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Abstract 

Chronic inflammatory diseases such as rheumatoid arthritis, inflammatory bowel disease, 

spondyloarthritis and psoriasis cause significant morbidity and are a considerable burden for 

the patients in terms of pain, impaired function and diminished quality of life, as well as for 

society, because of the associated high health-care costs, and loss of productivity. Our 

limited understanding of the pathogenic mechanisms involved in these diseases currently 

hinders early diagnosis and the development of more specific and effective therapies.  

The past years have been marked by considerable progress in our insight of the genetic basis 

of many diseases. In particular, genome-wide association studies (GWAS) performed with 

thousands of patients have provided detailed information about the genetic variants 

associated with a large number of chronic inflammatory diseases. These studies have 

brought to the forefront many genes linked to signaling pathways that were not previously 

known to be involved in pathogenesis, pointing to new directions in the study of disease 

mechanisms. GWAS also provided fundamental evidence for a key role of the immune 

system in the pathogenesis of these diseases, because many of the identified loci map to 

genes involved in different immune processes. However, the mechanisms by which disease-

associated genetic variants act on disease development and the targeted cell populations 

remain poorly understood. The challenge of the post-GWAS era is to understand how these 

variants affect pathogenesis, to allow translation of genetic data into better diagnostics and 

innovative treatment strategies.  

Here, we review recent results that document the importance of the IL-23/IL-17 pathway for 

the pathogenesis of several chronic inflammatory diseases and summarize data that 

demonstrate how therapeutic targeting of this pathway can benefit affected patients. 
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Genome-wide association studies in chronic inflammatory diseases 

Chronic inflammatory diseases are a group of clinically heterogeneous, unrelated conditions 

that share common inflammatory pathways and derive from aberrant immune responses of 

the human immune system. Chronic inflammatory diseases include more than 100 distinct 

clinical disorders and their incidence in Western populations has been estimated to be in the 

range of 5-7%1. To obtain insight into the pathogenic mechanisms of these diseases, 

genome-wide association studies (GWAS) have been performed in several of these 

disorders, including rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), type 1 

diabetes (T1D), multiple sclerosis (MS), juvenile idiopathic arthritis (JIA), primary biliary 

cholangitis (PBC), psoriasis (Pso), Crohn’s disease (CD), ulcerative colitis (UC), and ankylosing 

spondylitis (AS). These studies have highlighted disease associations with many loci linked to 

signaling pathways that were not previously known to be involved in pathogenesis, 

suggesting new directions in the study of disease mechanisms2-12. A substantial number of 

these loci are shared by several chronic inflammatory diseases, a fact that indicates that 

several of the pathogenic pathways may be shared among different disease conditions13.  

Because of haplotype structure, GWAS identify large clusters of single nucleotide 

polymorphisms (SNPs) that are in linkage disequilibrium. Thus, only a small part of the 

genetic variants identified in GWAS are actually causing disease and it remains a challenge to 

distinguish the “causal” variants from “neutral” variants that are linked to the first ones. To 

address this point, Farh et al. have developed an algorithm, Probabilistic Identification of 

Causal SNPs (PICS), based on a statistical analysis of GWAS data to identify causal variants. 

Their algorithm identified a single most likely causal variant (>75% probability) at 12% of loci 

linked to 21 autoimmune diseases14. This relatively low number supports the notion that 

functional studies are necessary to elucidate the biological significance of SNPs linked to 

autoimmunity, and to correlate disease-associated genetic variants with the effector 

mechanisms implicated in pathogenesis. 

 

Identification of the IL-23 receptor as a key molecule for several chronic inflammatory 

diseases 

The identification of the gene encoding the receptor for IL-23, IL23R, as an inflammatory 

bowel disease gene has provided the first evidence for the importance of the IL-23 signaling 

pathway in the pathogenesis of IBD15. This GWAS revealed that a nonsynonymous SNP 

(rs11209026) in the IL23R gene is associated with Crohn’s disease. The rs11209026 variant 

causes an amino acid exchange (Arg381Gln) in the cytoplasmic tail of the IL-23R and confers 

strong protection from the disease15. The rs11209026 association was confirmed in a study 

involving a larger cohort16 and the same variant was also found to be associated with AS17 

and psoriasis18, 19. The same studies also detected additional variants in the IL23R gene, and 

in the 50 kb intergenic region between IL23R and the gene encoding the signaling subunit for 
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IL-12, IL12RB2. One of these variants maps to an enhancer element that our laboratory has 

previously shown to be of critical importance for Th1-specific expression of the IL12RB2 

gene20 and its functional significance has been further investigated in a more recent study21.  

