
HAL Id: pasteur-02624137
https://pasteur.hal.science/pasteur-02624137

Submitted on 26 May 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

The NEMO Dots Assembly: Single-Particle Tracking
and Analysis

Jean-Yves Tinevez, Sébastien Herbert

To cite this version:
Jean-Yves Tinevez, Sébastien Herbert. The NEMO Dots Assembly: Single-Particle Tracking and
Analysis. Kota Miura; Nataša Sladoje. Bioimage Data Analysis Workflows, Springer, Cham, pp.67-
96, 2019, 978-3-030-22385-4. �10.1007/978-3-030-22386-1_4�. �pasteur-02624137�

https://pasteur.hal.science/pasteur-02624137
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

© The Author(s) 2020
K. Miura, N. Sladoje (eds.), Bioimage Data Analysis Workflows, Learning Materials in Biosciences,
https://doi.org/10.1007/978-3-030-22386-1_4

67

The NEMO Dots Assembly:
Single-Particle Tracking
and Analysis
Jean-Yves Tinevez and Sébastien Herbert

4.1 Introduction – 68

4.2 Datasets – 69

4.3 Tools and Prerequisites – 70

4.4 Workflow – 70

4.5 Single-Particle Tracking with TrackMate – 71
4.5.1 Step 1: Loading Image Data and Launching TrackMate – 71
4.5.2 Step 2: Detection – 72
4.5.3 Step 3: Filtering – 73
4.5.4 Step 4: Particle-Linking – 76
4.5.5 Step 5: Filtering Tracks – 79
4.5.6 Step 6: Export Results – 81

4.6 Motility Analysis with Mean-Square
Displacement – 82

4.6.1 Step 1: Importing Tracks into MATLAB – 82
4.6.2 Step 2: Create and Add Data to the MSD Analyzer – 85
4.6.3 Interlude: A Short Word About Mean-Square Displacement

Analysis – 87
4.6.4 Step 3: Compute the Mean-Square Displacement – 88
4.6.5 Step 4: Log-Log Fit of the Mean-Square Displacement – 90
4.6.6 Step 5: Analysis of the Log-Log Fit – 91

4.7 Results and Conclusion – 94

 Bibliography – 95

4

https://doi.org/10.1007/978-3-030-22386-1_4
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22386-1_4&domain=pdf

68

4

What You Learn from This Chapter
The aim of this chapter is to learn the principles and pitfalls of single-particle tracking (SPT).
Tracking in general is very important for dynamic studies, as it is about propagating object
identities over time, permitting the calculation of dynamic quantities such as object veloci-
ties. Tracking is often the first step in analyzing dynamics.

The output of tracking is simply tracks, and later steps involve computing relevant
quantities from these tracks. In the case of the applications we use in this module, we
wanted to learn something about the particles we track, which are unknown organelles (at
the time of the publication) appearing transiently in cells upon stimulation by an interleu-
kin. Namely we want to determine whether they are bound to a structure, transported or
freely diffusing. To do so, the analysis is completed by performing a Mean Squared-
Displacement (MSD) analysis.

4.1 Introduction

The data and analysis we will perform in this module is taken from the following paper:
TNF and IL-1 exhibit distinct ubiquitin requirements for inducing NEMO-IKK supramo-
lecular structures, Tarantino et al. (2014). In particular, we will reproduce the analysis of
the paragraph “NEMO-containing punctae are slow-moving anchored structures located
close to the cell surface”.

Nuclear factor KB (NF-KB) essential modulator (NEMO) is a regulatory component
of the IKB kinase (IKK) complex and controls NF-KB activation through its interaction
with ubiquitin chains. The work of Emmanuel Laplantine focuses on the mechanics of
NF-KB regulation by ubiquitination. Recently, his lab showed that NEMO, a component
of the IKK complex, is crucial for NF-KB activation and the linear ubiquitination by K64.
Patients with a deficiency in the linear ubiquitination machinery enabled to correlate their
symptoms with a defect in NF-KB activation by cytokines. This project aims at investigat-
ing the details of the NF-KB activation initiated by stimulation by IL-1 and TNF.

