Science & Business Media; 2012.
- [3] Dazas M, Badell E, Carmi-Leroy A, Criscuolo A, Brisse S. Taxonomic status of Corynebacterium
 diphtheriae biovar Belfanti and proposal of Corynebacterium belfantii sp. nov. Int J Syst Evol Microbiol
 260 2018;68:3826–31. https://doi.org/10.1099/ijsem.0.003069.
- [4] Burkovski A. Diphtheria and its Etiological Agents. In: Burkovski, Andreas, editor. *Corynebacterium diphtheriae* and Related Toxigenic Species, vol. Chapter 1, Springer; 2014, p. 1–10.
- [5] Bolt F, Cassiday P, Tondella ML, Dezoysa A, Efstratiou A, Sing A, et al. Multilocus sequence typing
 identifies evidence for recombination and two distinct lineages of *Corynebacterium diphtheriae*. J Clin
 Microbiol 2010;48:4177–85. https://doi.org/10.1128/JCM.00274-10.
- [6] Trost E, Blom J, de Castro Soares S, Huang I-H, Al-Dilaimi A, Schröder J, et al. Pangenomic Study of *Corynebacterium diphtheriae* That Provides Insights into the Genomic Diversity of Pathogenic Isolates
 from Cases of Classical Diphtheria, Endocarditis, and Pneumonia. J Bacteriol 2012;194:3199–215.
 https://doi.org/10.1128/JB.00183-12.
- [7] Farfour E, Badell E, Dinu S, Guilot S, Guiso N. Microbiological changes and diversity in autochthonous
 non-toxigenic *Corynebacterium diphtheriae* isolated in France. Clinical Microbiology and Infection
 2013;19:980–7. https://doi.org/10.1111/1469-0691.12103.
- [8] Sangal V, Hoskisson PA. Evolution, epidemiology and diversity of *Corynebacterium diphtheriae*: New
 perspectives on an old foe. Infect Genet Evol 2016;43:364–70.
 https://doi.org/10.1016/j.meegid.2016.06.024.
- [9] Thompson JS, Gates-Davis DR, Yong DC. Rapid microbiochemical identification of *Corynebacterium diphtheriae* and other medically important corynebacteria. J Clin Microbiol 1983;18:926–9.
- [10] Anderson JS, Happold FC, McLeod JW, Thomson JG. On the existence of two forms of diphtheria
 bacillus—*B. Diphtheriæ* Gravis and *B. Diphtheriæ* Mitis—and a new medium for their differentiation
 and for the bacteriological diagnosis of diphtheria. J Pathol 1931;34:667–81.
 https://doi.org/10.1002/path.1700340506.
- [11] McLeod JW. The types Mitis, Intermedius and Gravis of *Corynebacterium Diphtheriae*: A Review of
 Observations during the Past Ten Years. Bacteriol Rev 1943;7:1–41.
- [12] Hall AJ, Cassiday PK, Bernard KA, Bolt F, Steigerwalt AG, Bixler D, et al. Novel Corynebacterium
 diphtheriae in domestic cats. Emerging Infect Dis 2010;16:688–91.
 https://doi.org/10.3201/eid1604.091107.
- [13] Tagini F, Pillonel T, Croxatto A, Bertelli C, Koutsokera A, Lovis A, et al. Distinct Genomic Features
 Characterize Two Clades of Corynebacterium diphtheriae: Proposal of Corynebacterium diphtheriae

289 290		Subsp. diphtheriae Subsp. nov. and Corynebacterium diphtheriae Subsp. lausannense Subsp. nov. Front Microbiol 2018;9:1743. https://doi.org/10.3389/fmicb.2018.01743.
291 292 293	[14]	Efstratiou A, George RC. Laboratory guidelines for the diagnosis of infections caused by <i>Corynebacterium diphtheriae</i> and <i>C. ulcerans</i> . World Health Organization. Commun Dis Public Health 1999;2:250–7.
294 295 296	[15]	Pimenta FP, Matias GAM, Pereira GA, Camello TCF, Alves GB, Rosa ACP, et al. A PCR for dtxR gene: Application to diagnosis of non-toxigenic and toxigenic <i>Corynebacterium diphtheriae</i> . Molecular and Cellular Probes 2008;22:189–92. https://doi.org/10.1016/j.mcp.2008.01.001.
297 298 299	[16]	Riegel P, Ruimy R, de Briel D, Prévost G, Jehl F, Christen R, et al. Taxonomy of <i>Corynebacterium diphtheriae</i> and related taxa, with recognition of <i>Corynebacterium ulcerans sp. nov. nom. rev.</i> FEMS Microbiology Letters 1995;126:271–6. https://doi.org/10.1111/j.1574-6968.1995.tb07429.x.
300 301 302	[17]	Pacheco LGC, Pena RR, Castro TLP, Dorella FA, Bahia RC, Carminati R, et al. Multiplex PCR assay for identification of <i>Corynebacterium pseudotuberculosis</i> from pure cultures and for rapid detection of this pathogen in clinical samples. J Med Microbiol 2007;56:480–6. https://doi.org/10.1099/jmm.0.46997-0.
303 304	[18]	Khamis A, Raoult D, La Scola B. rpoB gene sequencing for identification of Corynebacterium species. J Clin Microbiol 2004;42:3925–31. https://doi.org/10.1128/JCM.42.9.3925-3931.2004.
305 306 307	[19]	Hauser D, Popoff MR, Kiredjian M, Boquet P, Bimet F. Polymerase chain reaction assay for diagnosis of potentially toxinogenic <i>Corynebacterium diphtheriae</i> strains: correlation with ADP-ribosylation activity assay. J Clin Microbiol 1993;31:2720–3.
308 309 310	[20]	Badell E, Guillot S, Tulliez M, Pascal M, Panunzi LG, Rose S, et al. Improved quadruplex real-time PCR assay for the diagnosis of diphtheria. J Med Microbiol 2019;68:1455–65. https://doi.org/10.1099/jmm.0.001070.
311 312 313	[21]	Berger A, Hogardt M, Konrad R, Sing A. Detection methods for laboratory diagnosis of diphtheria. Corynebacterium diphtheriae and related toxigenic species: genomics, pathogenicity and applications. Springer, Andreas Burkovski Ed., Springer; 2014.
314	[22]	Efstratiou A, Maple CPA. Laboratory diagnosis of diphtheria 1994.
315 316 317	[23]	Rodrigues C, Passet V, Rakotondrasoa A, Brisse S. Identification of Klebsiella pneumoniae, Klebsiella quasipneumoniae, Klebsiella variicola and Related Phylogroups by MALDI-TOF Mass Spectrometry. Front Microbiol 2018;9:3000. https://doi.org/10.3389/fmicb.2018.03000.
318 319 320	[24]	Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing. J Comput Biol 2012;19:455–77. https://doi.org/10.1089/cmb.2012.0021.
321 322 323	[25]	Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016;32:929–31. https://doi.org/10.1093/bioinformatics/btv681.