Further evidence that the IL-23 signaling pathway plays an important role in human chronic 

inflammatory diseases comes from studies that have identified associations with variants in 

additional genes encoding critical molecules involved in the IL-23/IL-17 pathway, such as 

variants in the gene encoding the p40 subunit shared between IL-23 and IL-12 (IL12B), which 

are associated with Crohn’s disease16 and psoriasis18, 19; and variants in STAT3, the 

transcription factor relaying IL-23 signals to the nucleus; TYK2, the kinase associated with the 

IL-12Rβ1 subunit of the IL-23R and CCR6, a chemokine receptor preferentially expressed on 

human Th17 cells22, 23, which are associated with Crohn’s disease16.  

 

IL-23 and IL-17-secreting Th17 cells are key players to promote inflammatory diseases in 

mice 

The identification of IL-23, a new member of the IL-12 family of heterodimeric cytokines24, 

has forced a reassessment of the role of Th1 cells in autoimmunity25. IL-12 and IL-23 share a 

common subunit, p40, which is covalently linked to the p35 subunit to form IL-12 or to the 

p19 subunit to form IL-2326. Given the similarities of the two cytokines and the fact that they 

share a common receptor subunit, IL-12Rβ127, it was initially assumed that IL-12 and IL-23 

have overlapping functions. However, subsequent studies demonstrated that IL-23, but not 

IL-12, induced the secretion of IL-17 from activated memory T cells28. It was therefore 

proposed that IL-23 induces the development of a distinct subset of effector CD4+ T cells 

characterized by the secretion of IL-17 (Th17)29, 30. The importance of IL-23 in autoimmune 

inflammation was recognized by analyzing the susceptibility of IL-12 or IL-23 knockout mice 

to the development of autoimmune diseases. Mice with a deletion of the IL-23p19 subunit 

(lacking IL-23), but not mice with a deletion of the IL-12p35 subunit (lacking IL-12) were 

protected from disease in several experimental models of autoimmunity, such as 

experimental autoimmune encephalomyelitis (EAE)30, 31, collagen-induced arthritis (CIA)32, 

and inflammatory bowel disease (IBD)33, 34. Furthermore, mice treated with neutralizing 

antibodies against IL-23 or IL-17 were protected from the development of EAE. Importantly, 

treatment of mice with anti-IL-23 or anti-IL-17 antibodies after disease onset prevented EAE 

relapse, indicating that therapeutic targeting of Th17 cells could be a promising novel 

approach to inhibit autoimmune inflammation of the central nervous system (CNS)35. Taken 

together, these findings provided strong evidence that Th17 cells represent a distinct subset 

of CD4+ T lymphocytes that plays a critical role in chronic inflammation and autoimmunity in 

mice.  

It is, however, important to note that Th17 cells may not be the only T cell subset to 

promote autoimmune inflammation. Subsequent studies demonstrated that both Th17 and 
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Th1 cells induce disease in the EAE model36, 37. Although the clinical symptoms were similar, 

these studies revealed distinct cellular infiltrates and histological characteristics induced by 

Th17 and Th1 cells36  and suggested that the Th17:Th1 ratio is a critical determinant for brain 

versus spinal cord inflammation37.  

These findings provided strong evidence that CD4+ T cell populations with distinct functional 

properties may contribute to autoimmune inflammation and urged for the need of a careful 

analysis of the relative contributions of Th1, Th17, and possibly additional cell populations in 

inflammatory disease. 

 

IL-23 and innate IL-17-producing cells in human pathologies 

IL-23 is important for the expansion and the functional activity of the Th17 cell subset38. 

However, several studies have also suggested that IL-23 may regulate the function of IL-17-

producing innate immune cells, which express the IL-23 receptor (IL-23R) in inflammatory 

disease. In particular, innate lymphoid cells (ILCs) were shown to drive IL-23-dependent 

intestinal inflammation in mice39, and were enriched in the intestine of patients affected by 

inflammatory bowel disease (IBD)40. In addition, a subpopulation of γδ T cells that produces 

IL-17 contributes to experimental autoimmune encephalomyelitis (EAE) in mice41. IL-23R-

expressing γδ T cells are also enriched in the peripheral blood of spondyloarthritis (SpA) 

patients42, and a direct link between IL-23 and tissue inflammation has been established in a 

mouse model of SpA43. Sherlock et al. demonstrated that IL-23 mediates enthesal 

inflammation, the hallmark of SpA, by acting on a small population of CD3+CD4-CD8-IL-

23R+RORγt+ enthesal resident T cells43. The implication of the IL-23/IL-17 axis in this disease 

is also supported by the finding that at least 6 of the non-MHC loci genetically linked with 

SpA are associated with genes in this pathway (RUNX3, IL23R, IL6R, IL1R2, IL12B, TYK2)44. 

