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ARTICLE

Community diversity and habitat structure shape
the repertoire of extracellular proteins in bacteria
Marc Garcia-Garcera 1,2* & Eduardo P.C. Rocha 1*

We test the hypothesis that the frequency and cost of extracellular proteins produced by

bacteria, which often depend on cooperative processes, vary with habitat structure and

community diversity. The integration of the environmental distribution of bacteria (using 16S

datasets) and their genomes shows that bacteria living in more structured habitats encode

more extracellular proteins. In contrast, the effect of community diversity depends on protein

function: it’s positive for proteins implicated in antagonistic interactions and negative for

those involved in nutrient acquisition. Extracellular proteins are costly and endure stronger

selective pressure for low cost and for low diffusivity in less structured habitats and in more

diverse communities. Finally, Bacteria found in multiple types of habitats, including host-

associated generalists, encode more extracellular proteins than niche-restricted bacteria.

These results show that ecological variables, notably habitat structure and community

diversity, shape the evolution of the repertoires of genes encoding extracellular proteins and

thus affect the ability of bacteria to manipulate their environment.
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Bacteria use secretion of proteins for numerous biotic and
abiotic interactions1. Secreted enzymes can be used to
scavenge for nutrients. Secreted toxins are involved in

defense against protozoa, virulence towards humans, and antag-
onistic interactions with other bacteria2–4. Other small metabo-
lites are also implicated in interactions among bacteria and of
bacteria with eukaryotes5, but they will not be analysed here. The
functions provided by extracellular proteins come at a significant
cost. Extracellular proteins are costly to secrete, a process usually
requiring energy and specific complex machineries at the cell
envelope6,7. Once outside of the cell, these proteins are lost to the
producing individual and their amino acids cannot easily be
recycled. Furthermore, extracellular proteins can act as public
goods that benefit other bacteria in the community, those with
the ability to benefit from its function, even when they have not
contributed for their production8. For example, enzymes involved
in the degradation of fatty acids or complex polysaccharides
produce simple compounds that can be used by numerous bac-
teria9. Similarly, toxins protecting bacteria from grazing protozoa
provide a public service to bacteria that may have incurred no
cost in their production10. Processes where individuals produce
public goods are prone to social exploitation because bacteria that
do not pay the cost of producing the extracellular protein but reap
the associated benefit may be at an advantage relative to the
producer that pays the cost11–13. As a result, cheaters may rise in
frequency in the population and lead to the collapse of the
cooperative process underlying the production of the public good.
This is analogous to the classical tragedy of the commons in
economic theory, and has received extensive attention in evolu-
tionary biology14,15.

Bacteria produce a large number of extracellular proteins. A
recent study predicted that 6% of the gene families of the pan-
genomes of Proteobacteria encode extracellular proteins16. The
genes encoding these proteins have some peculiarities. First, they
tend to be gained and lost at a high rate, relative to other genes,
and are often encoded in mobile genetic elements (MGEs), most
notably in plasmids13,17. The acquisition of genes encoding
extracellular proteins stabilizes cooperative processes because
bacteria lacking these genes—potential cheaters—may become
co-operators upon infection with the MGE18,19. On the other
hand, extracellular proteins are involved in specific processes—
like competition and scavenging—that are under complex types
of natural selection, including frequency-dependent, fluctuating,
and intermittent selection20–22. Second, extracellular proteins
tend to be composed of amino acids that are less expensive than
average to synthetize13,16. This fits the intuition that the low cost
of these proteins should be under strong selection because they
cannot be recycled and because cooperation is more likely to
evolve when the cost of the process—the extracellular protein—is
low relative to the benefit acquired by the kin in the community
(Hamilton’s rule23). These previous results suggest that the cost of
production and the benefit that these proteins can bring back to
the producer are very important determinants of the selection for
the maintenance (and expression) of the genes encoding the
extracellular proteins.

Selection for the production of public goods depends on
habitat structure and community diversity. Habitat (spatial)
structure tends to stabilize cooperation processes because highly
viscous, or fragmented, habitats increase the probability that
neighbors of the producing bacterium are kin and also producers
of the same proteins24. The patches of genetically related bacteria
created by these structured habitats also result in local environ-
ments that have low functional diversity25, and bacteria may need
to produce more extracellular proteins as a compensation
mechanism. The frequency of genes encoding extracellular pro-
teins is thus expected to increase with habitat structure.

How the frequency of genes encoding extracellular proteins
varies in function of community diversity is harder to predict.
Highly diverse communities are more likely to include individuals
capable of exploiting cooperative processes, e.g., profit from the
action of degradative enzymes produced by other Bacteria. They
are also more likely to have high functional diversity26, i.e.,
require a lower input of functions per species. This is the basis of
the Black Queen model, where bacteria may evolve to lose genes
in order to produce complementary functions in a community27.
Both effects might lower selection for large repertoires of genes
encoding extracellular proteins. On the other hand, diverse
communities are also more likely to include antagonistic inter-
actions between bacteria, which often implicate the use of
secreted proteins such as bacteriocins22.