- [26] Almeida S, Sousa C, Abreu V, Diniz C, Dorneles EMS, Lage AP, et al. Exploration of Nitrate Reductase
 Metabolic Pathway in *Corynebacterium pseudotuberculosis*. Int J Genomics 2017:9481756.
 https://doi.org/10.1155/2017/9481756.
- 327 [27] Ondov BD, Treangen TJ, Melsted P, Mallonee AB, Bergman NH, Koren S, et al. Mash: fast genome and
 328 metagenome distance estimation using MinHash. Genome Biol 2016;17.
- [28] Criscuolo A. A fast alignment-free bioinformatics procedure to infer accurate distance-based
 phylogenetic trees from genome assemblies. Research Ideas and Outcomes 2019;5:e36178.
 https://doi.org/10.3897/rio.5.e36178.
- Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 2013;30:772–80. https://doi.org/10.1093/molbev/mst010.
- [30] Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm
 for estimating maximum-likelihood phylogenies. Mol Biol Evol 2015;32:268–74.
 https://doi.org/10.1093/molbev/msu300.
- [31] De Zoysa A, Efstratiou A, Mann G, Harrison TG, Fry NK. Development, validation and implementation
 of a quadruplex real-time PCR assay for identification of potentially toxigenic corynebacteria. J Med
 Microbiol 2016;65:1521–7. https://doi.org/10.1099/jmm.0.000382.
- Santos AS, Ramos RT, Silva A, Hirata R, Mattos-Guaraldi AL, Meyer R, et al. Searching whole genome
 sequences for biochemical identification features of emerging and reemerging pathogenic
 Corynebacterium species. Funct Integr Genomics 2018;18:593–610. https://doi.org/10.1007/s10142-0180610-3.
- Soriano F, Zapardiel J, Nieto E. Antimicrobial susceptibilities of Corynebacterium species and other non spore-forming gram-positive bacilli to 18 antimicrobial agents. Antimicrob Agents Chemother
 1995;39:208–14. https://doi.org/10.1128/aac.39.1.208.
- Konstantinidis KT, Ramette A, Tiedje JM. The bacterial species definition in the genomic era. Philos
 Trans R Soc Lond B Biol Sci 2006;361:1929–40. https://doi.org/10.1098/rstb.2006.1920.
- [35] Chun J, Oren A, Ventosa A, Christensen H, Arahal DR, da Costa MS, et al. Proposed minimal standards
 for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018;68:461–6.
 https://doi.org/10.1099/ijsem.0.002516.
- 352
- 353

- **Figure 1.** Phylogenetic relationships derived from the analysis of genomic sequences.
- 355 The phylogenetic tree and branch supports were inferred using JolyTree [28]
- 356 (https://gitlab.pasteur.fr/GIPhy/JolyTree). Strains *C. ulcerans* NCTC 7910^T and *C. pseudotuberculosis*
- 357 ATCC 19410^{T} were used as outgroup as they are the closest phylogenetic neighbors to *C. diphtheriae*,
- 358 *C. belfantii* and *C. rouxii*. Branch support is indicated using grey circles (see key; only values >50 are
- 359 shown). Each taxonomic type strain is shown in bold; note that *C. diphtheriae* subsp. *lausannense* type
- 360 strain falls within *C. belfantii*. The scale bar corresponds to an estimated evolutionary distance of 0.01.

361

362 **Figure S1.** Phylogenetic analysis of 16S rRNA gene sequences.

363 16S rRNA gene sequences of *C. rouxii* isolates have accession numbers MN535982 to MN535987

364 (Table S1). C. diphtheriae strains isolated from domestic cats in the USA [12] were added for

365 comparison (strain codes CD443-CD450; GenBank accession numbers: FJ409572 to FJ409575). Each

taxonomic type strain is shown in bold. The scale bar indicates the number of substitutions per site.

- 367 The sizes of grey circles correspond to bootstrap support of branches (-b 1000 option in IQ-TREE) as
- indicated by the key.
- 369
- 370 **Figure S2.** Phylogenetic analysis of *rpoB* coding sequences.