We engineered cells that were expressing constitutively NEMO-eGFP from a NEMO-
deficient human fibroblast cell line. They allowed us to follow NEMO dynamics using
high-resolution microscopy. The most marking result of the project is that stimulation
with interleukin-1 (IL-1) and TNF induces a rapid and transient recruitment of NEMO
into punctate structures. These structures appear briskly, probably assembling from a pool
of NEMO soluble in the cytoplasm, and roughly constant in quantity in the cell over time.
They disassemble in, on average, 15–45 min depending on the stimulus (TNF or IL-1).

Our part of the project revolved around the characterization of these previously
unknown structures via imaging and image analysis, completing data obtained by bio-
chemistry. These structures and their dynamics proved to be extremely sensitive to light,
and their study required careful imaging with a dedicated protocol. The part we will cover
in this module focuses on a single question: Are these punctate structures bound to the
membrane, freely diffusing or transported?

This simple question was important to backup the biochemistry data. Since the punc-
tate structures were not described before and their function unknown, their motion type
could give us clues about their function. For instance, if they are transported, they may be
internalized in some vesicles and transported from membrane to nucleus to convey the
cell activation signal. If they are freely diffusing, they may be supramolecular structures
polymerizing upon some signal.

 J.-Y. Tinevez and S. Herbert

69 4

Our first imaging protocol falsely led us to think that they were transported towards
the nucleus after assembly. However, these movements proved to be artifacts and caused
by a phototoxic effect.1 A second imaging protocol involved the use of TIRF microscopy
with a low illumination power, which diminished the phototoxic effects. We filmed the
dots for long times and process the acquired structures to analyze their motility.

We tracked the dots in Fiji using TrackMate (Tinevez et al. 2017) and, because the dots
are well separated, the tracking proved relatively easy. We then analyzed the tracks using
MSD analysis, to conclude on their motility with certainty. The MSD analysis is also the
subject of this module, and we will then go from Fiji to MATLAB to perform it.

This particular analysis proved that the NEMO dots are anchored, both when stimu-
lated by IL-1 and TNF. We concluded further that they are not anchored to actin filaments
or microtubules (MTs), as repeating the analysis with drugs that depolymerize the cyto-
skeleton did not show any change. Additional analysis showed that they were most likely
anchored to the cell membrane, and that NEMO molecules were under a rapid turnover
in these punctate structures. So they probably play the role of phosphorylation factories,
assembled and anchored at the cell membrane, that would process quickly a large amount
of the otherwise soluble NEMO proteins.

4.2 Datasets

The data for this module consists in a subset of the data only from the paper. It only fea-
tures 5 movies over 2 conditions:

 5 Ctrl: A couple of dots can be seen wandering in the cells, even if there is not stimula-
tion. They are permanent instead of transient, and probably non-specific. They give a
control of how spurious particles would perturb our measurements.

 5 IL1: Following IL-1 stimulation. In the study, this was the “easy” case, for the dots
were bright and large compared to e.g. the dots we see after TNF stimulation.

You can find it on Zenodo:
7 https://doi.org/10.5281/zenodo.1341987. The dataset (download size about 800 MB)

is organized as follow:

Tracking-NEMO-movies_subset
 NEMO-Ctrl
 Cell_01.tif 35.2 MB
 Cell_01.xml 5.9 MB
 Cell_01_Tracks.xml 16.6 kB
 Cell_02.tif 175.5 MB
 Cell_02.xml 5.6 MB
 Cell_02_Tracks.xml 170.4 kB
 NEMO-IL1
 Cell_02.tif 91.9 MB
 Cell_02.xml 6.4 MB
 Cell_03.tif 444.8 MB
 Cell_03.xml 53.0 MB

1 We documented this phototoxic effect later in Tinevez et al. (2017).

The NEMO Dots Assembly: Single-Particle Tracking and Analysis

https://doi.org/10.5281/zenodo.1341987

70

4

 Cell_03_Tracks.xml 1.2 MB
 Cell_04.tif 251.6 MB
 Cell_04.xml 50.8 MB
 Cell_04_Tracks.xml 4.6 MB

The movies themselves are not very pretty. Bright dots can be seen over a cell background
caused by the soluble pool of NEMO. They bleach over time. The temporal resolution is
not very high (0.5 s) and the SNR is not high either since we had to compromise on laser
power to avoid cell death.