Many theoretical studies have addressed the conditions for the
stabilization of cooperation processes by production of public
goods (see West et al.14). A few works have experimentally tested
these ideas with secreted proteins or siderophores19. But there has
been little work on how these conditions affect the repertoire of
extracellular proteins of natural microbial populations (for a
recent work on siderophores, see Butaitė et al.28). To assess the
role of environmental traits in the distribution of genes encoding
extracellular proteins, we identified their genes in genomes of
Bacteria. We focused on genomic data, because detection of
extracellular proteins is accurate in genomes29, but not in meta-
genomes. We then searched for these bacteria in 16S rRNA
environmental datasets. We adapted a previously published
method to assess habitat structure30, and used the effective
number of species to characterize community diversity. We then
integrated this information to search for associations between the
frequency of genes encoding extracellular proteins in genomes,
the structure of habitats, and the diversity of communities.

Our analysis shows that bacteria living in more structured
environments encode for more extracellular proteins and higher
diffusibility. However, the association of the latter traits with
habitat diversity is more complex, since it depends on protein
function. Finally, our observations suggest that bacteria able to
colonize multiple environments encode a greater and more
diverse repertoire of extracellular proteins. Overall, our findings
indicate that the features of habitat structure and community
diversity shape the ability of bacteria to interact with their
environment.

Results
Distribution of genes encoding extracellular proteins. We
identified 109,671 genes encoding extracellular proteins—the
secretome—in 8294 out of 10,673 replicons from 5397 bacterial
genomes. We did not include in this analysis outer membrane
proteins, because they are closely associated with the producer
cell, even if our previous works suggest they share many traits
with extracellular proteins16. Extracellular proteins correspond to
1.58% of the proteins for which we could predict a cellular
localization (Supplementary Fig. S1). This is very similar to the
frequency of such proteins previously identified in Proteobacteria
(1.8%, Nogueira et al.16). One should note that because these
genes are usually at low frequency in the species genomes, they
tend to account for a much larger fraction of the pan-genome
(e.g., 5.3% in Mycobacterium haemophilus). Their number is
strongly correlated with genome size (Spearman rho (ρ): 0.81, P <
10−16). To highlight the functions of these proteins, we searched
for sequence similarity between each extracellular protein and the
database eggNOG v. 4.5 (Fig. 1). This shows that these proteins
have very diverse functions.

Around 40% (41,373) of the extracellular proteins lacked
significant hits and could not be annotated this way. Their
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function remained unknown. As expected, proteins involved in
replication, transcription and cell division were significantly
under-represented among extracellular proteins (one-way Wil-
coxon rank test, P < 10−48). In contrast, three categories related
with metabolic activities—on carbohydrates, amino acids
and nucleic acids—were over-represented (Kruskal-Wallis test,
P < 10−18). Other over-represented functional categories in the
secretome include post-transcriptional modification and protein
turnover, cell mobility and secretion, and biogenesis of the cell
envelope (P < 10−12, same test). Finally, the frequency of
extracellular proteins was higher in plasmids (36.3 Mb) than in
chromosomes (11.8 Mb, Wilcoxon rank test, P= 1.29 × 10−89,
Supplementary Fig. 2), as previously reported13,16. This tendency
is valid across all categories of functions of extracellular proteins
for which enough data is available (Supplementary Fig. 3). One

should point out that since chromosomes account for the
majority of genes in genomes, they actually contain more genes
encoding extracellular proteins, albeit at much smaller densities
than plasmids. In short, our dataset reproduces previous results
showing that extracellular proteins are abundant, functionally
diverse, and are often encoded in mobile elements, which should
favor their horizontal transfer.

High habitat structure favors extracellular proteins. Highly
structured habitats tend to favor cooperation, leading to the
hypothesis that Bacteria present in such habitats encode more
extracellular proteins. To test it, we analysed around ten thousand
16S rRNA datasets from five independent broad categories of
habitats—water, sediment, sludge, soil and host-associated—
inspired by a previous work on small extracellular compounds
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Fig. 1 Number of genes encoding extracellular proteins per large taxonomic group and in terms of COG protein function. The colors of the heatmap
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phylogenetic tree of prokaryotes, we constructed a phylogenetic tree using the 16S rRNA phylogeny. The bar plots resume the number of genomes
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(siderophores)30. We searched for the bacterial species of the
genomes on these 16S rRNA datasets to link the environmental
and the genomic data on genes encoding extracellular proteins
(see 16S rRNA data and taxonomic classification). The 16S rRNA
genes of the bacteria included in the analysis were used to build a
phylogenetic tree that allowed to control for the phylogenetic
structure of the data using MCMCglmm31. We found different
frequencies of genes encoding extracellular proteins across
environmental categories (Fig. 2a). We then produced an average
habitat structural score for each OTU. For this, we divided the
16S datasets in environmental categories. Each category was given
a score, following a previous work (Kummerli et al.30), where
poorly structured environments have low score (from
freshwater= 1) and very structured environments have high
score (soil= 4, host= 5). The choice of host as the highest score
is motivated by high habitat fragmentation of host-associated
habitats. Results are qualitatively equivalent if the host category if
removed (Supplementary Table 4). The score for a species is a
function of the structural score of the habitats where the genome
OTU could be found (see classification of habitats in the Methods
section). The average frequency of genes encoding extracellular
proteins is positively correlated with the habitat structural score
(ρ= 0.21, PMCMC < 0.01, Fig. 2b, Supplementary Fig. 4 for non-
binned data). We made the same analysis with the bacteria found
in one single habitat category (136 species, 15% of the total), to
control for the possibly confounding effect of bacteria present in
multiple habitats, and found qualitatively similar results (ρ=
0.32, PMCMC < 0.05). This shows that bacteria encoding more
types of extracellular proteins are more frequent in communities
present in more structured habitats.