Taken together, these data suggest that the inflammatory response in SpA may be the result 

of a complex interplay of different immune cell types and that the IL-23/IL-17 pathway is 

likely to play a key role in chronic inflammation. Understanding the cellular and molecular 

mechanisms that regulate this network of innate and adaptive immune responses is 

therefore of critical importance for the design of rational therapies.  

To address this question, our lab and others have investigated the impact of genetic 

polymorphisms in genes of the IL-23 signaling pathway on the effector functions of CD4+ T 

cells from SpA patients45-47. We have measured the expression levels of Th17 and Th1 

cytokines and transcription factors in stimulated CD4+ T cells isolated from SpA patients, and 

we correlated them with the patients’ genotype at loci genetically associated with SpA. We 

showed that SpA patients carrying risk-associated alleles of genes in the IL23/Th17 pathway 

expressed the highest levels of genes involved in the differentiation and function of Th17 

and Th1 cells, such as IL17A, IL17F, RORC, IFNG, TNF, and TBX21, whereas the presence of 

protective alleles was associated with low-level expression of these genes. In contrast, 
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variation at loci genetically linked to SpA, but not associated with the IL-23 pathway (such as 

ERAP1 and ANTXR2), did not correlate with the expression of Th17 and Th1 genes, 

suggesting that these SNPs may contribute to SpA pathogenesis through distinct cellular 

mechanisms. These data showed that genetic variation at multiple loci within the IL-23/Th17 

pathway, such as IL23R, IL12B and CCR6, affects CD4+ effector functions in SpA patients. Of 

note, the effect of genetic variation on CD4+ T cell function could be detected only in 

activated T cells, but not at steady state, consistent with the context-dependent action of 

expression quantitative trait loci (eQTL) observed in several studies48-50. We also showed 

that the combinatorial action of multiple SNPs at distinct loci, rather than a single genetic 

variant, determined the immune cell functions of SpA patients and we have established a 

hierarchy among the SNPs with respect to their effect on regulating the expression of 

effector molecules using multivariate analysis. These results demonstrate a link between 

disease-associated genetic variants and defined functions of immune cell populations 

involved in the pathogenesis of inflammatory disease.  

 

The tyrosine kinase TYK2: a rheostat implicated in inflammatory and infectious diseases   

A large number of GWAS performed over the past years have identified genetic variants at 

the TYK2 locus that are associated with RA, SLE, T1D, MS, JIA, PBC, Pso, CD, UC, and AS3-12. 

The genetic association of TYK2 variants with at least 10 distinct chronic inflammatory 

diseases suggested that this non-receptor tyrosine kinase plays a central role in the 

pathogenesis of multiple diseases and also provided further evidence for the observed 

sharing of genetic risk factors across diseases13. However, the machanisms of action of TYK2 

variants in pathology remained unclear. 

To address this question, Dendrou et al. have performed comprehensive fine-mapping of the 

TYK2 locus with GWAS data from 36,000 patients and almost 20,000 controls6, 8, 10, 12. Their 

analysis revealed three independent genetic associations; a primary association at 

rs34536443, which is likely the causal variant, a secondary association with rs9797854 as the 

index SNP and a third association with the rs12720356 index SNP51. The rs34536443 minor 

allele was found to be protective across all the 10 chronic inflammatory diseases 

investigated, with odds ratios (OR) between 0.54 (Pso) and 0.80 (MS) for heterozygous 

carriers and 0.1 to 0.3 for individuals carrying both minor alleles. This genetic variant is of 

particular interest because it leads to the exchange of a conserved proline residue in the 

TYK2 catalytic domain to an alanine (P1104A, denoted in the following as TYK2A). To define if 

this amino acid exchange has an effect on signal transduction, the authors studied signaling 

in response to several cytokines in peripheral blood mononuclear cells (PBMC) obtained 

from the Oxford BioBank resource (https://www.oxfordbiobank.org.uk/), which allows the 

recruitment of healthy individuals based on their genotype. TYK2 had initially been identified 

as a molecule of key importance to relay signals by IFN-α and IFN-β via the type I IFN 
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receptor52, resulting in the activation of STAT molecules, in particular STAT1, STAT2 and 