Files are .tif movies, made for ImageJ, with the right spatial and temporal calibra-
tion. They are already split cell by cell, and have a ROI that encloses the cell. There also are
.xml files from TrackMate and _Tracks.xml files generated from TrackMate, ready to
be imported in MATLAB. But we will do the tracking ourselves.

4.3 Tools and Prerequisites

 5 Fiji
 5 Download URL: 7 https://imagej. net/Fiji/Downloads
It does not require any extra, as TrackMate is included in the core of Fiji.

 5 MATLAB
 5 We rely on MATLAB for the MSD analysis part, with the Curve Fitting toolbox.
 5 You need to know at least a little bit about MATLAB features, like logical indexing
and structures. We will not be introducing them here.

 5 Because we will install specialized functions and classes in MATLAB, you also
need to know at least a little bit about the MATLAB path. 7 https://mathworks.
com/help/matlab/matlab_env/what-is-the-matlab-search-path. html

 5 We built a special class to perform the analysis that you can download here:
7 https://github. com/tinevez/msdanalyzer/zipball/master

@msdanalyzer is a MATLAB class, so you have to put the @msdanalyzer folder in
the MATLAB path, but not its content.2 For instance on my MATLAB installation, I have
a folder called /Users/tinevez/Development/Matlab/msdanalyzer that is
on the path and that contains the @msdanalyzer folder. But the @msdanalyzer
folder is not in the path.

4.4 Workflow

We will deal separately with single-particle tracking in Fiji using TrackMate, and track
motility analysis in MATLAB using @msdanalyzer. The two following sections are
largely independent and present different concepts. To perform the MSD analysis, please
use the dataset linked above that include them.

2 This is explained on The Mathworks website: 7 https://mathworks.com/help/matlab/matlab_oop/
organizing-classes-in-folders.html.

 J.-Y. Tinevez and S. Herbert

https://imagej.net/Fiji/Downloads
https://mathworks.com/help/matlab/matlab_env/what-is-the-matlab-search-path.html
https://mathworks.com/help/matlab/matlab_env/what-is-the-matlab-search-path.html
https://github.com/tinevez/msdanalyzer/zipball/master
https://mathworks.com/help/matlab/matlab_oop/organizing-classes-in-folders.html
https://mathworks.com/help/matlab/matlab_oop/organizing-classes-in-folders.html

71 4

4.5 Single-Particle Tracking with TrackMate

TrackMate is a Fiji plugin dedicated to tracking. It can do cell-lineaging (and was ini-
tially developed for this very purpose, see Tinevez et al. (2012)) but also has automated
analysis tools to perform single-particle tracking of sub-cellular structures. It ships a
user-friendly graphical user interface that allows to inspect tracking results and curate
them. The following part describes how to use TrackMate to generate the tracks over
one of our movies. An extended documentation for this plugin can be found here:
7 https://imagej. net/TrackMate, along with supplementary material of the associated
 publication.

4.5.1 Step 1: Loading Image Data and Launching TrackMate

For the example below, we will use the Cell_02.tif in the NEMO-IL1 folder. You
can display a .tif file by performing a simple drag and drop on the Fiji toolbar. This
movie does not have many dots, which will simplify getting familiar with the
 workflow.