In poorly structured habitats, extracellular proteins remain
close to the producer for a short period of time if their diffusion
rates are high. In these conditions, lower rates of diffusion favor
the producers, because they increase the return on the investment
of producing the protein8. To test the hypothesis that diffusion
length evolves in response to habitat structure, we computed
protein diffusion lengths using the Stokes-Sutherland-Einstein
equation with parameters given by the optimum growth
temperature of the bacteria and the molecular weight of the
protein. This analysis revealed lower diffusion lengths of the

extracellular proteins in less structured habitats (ρ= 0.18,
PMCMC= 0.00042) (Fig. 3). Similar results were obtained by
using only bacteria that were identified in a single category of
habitats (ρ= 0.19, PMCMC= 0.00012), and when we made
the analysis per functional subcategory (Supplementary Fig. 8).
These results show that bacteria identified in unstructured
habitats have fewer genes encoding extracellular proteins and
that the latter have lower diffusion lengths. This suggests an
adaptation of the repertoire (and possibly the sequence and
structure) of extracellular proteins to the habitats of the bacteria.

Repertoires of extracellular proteins vary with community
diversity. One might expect bacteria living in highly diverse
communities to encode fewer extracellular proteins because the
probability that other bacteria profit from the public good is
higher. Also, more diverse communities tend to have higher
functional richness and this may decrease the need for the
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production of extracellular proteins. On the other hand, more
diverse communities open the possibility of more diverse ecolo-
gical interactions and these often require extracellular proteins.
This is the case of many antagonistic interactions that take place
through the production of extracellular toxins. Our analysis
revealed no significant correlation between the average diversity
of the habitats of a species - measured by the effective number of
species—and the frequency of genes encoding extracellular pro-
teins (ρ= 0.007, P= 0.7905, Fig. 4a). Superficially, this suggests
lack of association between the frequency of genes encoding
extracellular proteins in a genome and the diversity of the
community.

We tested if this lack of correlation could result from
confounding effects associated with the diversity of functions of
extracellular proteins. We selected two groups of extracellular
proteins that we could class reliably: bacteriocins (involved in
antagonistic interactions) and degradative enzymes (involved in
nutrient acquisition). It should be noted that they correspond to a
small fraction of the entire dataset (8.47%). We found 5166 genes
encoding for bacteriocins, of which 1037 were classified as
extracellular—it’s well known that many bacteriocins require cell
death for dispersion in the environment32—an average of 1.96 per
species. The frequency of genes encoding extracellular bacter-
iocins was higher in bacteria of very diverse communities
(Fig. 4b). The same result was obtained for the analysis of the
set of all bacteriocins (ρ= 0.20, PMCMC= 0.0012). We identified
8280 genes coding for extracellular degradative enzymes, and
their frequency decreased with the average diversity of the
communities where the bacteria could be identified (ρ=−0.16,
PMCMC= 0.0003, Fig. 4c). We evaluated whether these results
could be associated with an uneven distribution of bacteria across
the values of alpha-diversity. Accordingly, we performed the same
analysis 1000 times, using an equal number of 16S rRNA datasets
for each habitat category. In all cases we obtained the same result
(PMCMC < 0.05). These results suggest that the frequency of
extracellular proteins is affected by community diversity. The sign
of this effect depends on the ecological role of the protein.

Cost of extracellular proteins depends on diversity and struc-
ture. Extracellular proteins tend to use amino acids that are less
expensive to produce than the proteins classed as cytoplasmic
(Fig. 5a), confirming previous reports13. Bacteria living in highly

diverse communities should be under stronger selection to lower
protein biosynthesis cost, because exploitation is more likely in
more diverse communities. Indeed, the average amino acid cost of
extracellular proteins was lower in communities with high alpha
diversity (Fig. 5b). These results suggest that bacteria in very
diverse communities endure stronger selection for low-cost
extracellular proteins.