371 *rpoB* gene sequences of *C. rouxii* isolates have accession numbers MN542347 to MN542352 (Table

372 **S1**). *C. diphtheriae* strains isolated from domestic cats in the USA [12] were added for comparison

373 (strain codes CD443 and CD450; GenBank accession numbers: FJ415317 and FJ415318). Each

taxonomic type strain is shown in bold. The scale bar indicates the number of substitutions per site.

- The sizes of grey circles correspond to bootstrap support of branches (-b 1000 option in IQ-TREE) as
- indicated by the key.
- 377

378 **Figure S3.** Maltose fermentation results.

The maltose test was performed using the Rosco Diagnostica reagents. Tube 1: NCTC 10648, *C*.

380 *diphtheriae* biovar Gravis; Tubes 2 to 7: *C. rouxii* isolates FRC0071, FRC0297, FRC0284, FRC0527,

381 FRC0190, FRC0412; Tube 8: NCTC 10356, *C. belfantii*; Tube 9: NCTC 12077 (*C. ulcerans*, positive

382 control); Tube 10: NCTC 764 (*C. striatum*, negative control).

383

Figure S4. Peak positions (*m*/*z*) observed for strains of C. *diphtheriae*, C. *belfantii* and C. *rouxii*. Stars
denote those peaks that are useful for species identification, as detailed in the corresponding
supplementary Table.

387

Figure S5. Amino acid sequence alignments and the respective molecular weight of the proteins presumptively associated with specific MALDI-TOF MS peaks detected in *Corynebacterium*

390 *diphtheriae, C. belfantii* and *C. rouxii*

391

Table 1 : Strains	s used in this study and t	heir characteristi	cs						
Isolate &	Species	biovar #	Isolation year	Country	Geographic origin @	tox gene	Isolation source	Disease	Reference
FRC0190 ^T	C. rouxii	Belfanti	2013	France	Lot, Cahors	Negative	Cutaneous	Foot ulceration, chronic arteritis	This study
FRC0071	C. rouxii	Belfanti	2011	France	Haute-Garonne, Toulouse	Negative	Cutaneous	Leg ulceration on chronic arteritis - diabetes	This study
FRC0284	C. rouxii	Belfanti	2015	France	Rhone, Lyon	Negative	Cutaneous	Limb amputation - vasculitis	This study
FRC0297	C. rouxii	Belfanti	2015	France	Herault, Beziers	Negative	Ascitic fluid	Spontaneous peritonitis	This study
FRC0412	C. rouxii	Belfanti	2016	France	Lot, Cahors	Negative	Cutaneous	Purulent orbital cellulitis (dog)	This study
FRC0527	C. rouxii	Belfanti	2017	France	Savoie, Chambery	Negative	Cutaneous	Foot ulceration on chronic arteritis	This study
FRC0043 ^T	C. belfantii	Belfanti	2009	France	Corrèze, Brives	Negative	Pharyngeal membrane	Laryngitis	Dazas et al. 2018 IJSEM
06-4305	C. belfantii	Belfanti	2006	France	Rhone, Lyon	Negative	Expectoration	Bronchopathy	Dazas et al. 2018 IJSEM
00-0744	C. belfantii	Belfanti	2000	France	Calvados, Caen	Negative	Expectoration	Cystic fibrosis	Dazas et al. 2018 IJSEM
FRC0074	C. belfantii	Belfanti	2011	France	Cote d'Or, Dijon	Negative	Expectoration	Cystic fibrosis	Dazas et al. 2018 IJSEM
FRC0223	C. belfantii	Belfanti	2014	France	Pas-de-Calais, Coquelles	Negative	Sinusal swab	Sinusitis	Dazas et al. 2018 IJSEM
05-3187	C. belfantii	Belfanti	2005	France	Seine-Maritime, Rouen	Negative	Nasal swab	Rhinitis	Dazas <i>et al.</i> 2018 IJSEM
FRC0250	C. belfantii	Belfanti	2014	France	Bas-Rhin, Strasbourg	Negative	Bronchoalveolar wash	Pneumonia	Dazas <i>et al.</i> 2018 IJSEM
FRC0301	C. belfantii	Belfanti	2015	France	Calvados, Lisieux	Negative	Expectoration	n.a.	Dazas et al. 2018 IJSEM
NCTC 11397 ^T	C. diphtheriae	Gravis	1969	USA	New York, USA	Negative	n.a.	n.a.	Dazas <i>et al.</i> 2018 IJSEM
NCTC 13129	C. diphtheriae	Gravis	1997	United Kingdom	Unknown	Positive	Pharyngeal membrane	Diphtheria	Dazas et al. 2018 IJSEM
FRC0336	C. diphtheriae	Gravis	2015	France	Ille-et-Vilaine, Rennes	Positive	Cutaneous	Leishmaniasis	Dazas et al. 2018 IJSEM
FRC0304	C. diphtheriae	Gravis	2015	France	La Reunion, St Denis	Negative	Cutaneous	Bullous skin lesion	Dazas <i>et al.</i> 2018 IJSEM
FRC0375	C. diphtheriae	Mitis	2015	France	Oise, Creil	Positive	Cutaneous	Ankle ulceration	Dazas et al. 2018 IJSEM
FRC0432	C. diphtheriae	Mitis	2016	France	Seine-et-Marne, Vaires sur Marne	Negative	Cutaneous	Purulent scalp skin injury	Dazas et al. 2018 IJSEM
FRC0157	C. diphtheriae	Mitis	2013	France	Paris	Negative	Cutaneous	Left ankle wound	Dazas et al. 2018 IJSEM
FRC0132	C. diphtheriae	Mitis	2012	France	Yvelines, Le Chesnay (return from Mali)	Negative	Cutaneous	Necrotic lesions	Dazas et al. 2018 IJSEM
FRC0036	C. diphtheriae	Mitis	2009	France	Mayotte, Mamoudzou	Negative	Cutaneous	Burn wound	Dazas et al. 2018 IJSEM
FRC0154	C. diphtheriae	Mitis	2012	France	Haut-Rhin, Colmar	Positive	Cutaneous	Cutaneous infection	Dazas et al. 2018 IJSEM
FRC0049	C. diphtheriae	Mitis	2009	France	Mayotte, Mamoudzou	Positive	Cutaneous	Genital lesion	Dazas et al. 2018 IJSEM
FRC0430	C. diphtheriae	Mitis	2016	France	Rhone, Bron	Positive	Cutaneous	Leg ulcerations	Dazas et al. 2018 IJSEM
FRC0436	C. diphtheriae	Mitis	2016	France	Ille-et-Vilaine, Rennes	Positive	Cutaneous	Cutaneous infection	Dazas et al. 2018 IJSEM
ATCC 19410 ^T	C. pseudotuberculosis	not applicable	1931	n.a.	South America	Negative	Infected gland (sheep)	n.a.	PMID: 13882624 (Cummins, 1962)
NCTC 7910 ^T	C. ulcerans	not applicable	1948	United Kingdom	n.a.	Negative	Throat	n.a.	PMID: 7729671 (Riegel et al., 1995)
# Biovar of C. dip	htheriae as classically defi	ned							
& FRC: collection	n of the French National Rel	ference Center for	the Corynebact	eria of the C. diphth	neriae complex; NCTC: National	Collection of Ty	pe Cultures (Public Health En	gland); ATCC: American Type Culture Collection	
@ Geographic or	igin for French isolates is g	iven as "French D	epartment, city*						
n.a.: not available									