STAT3. Dendrou et al. showed that IFN-α and IFN-β induced significantly less STAT3 

phosphorylation in naïve and memory CD4+ and CD8+ T cells, as well as B cells and 

monocytes from individuals homozygous for the TYK2A allele (TYK2A/A). STAT3 activation was 

much less affected in TYK2P/A individuals that express both TYK2 alleles. In addition to type I 

IFN, TYK2 relays signals by a number of additional cytokines, such as IL-6, IL-10, IL-12, IL-13 

and IL-23.  STAT-activation in response to IL-6, IL-10 and IL-13 was not diminished in TYK2A/A 

individuals, indicating that TYK2 catalytic activity was not required to transduce signals 

elicited by these cytokines. In contrast, both IL-12-induced STAT4 activation and IL-23-

induced STAT3 phosphorylation were strongly diminished in memory CD4+ and CD8+ T cells 

from TYK2A/A individuals, when compared to TYK2P/P carriers51. Of note, the effect of the 

TYK2 P1104A variant on STAT activation was only found in homozygous, but not in 

heterozygous carriers of this variant, consistent with the observed non-additive effect of the 

rs34536443 genotype on disease risk (Figure 1).  

To directly test if the TYK2 P1104A variant could have an impact on the pathogenesis of a 

chronic inflammatory disease, Dendrou et al. generated knock-in mice carrying the 

orthologous P1104A amino acid substitution in Tyk2, which in mice is at position 1124 

(P1124A). Consistent with the data in human cells, B cells, T cells and monocytes from Tyk2 

Ala1124 homozygous mice displayed reduced Stat1-phosphorylation in response to IFN-β 

when compared to cells from Tyk2 Pro1124 homozygotes51. Similarly, Stat4 activation in 

response to IL-12 and IL-23-induced Stat3 activation were diminished in memory CD4+ and 

CD8+ T cells from these knock-in mice. Importantly, following immunization with the 

encephalitogenic myelin oligodendrocyte glycoprotein (MOG) peptide to induce 

experimental autoimmune encephalomyelitis (EAE), an experimental model of human MS, 

heterozygous Tyk2A/P mice displayed decreased disease incidence and severity compared to 

Tyk2P/P wild-type mice. Of note, Tyk2A/A homozygous mice were completely protected 

against EAE51. Cytokine knock-out studies had previously shown that mice with a deletion of 

the IL-23p19 subunit (and thus lacking IL-23), were protected from EAE31. Therefore, the 

observed protection of mice homozygous for the Tyk2 Ala1124 allele is likely to result from 

diminished IL-23 signaling. Consistent with this notion, CNS-infiltrating CD4+ T cells from 

Tyk2A/A mice produced substantially less IFN-γ and IL-17A after immunization with MOG 

peptide. Together, these experiments present an elegant approach of how the impact of 

disease-associated genetic variants identified by GWAS can be studied in an experimental 

disease model. 

Previous studies had shown that TYK2-deficiency is associated with susceptibility to 

tuberculosis and Mendelian susceptibility to mycobacterial disease (MSMD)53, 54. To 

investigate if rs34536443 minor allele homozygotes were more exposed to infectious 

diseases or malignancies, Dendrou et al. screened health records from the donors of the 
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Oxford BioBank resource and of more than 100,000 genotyped individuals of European 

ancestry from the UK. Around 0.2% of Europeans are TYK2A/A homozygotes, however, this 

study found no evidence of increased infectious disease risk in TYK2A/A individuals51. 

A specific role of the TYK2 P1104A variant in predisposing individuals to infectious disease 

has recently been re-assessed by the Casanova lab in two cohorts of patients with 

tuberculosis or MSMD55. Previous work by this lab and by others had shown that autosomal 

recessive deficiencies of IL12RB1 and TYK2 are rare monogenic causes of tuberculosis, each 

found in less than 1/600,000 individuals53, 54, 56-58. In contrast, approximately 1/600 

individuals of European origin are homozygous for the rs34536443 minor allele55. To 

investigate a potential link between rs34536443 and infectious disease, Boisson-Dupuis et al. 

have analyzed whole-exome sequencing (WES) data from 454 patients with tuberculosis, 

463 patients with MSMD and 5339 controls for whom complete WES data were available. 