We then hypothesized that selection to lower the cost of
extracellular proteins could be stronger in well-mixed than in
highly structured habitats. This is because direct reward for the
production of these proteins is expected to be lower when
proteins diffuse faster, making the cooperative process intrinsi-
cally more expensive. However, we did not observe an association
between the cost and the habitat structure score (ρ= 0.01,
PMCMC= 0.88). To inquire on the reasons of this result, we
accounted for the possibility that bacteria living in many different
habitats may produce different extracellular proteins in different
habitats. To remove this confounding effect, we did the same
analysis using only the genomes of bacteria found in one category
of habitat. In this case, we observed a positive association between
the degree of structure of the habitat and the average biosynthesis
cost of the extracellular proteins encoded in the genomes of the
species found there (ρ= 0.24, PMCMC < 0.05, Supplementary
fig. 5). Intriguingly, this analysis revealed that the cost of
extracellular proteins is lowest in soil bacteria. To detail this
observation, we computed the distribution of genomic G+C
content in each category of habitat. This revealed that bacterial
genomes’ G+C content is not significantly different across
habitats (average 48%, P > 0.05 for all pairs, Tukey HSD test),
except for soil bacteria, where it’s higher (56%, P < 0.01 same
test). This was observed previously and remains without
explanation33. High G+C genomes, because of the structure of
the universal genetic code tend to over-represent less expensive
amino acids34, and explain the lower cost of soil bacteria proteins.
The genomic G+C content affects both extracellular and non-
extracellular proteins and is not specifically associated with the
object of this study. Removal of soil bacteria shows a stronger
correlation between the biosynthesis cost and the degree of
habitat structure (ρ= 0.38, PMCMC < 0.01).

Generalists encode more extracellular proteins. Bacteria inha-
biting more diverse sets of habitats may require a larger number
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of genes encoding extracellular proteins to cope with the different
characteristics of these habitats. To evaluate this hypothesis, we
counted the number of different habitat sub-categories where
each bacterial species could be found. We observed a significant
correlation between this number and the frequency of genes
encoding extracellular proteins in the genome (ρ= 0.27,
PMCMC= 0.0017). Hence, bacteria found in more diverse habitats
tend to have more genes encoding extracellular proteins.

We detailed this result using three independent analyses. First,
we compared the extremes of our distribution to control for
uncertainty in the identification of habitats. Bacteria identified in
a broad range of environments—generalists—have more genes
encoding secreted proteins than bacteria found in few habitats—
specialists (Wilcoxon rank test, P < 0.01, Fig. 6a). Second, we
controlled for the possibility that small 16S rRNA samples could
result in the classification of some bacteria present at low
abundance as missing, which would tend to class them as
specialists. We thus manually classed as specialists the bacteria
known to be host-specific. This includes obligatory symbionts,
such as intracellular pathogens and mutualists. The frequency of
genes encoding extracellular proteins is greater in generalists than in
host-specialists, even when accounting for genome size (same test,
P= 0.008, Supplementary Fig. 6). Third, we compared generalists
and specialists only for bacteria that are associated to hosts. We
found similar qualitative results (same test, P= 1.3 × 10−4, Fig. 6b).
All these results suggest a positive relationship between the
number of habitats where a bacterium can be found and the
frequency of genes encoding extracellular proteins in its genome.

Discussion
We have shown that the frequency of extracellular proteins
encoded by bacteria depends on habitat structure and community
diversity. Some of the analyses underlying these conclusions
showed a lot of variance that may have multiple causes. First,
metagenomics and genomics data are heterogeneous. To tackle
this, we used many controls (dataset composition, phylogenetic
assignation, functional categories, phylogeny, genome size, and
G+C), resampling, and literature (to identify specialists). Second,

some species assignments may be inaccurate because 16S dis-
criminates poorly between closely related species. Since close
species tend to have similar genome sizes, gene repertoires, and
lifestyles35,36, this may have had little impact on our analysis.
Third, identification of extracellular proteins may be inaccurate.
Secretion signals are poorly known in some clades, even though
we removed the least studied phyla, and can’t be reliably identi-
fied in metagenomes because genes are often truncated and
secretion signals are at their edges1. The use of 16S rRNA datasets
and complete genomes also allowed to introduce controls for the
effects of phylogeny and host genome size (unknown for meta-
genomics contigs). Fourth, species absent from 16S samples are
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necessarily ignored. For example, Bordetella pertussis was not
identified in any of the samples. This is consistent with its very
low prevalence (thanks to the existence of a vaccine), but it also
implies that it could not be used in the analysis of host-
association. Finally, improved measures of diversity, e.g., phylo-
genetic and functional diversity37, will increase the power of
future statistical analyses.

The existence of variability in biological processes is another
source of dispersion in the data. Genome analyses reveal the
presence of a gene, but do not indicate if or when it’s expressed.
They also do not reveal if there are regulatory mechanisms that
decrease the cost of cooperation by favouring gene expression
under conditions of low exploitation, e.g., expression activated by
quorum-sensing38. Our analysis also assumed that habitat
structure favors cooperation. While theory suggests this is often
the case, habitat structure can also increase the relatedness
between potential competitors, which disfavors cooperation and
in extreme cases cancels the effect of kin selection39, leading to no
correlation between the frequency of extracellular proteins and
habitat structure. Finally, we assume the existence of potential
interactions mediated by the extracellular proteins between
organisms present in the same sample. This may not be the case if
densities are very low, if the habitat is very structured, or if the
proteins have no role in the biology of certain species.