It is very important that you check the dimensionality of the image at this point of
the analysis and correct it if required. To do so, check the image properties in Fiji
(Image Properties... menu item or + P , . Fig. 4.1). In our case we have a 2D over
time acquisition, so make sure the metadata reports 1 z-slice and 307 frames. Also,
TrackMate reports any quantities (space and time) in physical units, so the pixel size

 . Fig. 4.1 Image properties

The NEMO Dots Assembly: Single-Particle Tracking and Analysis

https://imagej.net/TrackMate

72

4

 . Fig. 4.2 The first panel in TrackMate UI

and frame interval must be correct since you will not be able to change them further in
the analysis. For these movies, the pixel size is 0.160 µm per pixel and the frame
 interval is 0.5 s.

When this is done, close the properties window, make sure the active image is the one
with our NEMO-labelled cell, and launch TrackMate. The plugin can be found in the
Plugins Tracking TrackMate menu. The GUI will show up and the first panel will display a
recapitulation of the image metadata. At this step, you can define a ROI that will be used
for the analysis. In our case it does not matter, since the images are cropped around a cell.
If you want to use a ROI in TrackMate, draw a ROI over the active image, and press the

Refresh source button on the first panel. You should see the bounds changing on the panel
(. Fig. 4.2).

4.5.2 Step 2: Detection

In our case, the objects we want to track are NEMO dots; since they are smaller than the
resolution limit of the microscope, we cannot resolve their shape, hence segmenting them
would not bring any information that would allow us to discriminate them. They all look
the same in the eye of our microscope. We need a simple detection algorithms that will
yield their position nothing more, which is exactly what TrackMate ships.

The TrackMate user interface is inspired by the Bitplane Imaris wizard. You will find at
the bottom right of the panel a Next button that will bring you to the next panel when
you are done with the current one. Typically, you deal with one group of parameters or

 J.-Y. Tinevez and S. Herbert

73 4

choice per panel and you can navigate backward if you want to try another one. Click on
the Next button and you will now see a panel where you can choose the detector we will
use. Pick the LoG detector , which is the default, then click again on the Next button. You
are now presented with a panel that lets you configure the LoG detector.

The LoG detector is performing remarkably well for its simplicity. It excels at finding
bright, blob-like, roundish objects, that we will call spots or detections and only requires
two parameters: the approximate diameter (in physical units) of the objects we want to
detect, and a threshold value on a quality metrics, below which detections will be
rejected. The LoG detector works by filtering the image with the Laplacian of Gaussian
filter (also dubbed Mexican hat filter) tuned to the specified diameter. In the filtered
image, the spots will appear as bright and sharp peaks, and they are detected by looking
for local maxima. The quality of a detection is the value at the local maxima location in
the filtered image. Due to this image filtering step, spots smaller or larger than the esti-
mated diameter will have a lower quality value than spots of the same intensity but of the
right size. Consequently, the quality of detection is highest when the spot is bright and
of the right size.

 ? Exercise 4.1
Play with the Estimated blob diameter and Treshold parameters to find settings that would

detect all NEMO dots and a limited number of spurious detections. The Preview

button will show you what the chosen parameters do on the current frame only. The
other parameters can be ignored.

 v Solution
Using a diameter of 0.5 µm and a threshold of 1000 seems OK (. Fig. 4.3). We still have
many spurious spots but we can filter them out later.

Click on the Next button to run the analysis on the whole movie. It should not
take too long (a few seconds) and you should have about 9000 spots in total.

4.5.3 Step 3: Filtering

It is very important to filter out as many spurious spots as we can because detection might
very well yield a large amount of them. By setting the quality threshold to a non-zero
value we already filtered them a first time. When clicking Next after the detection is
completed, you are presented with the initial filtering panel (. Fig. 4.4). It shows the qual-
ity histogram and allows for discarding spots with a quality lower than what we set here.
In simple cases, we expect a bi-modal histogram, with two peaks well separated between
spurious spots with low quality and spots with a high quality. This is not the case here, so
we keep the value unchanged and move to the next panel by clicking Next .

TrackMate lets you pick the view to display the detection and tracking results. As of
today, there is only one working consistently, the HyperStack Displayer. It simply displays
the results on the ImageJ hyperstack, so select this one. The spots are now displayed on the
image as magenta circles (. Fig. 4.5). A quick inspection reveals that we still have spurious
spots. You can see them appearing and disappearing as you move in time, while true spots
tend to persist over several frames.