 Table 2. Average nucleotide identity values.

Corynebacterium species	Strain identifier (1)	FRC0071	FRC0190T	FRC0284	FRC0297	FRC0412	FRC0527	NCTC11397T	FRC0043T	NCTC7910T	ATCC19410T
C. rouxii sp. nov.	FRC0071	100	99.60	99.89	99.21	99.37	99.94	92.30	91.22	71.34	70.94
C. rouxii sp. nov.	FRC0190	99.68	100	99.75	99.24	99.34	99.68	92.41	91.36	71.40	70.93
C. rouxii sp. nov.	FRC0284	99.94	99.71	100	99.22	99.35	99.92	92.30	91.28	71.26	70.85
C. rouxii sp. nov.	FRC0297	99.26	99.28	99.27	100	99.29	99.26	92.44	91.43	71.16	70.67
C. rouxii sp. nov.	FRC0412	99.45	99.26	99.40	99.23	100	99.44	92.39	91.37	71.04	70.79
C. rouxii sp. nov.	FRC0527	99.95	99.55	99.85	99.21	99.40	100	92.30	91.27	71.27	70.99
C. diphtheriae	NCTC11397T	92.33	92.45	92.30	92.32	92.34	92.32	100	95.07	71.29	70.86
C. belfantii	FRC0043T	90.92	91.06	90.93	90.99	90.99	90.92	94.77	100	71.12	70.76
C. ulcerans	NCTC7910T	71.42	71.51	71.43	71.32	71.30	71.42	71.40	71.31	100	84.33
C. pseudotuberculos	ATCC19410T	71.31	71.30	71.31	71.25	71.25	71.31	71.19	71.06	84.29	100

(1) A trailing T after the strain identifier denotes that the strain is the type strain of its corresponding taxon

Figure S1: Phylogenetic analysis of 16S rRNA gene sequences

Figure S2: Phylogenetic analysis of *rpoB* coding sequences

Figure S3. Maltose fermentation results (Rosco Diagnostica method)

Figure S4. Peak positions (m/z) observed for strains of C. diphtheriae, C. belfantii and C. rouxii.

Stars denote those peaks that are useful for species identification, as detailed in the corresponding supplementary Table.

Figure S5. Amino acid sequence alignments and the respective molecular weight of the proteins presumptively associated with specific MALDI-TOF MS peaks detected in *Corynebacterium diphtheriae, C. belfantii* and *C. rouxii*.

L30 ribosomal protein alignment

Crouxii_FRC0190T	(M) ALKITQHKGLVGANPKQRKNIAALGLKHINHSVVHQDTPVVRGMVNVVRHMVSVEEVAGE*	61	Mw	=	6513	Da
Cbelfantii_FRC0043T	$(\texttt{M}) \texttt{ALKITQHKGLVGANPKQRKNMAALGLKHINHSVVHQDTPVVRGMVNVVRHMVSVEEVAGE} \star$	61	Mw	=	6531	Da
Cdiphtheriae_NCTC11397T	(M) ALKITQHKGLVGANPKQRKNMAALGLKHINHSVVHQDTPVVRGMVNVVRHMVSVEEVAGE*	61	Mw	=	6531	Da
	(*) ***********************************					

CsbD stress response protein alignment

Crouxii_FRC0190T	(M) SDFENKIER	E F GG	KAKE	AVG	GEATENE	HLADEC	RADQTK	AD i kqa	VSDAG	DKIKG	GAADKVI	60
Cbelfantii_FRC0043T	(M) SDFENKIER	ELGG	KAKE	AVG	GDATENE	QLADEC	RADQTK	ADVKQA	ISDAG	DKIKG	GAADKVI	60
Cdiphtheriae_NCTC11397T	(M) SDFENKIER	ELGG	KAKE	AVG	GEATENE	QLADEC	RADQTK	ADVKQA	VSDAG	DKIKG	GAADKVI	60
	(*) *******	*:**	* * * *	* * *	:****	:****	******	**:***	:****	* * * * *	* * * * * *	
Crouxii_FRC0190T	GSFQKDEEN*	69	Mw	=	7282	Da						
Cbelfantii_FRC0043T	GSFQKDEEN*	69	Mw	=	7225	Da						
Cdiphtheriae_NCTC11397T	GSFQKDEEN*	69	Mw	=	7225	Da						