While only 1 individual homozygous for the rs34536443 minor allele was identified in the 

control cohort, 3 MSMD and 7 tuberculosis patients were homozygous for the rs34536443 

variant in the disease cohorts. This strong enrichment (P = 3.27 x 10-3, OR = 23.53 for MSMD 

and P = 8.37 x 10-8, OR = 89.31 for tuberculosis) suggested that homozygosity for TYK2 P1104 

is a genetic cause for tuberculosis and MSMD. 

To investigate how the TYK2 P1104A variant increased disease risk for tuberculosis and 

MSMD, Boisson-Dupuis et al. studied cytokine signaling in TYK2-deficient EBV B and herpes 

virus saimiri (HVS)-transformed T cell lines. These cells were transduced with retroviruses 

expressing a wild-type (WT), or P1104A-mutant TYK2 cDNA. Expression of any of these TYK2 

constructs restored TYK2 and scaffolding-dependent expression of the type 1 IFN receptor 

chain, IFN-αR1 and of IL-12Rβ1. Boisson-Dupuis et al. noted that IFN-α-induced STAT1-

activation was not reduced in EBV B and HVS T cells transduced with the P1104A TYK2 

variant. Furthermore, IL-12-induced STAT4-activation was similar in HVS-transformed T cells 

transduced with the WT cDNA or the TYK2 P1104A variant. These data contrast the findings 

of Dendrou et al. obtained with primary cells from the Oxford BioBank (see above) but the 

reasons for these discrepancies are currently not known. However, both studies reported 

that IL-23-induced STAT3-activation was severely diminished in cells expressing TYK2 

P1104A51, 55, pointing to a critical role of TYK2 P1104A and IL-23 signaling in infectious and 

chronic inflammatory diseases. Boisson-Dupuis also investigated the molecular mechanism 

by which the TYK2 P1104A variant selectively affected IL-23 signaling. While IL-12 signaling 

can occur in the presence of only one active kinase (JAK2 or TYK2), the authors showed that 

IL-23 signaling required a catalytically active TYK2 enzyme. The reason for this may be a 

different positioning of JAK2 and TYK2 in the IL-12 and IL-23 receptor complexes, which 

determines the different activation modes of these kinases55.   

To provide further support for the notion that IL-23, but not IL-12 signaling is affected by 

TYK2 P1104A, Boisson-Dupuis et al. stimulated whole blood or PBMC from homozygous 
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TYK2A/A patients with BCG in the presence or absence of IL-12 or IL-23. Consistent with the 

observed IL-12-induced STAT4 activation in HVS-transformed T cells expressing a TYK2 

P1104A cDNA, IL-12 increased IFN-γ production in primary cells from patients. In contrast, IL-

23 did not enhance IFN-γ secretion in this setting (Figure 1).  

Although the studies by Dendrou et al. and Boisson-Dupuis et al. did not reach the same 

conclusions in all points, they provide a remarkably detailed view of the molecular 

mechanism by which homozygosity for a rather frequent allele provides strong protection 

against various chronic inflammatory disease, mirrored by high susceptibility to an infectious 

disease51, 55. These two studies showed that TYK2 is a central rheostat controlling 

susceptibility to infections and autoimmunity, which can be tuned by a single genetic 

variant. These findings also suggested that TYK2 could be an interesting drug target in 

chronic inflammatory disease. 

 

Targeting the IL-23/IL-17 pathway, a new therapeutic option for chronic 

inflammatory diseases 

Several clinical trials have been performed over the past years to evaluate if targeting TYK2, 

IL-23 or IL-17 is beneficial for the treatment of chronic inflammatory diseases.  

A recent phase 2 clinical study has tested a small molecule inhibitor of TYK2 in patients with 

moderate-to-severe psoriasis59. This inhibitor (BMS-986165) selectively targets the 

pseudokinase domain of TYK2 and can be administered orally. A total of 267 patients were 

randomly assigned to one of six treatment groups (5 distinct oral doses of the drug or 

placebo) and the intervention period was 12 weeks with an additional 30-day period for 

safety monitoring. Patients included in this trial were not previously treated with drugs 

targeting the same pathway, i.e. IL-12, IL-23 or IL-17 inhibitors. The primary endpoint of the 

trial was a 75% or greater reduction from baseline in the “Psoriasis Area and Severity Index” 

(PASI) score at week 12. The primary endpoint was achieved by 39% of patients receiving 3 

mg of the drug daily and 75% of patients treated with a daily dose of 12 mg of this TYK2 

inhibitor. The safety profile of this new drug appeared to be acceptable. While further 

studies in larger cohorts and over longer durations are needed, this study provided proof-of-

concept that TYK2 inhibition is a valid alternative for the treatment of a chronic 

inflammatory disease59. 