In spite of these limitations, we have clearly shown that a
physico-chemical trait of extracellular proteins—diffusion length
—depends on habitat structure. High diffusion length implicates
that extracellular proteins rapidly diffuse away from the producer.
Although this may be selected in certain situations, e.g., the killing
of a multicellular predator, it will tend to be very costly in most
situations because the density of the effector decreases with the
cube of the distance to the producer. This contributes to explain
why bacteria have developed so many mechanisms to deliver
toxins and diverse effectors to other cells by direct contact40.
Because proteins provide more direct rewards to the producers if
they don’t diffuse very quickly in the environment, one expects
stronger selection for proteins with small diffusion length in
bacteria present in poorly structured habitats. This fits our
observations. An analogous result was observed in the study of
smaller molecules: poorly diffusible siderophores are more fre-
quent in species living in unstructured habitats30.

The diversity of communities is also associated with another
biochemical trait of proteins: their amino acid biosynthesis cost.
All extracellular proteins are expected to strongly select for amino
acids that are less costly to synthesize, relative to cytoplasmic
proteins, because these amino acids cannot be recycled when the
protein is degraded. Indeed, the usage of less expensive amino
acids is higher in extracellular than in cytoplasmic proteins, as
initially observed in E. coli13, and later in other genomes41. Here,
we extend these previous observations by showing that highly
diverse communities over-represent proteins with less expensive
amino acids relative to less diverse communities. Under Hamil-
ton’s rule42, altruism evolves when the product of the benefit (b)
and the relatedness of the individuals benefiting from altruism (r)
is higher than the cost (c) of the process to the producer (i.e.,
when b.r > c). This provides an explanation for our results. When
cooperative processes depend on the production of an extra-
cellular protein, the cost of the protein shapes the cost of the
cooperative process and thus its evolutionary stability. As a
consequence, one expects stronger selection to lower the cost of
extracellular proteins when the risk of exploitation is higher
(more diverse communities).

The variation in the characteristics of proteins in function of
community diversity and habitat structure can be explained by
two different mechanisms. First, by natural selection of the events
of gain and loss of genes encoding extracellular proteins. The

gene repertoires of these proteins are known to change constantly
by horizontal transfer and gene loss13,16. Our results suggest that
the probability of retention of recently acquired genes encoding
extra-cellular proteins may change in function of environmental
traits—such as habitat structure and community diversity—
because these affect the efficiency of selection for expensive and
rapidly diffusing proteins. Bacteria in well-mixed habitats or
diverse communities will require stronger natural selection to
maintain certain types of extracellular proteins. Second, recently
acquired protein sequences may evolve, by natural selection of
mutations decreasing production costs and lowering diffusion
lengths, to adapt the extracellular proteins to the species’ habitat.
Disentangling the relative importance of the two mechanisms,
gene repertoire variation and protein sequence evolution, will
require the analysis of within-species polymorphism of nucleotide
sequences and of gene frequencies. This will require many strains
for each species because these genes are present in a small
number of strains of a species16. At the moment these are
available in sufficient number only for very few species, mostly
host-associated. The rapid growth of genome databases, including
genomes assembled from metagenomes, will soon make such
analyses possible.

The effect of community diversity on the frequency of genes
encoding extracellular proteins seems to depend on the function
of the extracellular protein. We observed that degradative
enzymes are less frequent in more diverse communities, in line
with the idea that bacteria growing in species-poor communities
will more often invest in extracellular proteins allowing to sca-
venge the environment for resources. One could have envisaged
the hypothesis that higher competition for nutrients in more
diverse communities would result in a higher number of genes
encoding degradative enzymes. We do not observe such an effect
in our data, possibly because such competition may have a
stronger effect on the level of expression of enzymes than on their
functional diversity. In contrast, the frequency of extracellular
bacteriocins does increase with community diversity. These
results raise the hypothesis that host species-rich communities,
like the gut lumen, have many genes encoding extracellular
proteins involved in antagonistic interactions with other
microbes. This antagonistic interaction could have a strong
impact in the protective role of the native microbiota against the
colonization by opportunistic pathogens43.