S20 ribosomal protein alignment

Crouxii_FRC0190T	$(\texttt{M}) \texttt{ANIKSQKKRILTNEKARQRNQAIRSAVRTEIRKFRAAVAAGDKAAAE \texttt{T}\texttt{Q}LRVASRALDK$	60
Cbelfantii_FRC0043T	(M) ANIKSQKKRILTNEKARQRNQAIRSAVRTEIRKFRAAVAAGDKAAAEAQLRVASRALDK	60
Cdiphtheriae_NCTC11397T	(M) ANIKSQKKRILTNEKARQRNQAIRSAVRTEIRKFRAAVAAGDKAAAEAQLRVASRALDK	60
	(*) ***********************************	
Crouxii_FRC0190T	SVTKGVFHRNNAANKKSNMAHALNKMA* 87 Mw = 9493 Da	
Cbelfantii_FRC0043T	SVTKGVFHRNNAANKKSNMAHALNKMA* 87 Mw = 9468 Da	
Cdiphtheriae_NCTC11397T	SVTKGVFHRNNAANKKSNMAHALNKMA* 87 Mw = 9468 Da	

Amino acid substitutions leading to mass changes are represented in bold. Mw, molecular weight.

Table S1 : Strains used in this study and their characteristics									
Isolate &	Species	biovar #	Isolation year	Country	Geographic origin @	Isolation source	Disease	Polymicrobial infection	tox gene
FRC0043 ^T	C. belfantii	Belfanti	2009	France	Corrèze, Brives	Pharyngeal membrane	Laryngitis		Negative
06-4305	C. belfantii	Belfanti	2006	France	Rhône, Lyon	Expectoration	Bronchopathy		Negative
00-0744	C. belfantii	Belfanti	2000	France	Calvados, Caen	Expectoration	Cystic fibrosis		Negative
FRC0074	C. belfantii	Belfanti	2011	France	Côte d'Or, Dijon	Expectoration	Cystic fibrosis		Negative
FRC0223	C. belfantii	Belfanti	2014	France	Pas-de-Calais, Coquelles	Sinusal swab	Sinusitis		Negative
05-3187	C. belfantii	Belfanti	2005	France	Seine-Maritime, Rouen	Nasal swab	Rhinitis		Negative
FRC0250	C. belfantii	Belfanti	2014	France	Bas-Rhin, Strasbourg	Bronchoalveolar wash	Pneumonia		Negative
FRC0301	C. belfantii	Belfanti	2015	France	Calvados, Lisieux	Expectoration	n.a.		Negative
NCTC 13129	C. diphtheriae	Gravis	1997	United Kingdom	unknown	Pharyngeal membrane	Diphtheria		Positive
NCTC 11397 ^T	C. diphtheriae	Gravis	1969	USA	New York, USA	n.a.	n.a.		Negative
FRC0336	C. diphtheriae	Gravis	2015	France	Ille-et-Vilaine, Rennes	Cutaneous	Leishmaniasis	Leishmania spp.	Positive
FRC0304	C. diphtheriae	Gravis	2015	France	La Réunion, St Denis	Cutaneous	Bullous skin lesion		Negative
FRC0375	C. diphtheriae	Mitis	2015	France	Oise, Creil	Cutaneous	Ankle ulceration		Positive
FRC0432	C. diphtheriae	Mitis	2016	France	Seine-et-Marne, Vaires sur Marne	Cutaneous	Purulent scalp skin injury		Negative
FRC0157	C. diphtheriae	Mitis	2013	France	Paris	Cutaneous	Left ankle wound	S. pyogenes	Negative
FRC0132	C. diphtheriae	Mitis	2012	France	Yvelines, Le Chesnay (return from Mali)	Cutaneous	Necrotic lesions		Negative
FRC0036	C. diphtheriae	Mitis	2009	France	Mayotte, Mamoudzou	Cutaneous	Burn wound		Negative
FRC0154	C. diphtheriae	Mitis	2012	France	Haut-Rhin, Colmar	Cutaneous	Cutaneous infection	S. pyogenes	Positive
FRC0049	C. diphtheriae	Mitis	2009	France	Mayotte, Mamoudzou	Cutaneous	Genital lesion		Positive
FRC0430	C. diphtheriae	Mitis	2016	France	Rhône, Bron	Cutaneous	Leg ulcerations	S. pyogenes	Positive
FRC0436	C. diphtheriae	Mitis	2016	France	Ille-et-Vilaine, Rennes	Cutaneous	Cutaneous infection	S. pyogenes	Positive
FRC0071	C. rouxii	Belfanti	2011	France	Haute-Garonne, Toulouse	Cutaneous	Leg ulceration on chronic arteritis - diabetes		Negative
FRC0190 ^T	C. rouxii	Belfanti	2013	France	Lot, Cahors	Cutaneous	Foot ulceration, chronic arteritis		Negative
FRC0284	C. rouxii	Belfanti	2015	France	Rhône, Lyon	Cutaneous	Limb amputation - vasculitis		Negative
FRC0297	C. rouxii	Belfanti	2015	France	Herault, Beziers	Ascitic fluid	Spontaneous peritonitis		Negative
FRC0412	C. rouxii	Belfanti	2016	France	Lot, Cahors	Cutaneous	Purulent orbital cellulitis (dog)		Negative
FRC0527	C. rouxii	Belfanti	2017	France	Savoie, Chambery	Cutaneous	Foot ulceration on chronic arteritis		Negative
ATCC 19410 ^T	C. pseudotuberculosis	not applicable	1931	n.a.	South America	Infected gland (sheep)	n.a.		Negative
NCTC 7910 ^T	C. ulcerans	not applicable	1948	United Kingdom	n.a.	Throat	n.a.		Negative
# Biovar of C. dip	htheriae as classically defir	ned							
& FRC: collection	of the French National Ref	erence Center f	or the Corynebac	cteria of the C. diphtheria	ae complex; NCTC: National Collection of Type 0	Cultures (Public Health Engla	nd); ATCC: American Type Culture Collection		
@ Geographic or	igin for French isolates is gi	ven as "French	Department, city						
\$ Sequence type	is defined at https://pubmls	t.org/cdiphtheria	ae/						
n.a.: not available	1								
a 'T' at the end of	the strain name indicates t	axonomic type s	strains						
£: negative using	API coryne (bioMerieux); in	termediate usin	g Rosco Dignost	ica test (see supplemen	tary Figure)				