The lymphocytic transcription factor RORγt is necessary for the differentiation and function 

of Th17 cells60. RORγt overexpression increased production from Th17 cells of inflammatory 

cytokines and chemokines, such as IL-17, IL-22, IL-26, CCR6 and CCL2060. Other IL-17 

producing lymphocyte subsets have been shown to express RORγt, including subsets of CD8+ 

T cells, γδ cells, type 3 innate lymphocyte cells (ILC3) and a fraction of iNKT cells. RORγt, 

however, seems to play different roles in the different cell subsets, as demonstrated by the 

selective suppression of cytokine production by Th17 cells caused by RORγt inhibition in the 
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mouse. The functions of intestinal ILC3 were largely spared in this model, suggesting that 

their protective role on the intestinal epithelium may not be affected by this treatment61. 

Similarly, RORγt blockade decreased IL-22 production from human Th17 cells, but not by IL-

17+  γδ T cells or iNKT cells, again supporting differential roles of RORγt for cytokine 

regulation in adaptive and innate immune cells62, 63. The selective action of RORγt, and the 

preservation of a protective mucosa-associated IL-22 response, may suggest that RORγt 

blockade could be effective in Crohn’s disease, where IL-17 blockade had failed62. 

Because of its role in the differentiation and function of inflammatory lymphocytes, RORγt 

appeared to be an interesting therapeutic target for the treatment of chronic inflammatory 

disorders. The majority of RORγt inhibitors have targeted the ligand-binding domain (LBD) of 

the molecule, blocking the binding of co-activators or promoting the recruitment of co-

repressor complexes64, 65. 

The inhibition of RORγt in vitro or in preclinical models impaired Th17 development, and 

increased resistance to EAE or psoriasis development65, supporting a potential usefulness of 

this approach for the treatment of psoriasis and MS in humans. 

However, the development of highly specific inhibitors is not trivial, given the conservation 

of the LBD with other members of the Retinoid-related orphan receptors family, which 

includes RORα  and RORβ. RORγt also shares an identical LBD with the isoform RORγ, which 

displays a broader tissue expression that includes heart, muscle, liver and kidney, raising the 

issue of potential multiorgan toxicity of RORγt inhibition. An additional target of RORγt 

inhibition is the thymus, where this transcription factor is highly expressed in thymocytes at 

the double-positive (DP) stage. Inhibition of RORγt in a mouse model decreased DP 

thymocyte survival and resulted in a limited T cell receptor repertoire diversity66. Additional 

concerns raised by the effect of loss of RORγt in humans or in murine models is an increased 

susceptibility to Candida and mycobacterial infections67, and the development of 

lymphomas68. 

All these findings may explain the fact that, to this day, no RORγt inhibitor has yet reached 

Phase III clinical trials. A Phase II trial in psoriasis of the oral inhibitor VTP-43742 was 

terminated early due to unspecified safety concerns. Several new compounds (see Figure 2) 

have still been tested in Phase I trials, mostly for psoriasis, with only one compound tested 

for MS. The most advanced compound is the inverse agonist GSK-2981278 tested for topical 

use in psoriasis. The results from the Phase II trial have been submitted but are not yet 

publically available (ClinicalTrials.gov NCT03004846).  

 

The IL-23 cytokine has also been targeted directly for the treatment of chronic inflammatory 

diseases, and has shown remarkable results for the treatment of psoriasis. The efficacy and 

safety of ustekinumab, a fully human monoclonal antibody that blocks the p40 subunit of IL-

23 and IL-12, were tested in a phase 2 clinical study69. A 12 weeks treatment of psoriatic 
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patients with ustekinumab resulted in a 75% improvement of the PASI (psoriasis area-and-

severity index) in up to 80% of patients and a 90% PASI improvement in 50% of patients69. 

Two phase 3 studies confirmed these remarkable results70, 71, shifting the paradigm for 

psoriasis treatment from the use of TNF-blockers such as etanercept to the more effective 

IL-12/IL-23 blockers72. While treatment with ustekinumab blocks also IL-12, in addition to IL-

23, a monoclonal antibody that neutralizes exclusively IL-23 bioactivity (risankizumab, which 

binds p19) demonstrated an even higher efficacy in the treatment of psoriasis, supporting 

the pathogenic role of IL-23 in this disease73. 