The association between habitat structure and the frequency of
extracellular proteins, explains that host-associated bacteria have
some of the highest frequencies of genes encoding extracellular
proteins. This fits previous studies showing that structured
habitats favor the production of extracellular toxins44, and the
numerous observations that extracellular proteins are key viru-
lence factors in most bacterial pathogens45 and key components
of mutualistic interactions46. Bacteria that shift between highly
structured and poorly structured environments can cope with this
using genetic regulation. For example, Pseudomonas aeruginosa
decreases the production of extracellular proteases and toxins in
unstructured habitats leading to a loss of virulence47. Bacteria
may also evolve mechanisms to tackle directly the exploitation of
extracellular proteins by non-producers or rapid protein diffusion
in poorly structured habitats. For example, kin recognition using
quorum-sensing allows to restrict the production of public goods
to when the bacterium is surrounded by producers48. Other
mechanisms include the privatization of the extracellular protein
(the case of many beta-lactamases in Proteobacteria49), the
restriction of the expression of extracellular components to
appropriate environments50, the niche construction leading to
increased habitat structure favouring cooperation by the pro-
duction of biofilms or phase separation through Type 6 Secretion
killing51, and the development of antagonistic interactions with
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non-kin to deplete the local environment from cheaters52.
In conclusion, Bacteria encoding many different extracellular
proteins tend to be identified in structured habitats, but the
others can still mitigate the cost of extracellular proteins by
several means.

Whether host-associated or not, we found that generalists
dedicate a larger fraction of their gene repertoires to extracellular
proteins than specialists. This effect can be explained in several
ways. Extracellular proteins may affect bacterial growth by facil-
itating the use of available nutrients. In this case, the genomes
with a more diverse repertoire of extracellular proteins are those
able to grow in a larger range of habitats. This is likely to affect
the frequency of genes encoding proteases, lipases, or hemo-
phores. This situation is analogous to that of small compounds
secreted to scavenge iron53,54. Extracellular proteins also provide
advantages during colonization when they clear the niche from
competitors, contributing to explain why toxins are more fre-
quent in bacteria of highly diverse communities. This in line with
works showing that extracellular proteins are key factors on the
range expansion of pathogens, by allowing them to adapt to new
hosts or modify them to their benefit55. It’s interesting to remark
that bacteria able to produce broad-host range antibiotics, which
are extracellular small molecules, tend to be generalists that
inhabit the highly diverse communities of strongly structured
habitats in the soil.

In this work, we have specifically focused on extracellular
proteins and their potential role as public goods. We expect that
many of our results will hold when applied to the study of other
extracellular compounds when these are costly public goods. The
larger implication of our work is that the gene repertoires of
extracellular proteins of bacteria, which determine their ability to
use and change their environment, depend on the characteristics
of the habitat and the community. This may contribute to explain
why some toxins are secreted directly into other cells using
expensive protein secretion systems or just secreted to the
extracellular space. It may also explain why the repertoires of
extracellular proteins vary so widely across bacteria. Finally, it
shows the importance of putting together biochemical (bio-
synthesis cost, diffusivity) and ecological information (habitat
structure, community diversity) in an evolutionary context.

Methods
16S rRNA data and taxonomic classification. We collected 11,649 16S rRNA
amplification datasets from MG-RAST (last accessed: march 2015). The datasets
had very diverse sizes, with an average size of 100,473 sequences per dataset
(Supplementary data 1 and Supplementary Fig. 7). We removed those containing
non-ribosomal data or less than 2000 sequences. For this, we queried the sequences
of each set for similarities to a 16S rRNA profile using SSU-align v. 1.0.156 using
the search algorithm and default parameters. SSU-align uses the conserved sec-
ondary structure and sequence of SSU rRNA to identify these sequences. A total of
2329 datasets containing less than 85% of sequences matching the 16S profile were
regarded as having low quality and were discarded, leaving 9320 datasets for fur-
ther analysis (Supplementary Fig. 8).

Sequences were aligned against the same structural profile with SSU-align using
the search & global_align algorithm, in order to obtain multiple sequence
alignments. The multiple alignments were trimmed using trimal v 1.457 using the
automated1 algorithm. The resulting trimmed sequences were clustered into
redundant groups of 99% identity using the uclust algorithm from usearch v.
9.0.213258. A reference sequence was selected for each redundant group from each
dataset, by selecting the closest sequence to the centroid coordinates. We then
defined a global catalog of operational taxonomic units (OTU) for the whole
dataset by clustering the reference sequences with usearch into reference OTUs of
97% identity. The reference sequences of each OTU were classified taxonomically
against the RDP databases59 at species level using blastn v. 2.2.26+ with a
minimum e-value of 10−5 and a minimum coverage of the query 16S rRNA of 80%.
We discarded the 38% of the reference sequences that could not be classed in
a genus.

Diversity indexes. We used the expected number of species (ENS) as a metrics of
the alpha diversity of each 16S rRNA dataset60. In order to calculate it, we first used

the Shannon diversity index (H′):

H0 ¼ �
XR

i¼1

pilnðpiÞ; ð1Þ

where pi is the relative frequency of a specific species in the dataset (the number of
sequences associated with the species divided by the total number of sequences
assigned to species), and R is the number of datasets.

Based on the Shannon diversity, we calculated the ENS as the exponential of the
Shannon diversity:

ENS ¼ eH
0
: ð2Þ

Finally, we calculated the average values of ENS for the set of habitats where a
species (i) was identified. This was defined as the average value of ENS across the
samples (j) where it’s present:

Sp ENSi ¼
PNdi

j¼1 ENSj
Ndi

; ð3Þ

where Ndi is the number of datasets where the species was found. In order to avoid
biases associated with the over-representation of specific habitat categories, we
made 1000 random samples of an equal number of datasets for each category, and
calculated each diversity index as the mean of all measurements (the values can be
found in Table S2).