Sequence type \$	Nitrate	Glycogen	Maltose	Urease	Genome size	G+C%	Number of contigs	Contig N50	Coverage depth (%)	Genome sequence accession number	Reference
106	Negative	Negative	Positive	Negative	2609417	53.6	156	40698	66	ERS1867695	Dazas et al. 2018 IJSEM
177	Negative	Negative	Positive	Negative	2629949	53.7	165	32494	91	ERS1867696	Dazas et al. 2018 IJSEM
106	Negative	Negative	Positive	Negative	2736533	53.9	140	42875	92	ERS1867697	Dazas et al. 2018 IJSEM
208	Negative	Negative	Positive	Negative	2642382	53.7	159	35757	88	ERS1867698	Dazas et al. 2018 IJSEM
365	Negative	Negative	Positive	Negative	2765539	53.7	185	33077	76	ERS1867699	Dazas et al. 2018 IJSEM
107	Negative	Negative	Positive	Negative	2748440	53.8	146	37603	91	ERS1867700	Dazas et al. 2018 IJSEM
92	Negative	Negative	Positive	Negative	2720797	53.7	159	39690	90	ERS1867701	Dazas et al. 2018 IJSEM
106	Negative	Negative	Positive	Negative	2756747	53.9	190	38471	63	ERS1867702	Dazas et al. 2018 IJSEM
8	Positive	Positive	Positive	Negative	2488635	53.5	1	2488635	100	BX248353.1	Dazas et al. 2018 IJSEM
26	Positive	Positive	Positive	Negative	2463666	53.5	1	2463666	100	LN831026.1	Dazas et al. 2018 IJSEM
412	Positive	Positive	Positive	Negative	2356118	53.4	30	153402	91	ERS1867704	Dazas et al. 2018 IJSEM
102	Positive	Positive	Positive	Negative	2378091	53.5	31	164345	92	ERS1867705	Dazas et al. 2018 IJSEM
389	Positive	Negative	Positive	Negative	2547821	53.6	65	127569	86	ERS1867703	Dazas et al. 2018 IJSEM
432	Positive	Negative	Positive	Negative	2523954	53.7	34	251189	85	ERS1867706	Dazas et al. 2018 IJSEM
167	Positive	Negative	Positive	Negative	2443018	53.6	39	142469	87	ERS1867707	Dazas et al. 2018 IJSEM
251	Positive	Negative	Positive	Negative	2422441	53.7	59	88375	88	ERS1867708	Dazas et al. 2018 IJSEM
97	Positive	Negative	Positive	Negative	2413085	53.6	34	202424	84	ERS1867709	Dazas et al. 2018 IJSEM
91	Positive	Negative	Positive	Negative	2506294	53.6	46	124932	70	ERS1867710	Dazas et al. 2018 IJSEM
184	Positive	Negative	Positive	Negative	2426231	53.5	35	230251	92	ERS1867711	Dazas et al. 2018 IJSEM
217	Positive	Negative	Positive	Negative	2474468	53.7	45	171058	92	ERS1867712	Dazas et al. 2018 IJSEM
217	Positive	Negative	Positive	Negative	2474070	53.7	49	137997	88	ERS1867713	Dazas et al. 2018 IJSEM
181	Negative	Negative	Negative £	Negative	2405963	53.2	30	201570	61	ERS3795539 (rpoB: MN542347; 16S gene: MN535982)	This study
181	Negative	Negative	Negative £	Negative	2417020	53.3	31	215924	78	ERS3795540 (rpoB: MN542348; 16S gene: MN535983)	This study
181	Negative	Negative	Negative £	Negative	2414177	53.2	30	191771	68	ERS3795541 (rpoB: MN542349; 16S gene: MN535984)	This study
537	Negative	Negative	Negative £	Negative	2314268	53.2	35	174067	71	ERS3795542 (rpoB: MN542350; 16S gene: MN535985)	This study
538	Negative	Negative	Negative £	Negative	2390838	53.3	30	191901	80	ERS3795543 (rpoB: MN542351; 16S gene: MN535986)	This study
181	Positive	Negative	Negative £	Negative	2398149	53.2	31	201570	76	ERS3795544 (rpoB: MN542352; 16S gene: MN535987)	This study
NA	Negative	Positive	Positive	Positive	2337763	52.2	1	2337763	100	CP021251.1	PMID: 13882624 (Cummins, 1962)
NA	Negative	Negative	Positive	Positive	2463666	53.5	1	2463666	100	LN831026.1	PMID: 7729671 (Riegel et al., 1995)