Increased levels of the IL-17A cytokine can be detected in psoriatic plaques, and antibodies 

that neutralize IL-17A (sekukinumab and ixekizumab) or block the IL-17RA (brodalumab), 

hence inhibiting the activity of several members of the IL-17 family, have been approved for 

the treatment of psoriasis, and have demonstrated a strong efficacy for the treatment of the 

disease. Although neither IL-17A inhibitors nor IL-23 blockers result in a cure of psoriasis, 

these new biologics have revolutionized treatment of this frequent disease (2-3% of the 

general population), with a remarkable impact on the quality of life of psoriasis patients.  

Among the side effects of IL-17 blockade are increased Candida infections, in agreement 

with the role of IL-17 in protective immunity against fungi74. A more concerning side-effect is 

the increased incidence of IBD and worsening of concurrent IBD pathology75.  

Consistently with these side-effects, blocking IL-17A in Crohn’s disease patients was 

ineffective, and actually associated with higher rates of adverse events compared to 

placebo76. A phase 2 study to evaluate safety and efficacy of brodalumab in patients with 

moderate-to-severe Crohn’s disease had to be terminated early, because of the high number 

of cases of worsening of Crohn’s disease in the treatment groups77.  

The detailed mechanisms for the failure of IL-17A inhibitors in Crohn’s disease are not 

completely understood. Studies in mouse colitis models have provided evidence that IL-17A 

plays a central role of in protecting the barrier integrity of the intestinal epithelium, despite 

its potent pro-inflammatory properties78, 79. Using the dextran sodium sulfate (DSS) model of 

colitis, Lee et al. demonstrated that the expression of genes controlling epithelial tight 

junction integrity was not altered in Il17a-deficient mice. They noted, however, that 

increased gut permeability in IL17a-/- mice correlated with abnormal subcellular localization 

of occludin, a tight junction protein. The gut-protective role of IL-17A was abrogated in mice 

that lacked expression of the IL-17 receptor adaptor protein Act-1 (encoded by Traf3ip2) in 

epithelial cells, further supporting the key role of IL-17A in maintaining barrier integrity. 

Finally, Lee et al. showed that γδ T cells were the major source of IL-17A in the gut. 

Interestingly, IL-17A production by these cells was independent from IL-23 signaling implying 

that IL-23-blockade does not affect IL-17A production from innate cells78. Maxwell et al. 

reported similar findings using the multidrug resistance-1a-ablated (Abcb1a-/-) mouse model 

of colitis79. They demonstrated that IL-17A and IL-17RA blockade exacerbated disease in this 
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model, while blockade of IL-12/IL-23 p40 or IL-23 p19 resulted in disease protection. 

Together, these data demonstrate that IL-17A is involved in tissue repair and does not drive 

pathogenic inflammation in the gut, in contrast to what has been shown for other chronic 

inflammatory diseases. These findings are relevant because sub-clinical gut inflammation is a 

common feature of SpA patients80, 81. To determine if IL-17A inhibition could result in 

increased numbers of IBD cases, a very recent study has evaluated the incidence rates of IBD 

in a total of 7355 patients treated with IL-17A inhibitors for psoriatic arthritis (PsA), Pso or 

SpA. In the per year analysis, the exposure adjusted incidence rates (EIARs) did not increase 

over time in patients treated with anti-IL-17A82. 

In contrast with the failure of IL-17 blockade, the inhibition of IL-12/23 with ustekinumab or 

risankizumab in moderate to severe Crohn’s disease resulted in significantly higher response 

rates compared to placebo83, 84, suggesting that the pathogenic activity of IL-23 in this 

disease cannot be explained by the simple induction of IL-17, and indicating that the pro-

inflammatory cytokine activity is context-dependent.  

AS shares with Crohn’s disease the association with several loci linked to the IL-23/IL-17 

pathway, such as IL23R9, 10, 17, and IL-23 overexpression induced an AS-like phenotype in an 

animal model43, suggesting an involvement of this cytokine in human AS and prompting the 

design of clinical studies to test the efficacy of IL-23 blockers. However, the IL-23 inhibitor 

risankizumab failed to demonstrate any significant clinical improvement in patients with 

active  AS, despite the reduction of CRP, an inflammation marker85. These findings were 

unexpected in the light of the effectiveness of IL-17A inhibitors in the same disease86, 87.  