Classification of habitats. The 9320 16S rRNA datasets were classified in terms of
habitat using a previously defined nomenclature36, in seven main categories (water,
sediment, wastewater/sludge, soil, and host-associated), and 21 sub-categories
(henceforth called sub-environments) (Supplementary Data 1 and Table 1).

These categories were divided in five broad groups of increasing habitat
structure, and we assigned an integer (h) (from 1 to 5) to each one of them using
the method of Kummerli et al.30, to which we removed the distinction of freshwater
and marine water, and added a category for Wastewater/Sludge. The rationale
behind this classification is associated to the habitat fragmentation generated by its
structure; unstructured habitats such as water are seen as a continuum, where any
solute molecule has the capacitiy to diffuse freely according to its molecular mass,
while highly structured habitats (including soil or host-associated), have physical
barriers that create microenviroments, preventing the free distribution of
molecules. The habitat structure score h was given as follows: natural aquatic,
including freshwater and marine environments (h= 1), sedimentary soils from
aquatic environments (h= 2), wastewater/sludge (h= 3), soil (h= 4), and host-
associated (h= 5).

Bacterial species were assigned a habitat structure score (habSS) according to
the dataset (i) where they were identified (Supplementary data 3):

habSSB ¼
XnB

i¼1

hi � ci;B
Tb

; ð4Þ

where nB is the number of 16S rRNA datasets where the bacterial species B was
identified (see Genomic data, taxonomic classification and phylogenetic
reconstruction on how species were assigned to OTUs), ci;B is the number of 16S
rRNA reads assigned to species B in the dataset i, Tb is the total number of reads in
the datasets associated to species B, and hi is the value of the habitat structure score
for sample i.

Finally, 17 species (1% of the total number) were not found in the 16S rRNA
data and could not have a score computed from the data. The environmental
structure score of these species was attributed from literature data. 10 out of these
17 species were characterized as obligatory symbionts, including species such as
Brucella melitensis, Chlamydia psittaci, Dyckeia dadantii, Mycobacterium
tuberculosis, Treponema pallidum, Rickettsia felis, or Sulcia muelleri, among others.
The other seven species included bacteria isolated from soil (Geobacter lovleyi,
Pimelobacter simplex, Solibacillus sylvestris, Streptomyces avermitilis), sea water
(Echinicola vietnamensis, Synecococcus sp. WH7803.), or from highly specific
environments, such is the case of Kinecoccus radiotolerans, a soil-associated
bacterium isolated from nuclear waste-contaminated sediments61.

Identification of generalists and specialists. The classification of species into
generalists and specialists was performed as follows. We first counted the number
of different habitat sub-categories where each bacterial species was identified. In
order to account for the prevalence of each species in each habitat sub-category, we
calculated the average frequency of each species in each sub-category. The final
number of habitats (E) was then weighted by the relative frequency of the species in
each habitat sub-category, using the formula:

Ei ¼
Xt

j¼1

Fij; ð5Þ

where Fi;j stands for the average frequency of the species i in the sub-category j.
From the previous equation, we defined four datasets: species in dataset A,

henceforth called specialists, includes the species found in the first quantile of the
distribution of the number of habitats (E). Within the specialists, Dataset B (host
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specialists) was defined by those bacterial species in (A) known to have a strict
relationship with hosts, according to the literature61. Dataset C, henceforth called
generalists, includes the species found in the last quantile of the distribution.
Finally, Dataset D (host-generalists) included the species in C that are found in
hosts. We also identified 136 specialist species (889 genomes, 15%) which were
only found in one habitat, and which were used as a validation dataset.

Genomic data, taxonomic classification, and phylogenetic reconstruction. We
retrieved all the 5775 completely assembled genomes, including 4794 plasmids,
available in GenBank RefSeq (Supplementary data 4, last accessed November
2016). We made two filters on this dataset, one on the number of taxa per phyla,
another associated with the 16S mapping procedure. First, to have enough statis-
tical signal, we restricted our analysis to phyla with at least 50 sequenced genomes,
resulting in 3922 genomes. We then matched the 16S of the genomes to those of
the 16S datasets. For each genome, a representative 16S sequence was extracted
from the genome and was aligned using SSU-align with the bacterial structural
model. The newly aligned representative sequences were manually trimmed at both
edges to adjust the size to the 16S rRNA dataset62. The sequences were assigned to
a species level using the RDP classifier from the RDP database. The assignation was
performed using the Lowest Common Ancestor algorithm, which identifies the
lowest convergent taxonomic assignation for all the significant hits of each align-
ment63. Genomes with ambiguous species classification, i.e., classed in several
different species with similar confidence levels, where discarded from further
analyses, leaving a total of 1104 species and 3817 genomes.