Table S2: blastn	results for <i>narKGHIJ</i> nitr	ate reduction g	ene cluster *												
Isolate &	Species	biovar #	narl (DIP_RS138 20)	narJ (DIP_RS138 25)	narH (DIP_RS138 30)	narG (DIP_RS138 35)	narK (DIP_RS138 45)								
FRC0071	C. rouxii	Belfanti	Negative	Negative	Negative	Negative	Negative								
FRC0190 ^T	C. rouxii	Belfanti	Negative	Negative	Negative	Negative	Negative								
FRC0284	C. rouxii	Belfanti	Negative	Negative	Negative	Negative	Negative								
FRC0297	C. rouxii	Belfanti	Negative	Negative	Negative	Negative	Negative								
FRC0412	C. rouxii	Belfanti	Negative	Negative	Negative	Negative	Negative								
FRC0527	C. rouxii	Belfanti	Negative	Negative	Negative	Negative	Negative								
00-0744	C. belfantii	Belfanti	Negative	Negative	Negative	Negative	Negative								
05-3187	C. belfantii	Belfanti	Negative	Negative	Negative	Negative	Negative								
06-4305	C. belfantii	Belfanti	Negative	Negative	Negative	Negative	Negative								
FRC0043 ^T	C. belfantii	Belfanti	Negative	Negative	Negative	Negative	Negative								
FRC0074	C. belfantii	Belfanti	Negative	Negative	Negative	Negative	Negative								
FRC0223	C. belfantii	Belfanti	Negative	Negative	Negative	Negative	Negative								
FRC0250	C. belfantii	Belfanti	Negative	Negative	Negative	Negative	Negative								
FRC0301	C. belfantii	Belfanti	Negative	Negative	Negative	Negative	Negative								
FRC0304	C. diphtheriae	Gravis	Positive	Positive	Positive	Positive	Positive								
FRC0336	C. diphtheriae	Gravis	Positive	Positive	Positive	Positive	Positive								
NCTC 13129	C. diphtheriae	Gravis	Positive	Positive	Positive	Positive	Positive								
NCTC 11397 ^T	C. diphtheriae	Gravis	Negative	Negative	Positive	Positive	Negative								
FRC0375	C. diphtheriae	Mitis	Negative	Negative	Positive	Positive	Negative								
FRC0432	C. diphtheriae	Mitis	Positive	Positive	Positive	Positive	Positive								
FRC0157	C. diphtheriae	Mitis	Positive	Positive	Positive	Positive	Positive								
FRC0132	C. diphtheriae	Mitis	Positive	Positive	Positive	Positive	Positive								
FRC0036	C. diphtheriae	Mitis	Positive	Positive	Positive	Positive	Positive								
FRC0154	C. diphtheriae	Mitis	Positive	Positive	Positive	Positive	Positive								
FRC0049	C. diphtheriae	Mitis	Positive	Positive	Positive	Positive	Positive								
FRC0430	C. diphtheriae	Mitis	Positive	Positive	Positive	Positive	Positive								
FRC0436	C. diphtheriae	Mitis	Positive	Positive	Positive	Positive	Positive								
NCTC 7910 ^T	C. ulcerans	not applicable	Negative	Negative	Negative	Negative	Negative								
ATCC 19410 ^T	C. pseudotuberculosis	not applicable	Negative	Negative	Negative	Negative	Negative								
# Biovar of C. dipl	htheriae as classically defin	ned													
& FRC: collection	of the French National Ref	erence Center f	or the Coryneb	acteria of the (C. diphtheriae	complex; NCT(C: National Col	lection of Ty	pe Cultures	Public Healt	h England);	ATCC: Amer	ican Type Cu	Iture Collect	tion
a 'T' at the end of	the strain name indicates t	axonomic type s	trains												
* Blastn results we	ere considered positive whe	en identity was >	•70% and cove	erage was >90°	%										

C	Penicillin (10 IU)		Penicillin (1 IU)				
Strain	Zone diameter (mm) / CMI (g/L)	SIR	Zone diameter (mm) / CMI (g/L)	SIR			
FRC0071	28.00 / 0.125	S	N.T				
FRC0190T	25.52 / 0.125	S	N.T				
FRC0284	N.T		14.62 / 0.19	R			
FRC0297	N.T		19.04 / 0.064	S			
FRC0412	N.T		6 /0.19	R			
FRC0527	N.T		18 /0.19	R			

 Table S3. Antimicrobial susceptibility data for six C. rouxii isolates

N.T.: Not tested; SIR: interpretation as susceptible (S), intermediate (I) or resistant (R). Note that

Some zone diameter values were defined with an electronic reader (with two decimals); others

Amoxicillin		Oxacillin	Cefotaxime	
Zone diameter (mm) / CMI (g/L)	SIR	Zone diameter (mm) / CMI (g/L)	SIR	Zone diameter (mm) / CMI (g/L)
34.00	S	27.00	S	32.00
36.28	S	21.68	S	29.94
33.90	S	21.06	S	26.64
40.48	S	29.14	S	34.06
24.00 / 0.25	S	24.00	S	25.00 / 1
31	S	26	S	37

at the CMI was determined for all resistant zone diameter values, but only for some suseptible ones

were read manually (no decimals)