The expansion of several population of IL-17 producing immune cells have been associated 

with AS, including CD4+ Th17 cells88, 89, KIR3DL2-expressing T cells that can engage cell-

surface HLA-B27 homodimers90, and innate cell populations, such as IL-17-producing γδ T 

cells that express the IL-23R42. Baeten and colleagues demonstrated that inhibiting IL-17A in 

30 randomly assigned AS patients with secukinumab significantly reduced clinical and 

biological signs of active AS when compared to placebo and had a good safety profile86. 

These results were confirmed in two subsequent phase 3 trials87, and this treatment is now 

recommended for the treatment of patients with axial spondyloarthritis that fail treatment 

with TNF-inhibitors91. Phase 3 trials have also documented efficacy of anti-IL-17A therapy for 

the treatment of psoriatic arthritis92-94.  

The efficacy of anti-IL-17A therapy in psoriasis and AS but its failure in Crohn’s disease raised 

questions about the mechanism of action of this drug. We have recently started to address 

this issue in collaboration with the team of D. Baeten and analyzed the effects of IL-17A 

inhibition on the immunopathology of target lesions and systemic immune responses in 

peripheral SpA95. We observed that clinical improvement in joint counts was associated with 

decreased synovial expression of IL17A but not of TNF transcripts and with a histologic 

decrease in synovial sublining macrophages and neutrophils. Anti-IL-17A treatment 
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decreased the inflammatory markers CRP and ESR, as well as MMP-3 production in whole-

blood stimulation assays with SEB and zymosan as stimuli. We also noted a marked 

reduction of IL-17A itself. However, the capacity of peripheral blood cells to produce 

additional cytokines and chemokines upon stimulation with SEB and zymosan did not change 

after anti-IL-17A therapy. We concluded that clinical improvement upon anti-IL-17A 

treatment was paralleled by immunomodulation of inflamed target tissues without 

compromising systemic immune responses95. 

Blocking IL-17 is an effective therapeutic approach in SpA, however which cells are 

responsible for IL-17 production in this disease is still debated. Recently, the attention has 

been focused on the innate arm of the immune response, in particular on the role of type 3 

innate lymphoid cells (ILC3s), which have been characterized as important for the secretion 

of proinflammatory cytokines, such as IL-17A and IL-22, in several different tissues. In 

collaboration with the team of D. Baeten we have recently analyzed the synovial tissue of 

patients with peripheral SpA for the presence of ILC subsets, and tested the cytokine 

production of these cells. The analysis of matched synovial tissue (ST), synovial fluid and 

peripheral blood from SpA patients with actively inflamed knee joints showed that ILCs, and 

in particular NKp44+ ILC3s, are expanded in inflamed arthritic joints. Single-cell gene 

expression analysis demonstrated that ILCs infiltrating the synovia were clearly 

distinguishable from T cells in the same tissue, as well as their peripheral blood 

counterparts. A large fraction of ST ILC3s expressed signature transcripts of the IL-23/IL-17 

pathway, including RORC, AHR and IL23R, and secreted IL-22 and CSF2 upon in vitro 

stimulation, however they did not produce IL-17A. This study demonstrated that ILC3s are 

absolutely and relatively enriched in the synovial joint of patients with SpA, but they are not 

a significant source of IL-17A in this tissue96, indicating that additional studies are needed to 

define the cellular sources of IL-17A in this disease. 

The results of clinical trials targeting TYK2 and cytokines of the IL-23/IL-17 axis have been 

very encouraging and have increased the treatment options for several chronic 

inflammatory diseases. However, the unexpected failures of anti-IL-23 in AS and of anti-IL-

17A in Crohn’s disease remind us of our incomplete understanding of the pathogenic 

mechanisms of these diseases and of the biology of the IL-23/IL-17 pathway in humans. 

Achieving better therapeutic outcomes for more patients will require continued investment 

in, and enhanced collaboration between, fundamental and translational science. 
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Figure legends 

Figure 1: The effect of genetic variation at TYK2 rs34536443 on signaling in response to IL-12 

and IL-23 and inflammatory or infectious disease susceptibility. The upper panel shows a 

schematic representation of the IL-12 and IL-23 signaling pathways26, 97. The table 

summarizes data from Dendrou et al. and Boisson-Dupuis et al.51, 55. See text for detail. 

 

Figure 2: Human Th17 cell differentiation and drugs targeting this pathway. Shown are 

several small molecule inhibitors in clinical development (in grey) targeting the RORγt 

transcription factor and approved (in black) monoclonal antibodies targeting IL-23 or IL-17. 
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