Since the results are controlled for phylogenetic structure, there is no need to
remove further phylogenetic redundancy from the datasets. The 16S rRNA
alignment containing the representative sequences of the remaining genomes was
used to build a phylogenetic tree using IQ-tree64, which identified the substitution
model GTR+F+I+G4 as the best (based on the Bayesian Information Criterion).
Thousand Bootstrap trees were constructed to determine the topology support at
each node.

Identification of extracellular proteins, taxonomic, and functional classifica-
tion. We predicted the sub-cellular location of the proteins encoded in the genomes
included in the analysis (see Genomic data, taxonomic classification, and phylo-
genetic reconstruction) using PSORTB v 3.129. The PSORTB model was selected
based on the species’ monoderm/diderm classification (taken from the literature)61.
Only proteins classified as “extracellular” by PSORTB and lacking transmembrane
domains where considered in our study. Proteins not matching these criteria were
discarded. When more than one genome was available per species, we computed
the average number of proteins per genome for that location (Supplementary
data 5). Extracellular proteins were functionally classified by searching for sequence
similarity, using HMMsearch from HMMer v.3.1.2b65, in the eggNOG v. 4.5
database66. We only considered hits with an e-value ≤10−5 and more than 50%
similarity. Since different HMMs may be associated to the same functional category
in different taxa, we kept the functional annotation of the best hit when more than
half of the hits were associated to that same category (otherwise it was marked
unknown).

Three functional categories were explored more carefully. First, we
characterized the repertoire of extracellular bacteriocins. To do so, we searched for
similarities to the extracellular proteins in the two bacteriocin databases Bagel and
Bactibase67,68 using HMMer. We kept the hits with an e-value < 0.05 and more
than 50% coverage of the query sequence (Supplementary Table 2). Second, we
identified the extracellular proteins with a degradative activity. We selected
enzymatic activities often associated to the extracellular environment: amidase,
amylase, cellulase, chitinase, dipeptidase, glycosyl hydrolase, invertase, inulinase,
keratinase, and pectinase69. For each degradative enzyme, we collected all
previously validated bacterial protein candidates by searching for specific keywords
in Uniprot170. We clustered them using usearch with the “cluster_smallmem”
algorithm at 70% identity. We aligned the sequences of each cluster using mafft v.7
with the local pairwise alignment option and a maximum 1000 iterations (“linsi”
option)71. The resulting multiple alignments were used to build protein HMM
profiles using hmmbuild from HMMer. HMM profiles were queried against the
extracellular proteins previously predicted. Hits with more than 40% identity and
less than 20% difference in length for the smallest of either the protein or profile
where kept, and the best hit was used to classify them (Supplementary Table 2).

Quantification of chemical properties of extracellular proteins. We estimated
the diffusion length of a protein (d), as in Bard and Faulkner72:

d ¼
ffiffiffiffiffi
Dt

p
; ð6Þ

where D is the diffusion coefficient and t the time in seconds.
In aqueous solution, D can be estimated using the Stokes-Sutherland-Einstein

equation as proposed by Kalwarczyk et al.73:

D ¼ kT
6πηrp

; ð7Þ

where k is Boltzmann’s constant, T is the temperature of the solvent, and η is the
viscosity on the solvent. Finally, rp is the hydrodynamic radius of a protein, which

can be calculated according to its molecular weight (Mw):

rp ¼ 0:0515M0:392
w ; ð8Þ

We computed the diffusion coefficient for cytoplasm and water, using viscosity
values from the literature74,75. Given the lack of data on the temperatures
associated to the environments where the different species could be isolated, we
decided to make the simplification that bacteria are in habitats close to their
optimal growth temperature ðToÞ. For each complete genome included in the
analysis, we calculated To as in Vieira-Silva et al.76.

Extracellular proteins are predicted to be costly because their constituents
cannot be recycled easily13. To evaluate the effect of the metabolic cost in the
environmental distribution, we calculated the biosynthetic cost (in ATP
equivalents) per amino-acid for each protein, suing a previously published
method77 (Supplementary Data 6).

Statistical analyses. We evaluated the phylogenetic effect of the association between
the diffusion coefficient of extracellular proteins and the habitat structure, using the R
package MCMCglmm31. We used the phylogenetic tree of the 16S rRNA sequences as
a random factor in the model, according to the package guidelines, with a variance
limit to 1. For each analysis, we used 300,000 model iterations with a starting burn-
out phase of 50,000, sampling every 100 iterations. From the posterior distributions
obtained in this Bayesian analysis, we extracted the PMCMC (used here as P-value). A
low (non-significant, alpha= 0.05) PMCMC indicates that we cannot exclude the
possibility that associations are simply due to phylogenetic structure.

Given the bias towards host-associated habitat datasets in the public
repositories, we controlled each correlation test by performing 1000 random
samplings of an even distribution of habitats. In all cases, we observed equivalent
results for all replicates.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
All datasets (bacterial genomes and 16S rRNA) used in this work are publicly available.
To know more about the repositories and reference IDs, please refer to Methods and
Supplementary dataset 1.
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