	Imipenem		Erythromycin	
SIR	Zone diameter (mm) / CMI (g/L)	SIR	Zone diameter (mm) / CMI (g/L)	SIR
S	41.00	S	34.00	S
S	41.80	S	41.58	S
S	38.70	S	37.76 /<0.016	S
S	46.24	S	40.76	S
R	38.00	S	33.00	S
S	44	S	41	S

Clarithromycin		Azithromycin	Spiramycin	
Zone diameter (mm) / CMI (g/L)	SIR	Zone diameter (mm) / CMI (g/L)	SIR	Zone diameter (mm) / CMI (g/L)
39.00	S	33.00	S	31.00
40.78	S	38.40	S	> 24
38.50 / <0.016	S	37.28 / 0.023	S	32.00
38.84	S	39.22	S	35.86
36.00	S	32.00	S	30.00
44	S	39	S	39

	Pristinamycin		Kanamycin	
SIR	Zone diameter (mm) / CMI (g/L)	SIR	Zone diameter (mm) / CMI (g/L)	SIR
S	36.00	S	27.00	S
S	38.18	S	23.30	S
S	35.56	S	25.08	S
S	40.06	S	28.66	S
S	33.00	S	24.00 / 1	S
S	42	S	31	S

Gentamicin		Rifampicin	Tetracycline	
Zone diameter (mm) / CMI (g/L)	SIR	Zone diameter (mm) / CMI (g/L)	SIR	Zone diameter (mm) / CMI (g/L)
27.00	S	37.00	S	32.00
23.64	S	> 19	S	34.88
25.22	S	34.78	S	31.38
52.46	S	38.10	S	35.32
23.20 / 0.125	S	32.00	S	29.00
32	S	39	S	36

	Ciprofloxacin		Clindamycin	
SIR	Zone diameter (mm) / CMI (g/L)	SIR	Zone diameter (mm) / CMI (g/L)	SIR
S	30.00	S	29.00	S
S	33.96	S	30.70	S
S	33.98	S	29.54 / 0.064	S
S	41.28	S	33.74	S
S	28.00	S	26.00	S
S	38	S	30	S

Sulfonamide		Trimethoprim		Trimethoprim- Sulphamethoxazole
Zone diameter (mm) / CMI (g/L)	SIR	Zone diameter (mm) / SIR CMI (g/L)		Zone diameter (mm) / CMI (g/L)
		N.T	N.T	28.00
29.40	S	37.28	S	36.50
28.16	S	35.20 / 0.125	S	31.26
23.62	S	36.56	S	33.18
23.00	S	29.00	S	31.00
29	S	21	S	28

	Vancomycin		Fosfomycin	
SIR	Zone diameter (mm) / CMI (g/L)	SIR	Zone diameter (mm) / CMI (g/L)	SIR
S	24.00	S	6.00	R
S	26.48	S	6.00 / 1024	R
S	19.84	S	6.00 / >1024	R
S	20.78	S	6.00 / >1024	R
S	16.00 / 0.75	R	6.00 / >1024	R
S	21	S	6.00 / >1024	R

Linezolid		Moxifloxacin		
Zone diameter (mm) / CMI (g/L)	SIR	Zone diameter (mm) / CMI (g/L)	SIR	
N.T.		N.T.		
N.T.		N.T.		
36.54	S	34.00	S	
43.14	S	41.28	S	
28.00	S	31.00	S	
37	S	41	S	

Table S4. MALDI-TOF mass spectrometry peaks useful to discriminate C. rouxii from

C. diphtheriae and C. belfantii.

Decement in	Peak Position	Sensitivity ²	Specificity ³	Possible
Present in	$(m/z)^1$	[95% CI]	[95% CI]	Proteins
C dinkthering and C helfautii	32634	19/21, 90.5%	6/6, 100%	
C. <i>alphineriae</i> and C. <i>beljanili</i>	5205	[69.6%-98.8%]	[54.1%-100%]	Ribosomal protein
	(520	21/21, 100%	6/6, 100%	L30
	0529	[83.89%-100%]	[54.1%-100%]	
	2(104	16/21, 76.2%	6/6, 100%	
	3010*	[52.8%-91.8%]	[54.1%-100%]	Stress response
	5000	18/21, 85.7%	6/6, 100%	protein CsbD
	1222	[63.7%-97%]	[54.1%-100%]	
	45204	21/21, 100%	6/6, 100%	
	4/32*	[83.89%-100%]	[54.1%-100%]	Ribosomal protein
	0.4.60	20/21, 95.2%	6/6, 100%	S20
	9463	[76.2%-99.9%]	[54.1%-100%]	
C rozzii	32554	6/6, 100%	21/21, 100%	
C. rouxu	5255	[54.1%-100.0%]	[83.9%-100.0%]	Ribosomal protein
	6512	6/6, 100%	21/21, 100%	L30
	0512	[54.1%-100.0%]	[83.9%-100.0%]	
	36104	5/6,83.3%	20/21, 95.2%	
	3040	[35.9%-99.58%]	[76.2%-99.9%]	Stress response
	7281	6/6, 100%	21/21, 100%	protein CsbD
	7201	[54.1%-100.0%]	[83.9%-100.0%]	
	4748 ⁴	6/6, 100%	21/21, 100%	
	-7-10	[54.1%-100.0%]	[83.9%-100.0%]	Ribosomal protein
	9495	5/6,83.3%	21/21, 100%	S20
		[35.9%-99.58%]	[83.9%-100.0%]	

CI, confidence interval

¹Position in the spectra using a tolerance of ±0.055%.
²Proportion of true positives that are correctly identified as such.
³Proportion of true negatives that are correctly identified as such.

⁴Double charged ion.