The NEMO Dots Assembly: Single-Particle Tracking and Analysis

74

4

 . Fig. 4.3 LoG detector parameters

 . Fig. 4.4 Initial filtering panel

 J.-Y. Tinevez and S. Herbert

75 4

Move on to the next panel by clicking Next . We are now presented with another fil-
tering panel. As we already had one before (the initial filtering panel), it is worth mention-
ing the differences.
 1. Spots have numerical features attached to them. A feature is a numerical scalar value

that reports a quantitative information on the object it represents. For instance, the
mean intensity around a spot location is a numerical feature. Features are calculated
after the initial thresholding step. The filters you set in this panel are based on
features that are not available before this step and the initial filtering can only be
done on the quality value.

 2. These filters are reversible. The spots are not deleted from the data, but hidden. So
when you remove a filter, the spots it discarded reappear. This is useful if you realize
later that the filters were inadequate and too stringent and preventing proper linking.
To adjust the filters later, you can navigate back to this panel by pressing the left
green arrow on the GUI. In contrary, when using the initial thresholding, the spots
are deleted, which is useful to save memory but is irreversible. If you want to
retrieve the spots you discarded in the initial thresholding step, you must re-run the
detection step.

Filters are added by clicking on the green button. A small panel appears that lets you
choose the feature you want to set the filter on, with what value and whether we should
retain spots with feature values above or below the threshold. The panel also displays
the histogram of the feature values collected for all spots, and has an Auto button that

 . Fig. 4.5 The HyperStack Displayer with detection results

The NEMO Dots Assembly: Single-Particle Tracking and Analysis

76

4

automatically determines a threshold value using Otsu method (. Fig. 4.6). The red
button removes the last filter. Also note that you can use the feature values to color the
spots, using the drop-down list at the bottom of the filtering panel. Filters are com-
bined by taking the intersection of the spots they yield. On . Fig. 4.6 for instance, we
retain the spots that have contrast values above 0.07 and whose X position are above
20.85 µm.

 ? Exercise 4.2
Find a combination of filters that remove all spurious spots and keep the true ones.

 v Solution
Such a combination is hard if not impossible to find in our case. Thankfully, we do not
mind a few spurious spots as we will be analyzing tracks. We will later filter out tracks
made of spurious spots.

Remove all filters, set the color-by option to Uniform color and click the Next button.

4.5.4 Step 4: Particle-Linking

Now that we have spots, we want to link them over time and build tracks. The tracks
will be what we will analyze in the section dedicated to motion analysis, and we
will do it in MATLAB. But for now we need to generate these tracks. In TrackMate,
particle-linking happens similarly to the detection step. You are now presented with a

 . Fig. 4.6 Filtering panel with
two filters on contrast and X
position, additionally setting the
spot color by contrast value

 J.-Y. Tinevez and S. Herbert

77 4

panel that lets you select the particle-linking algorithm (or “tracker”) to be used for
the next step.

TrackMate ships several trackers, but the most useful ones fall in two main categories:
 5 The LAP-based trackers. LAP stands for Linear Assignment Problems. There are two

trackers named Simple LAP tracker and LAP tracker that implement a stripped version of
an algorithm published by Jaqaman et al. (2008). They are configured to deal well
with objects that diffuse or move randomly.

 5 The Kalman-filter based trackers. We have only one, called Linear motion LAP tracker . It is
based on what is called a Kalman-filter3 introduced in the 1960s by R.E. Kalman
(Kalman (1960)). Our implementation is well suited to particles that have a nearly-
constant velocity vector. That is: particles that move by roughly the same amount
between each frame and do not change direction too fast. Of course it can accommo-
date some changes of velocity provided they are modest.

Choosing the right tracker is critical. In Chenouard et al. (2014), the performance of 14 dif-
ferent single-particle tracking methods were assessed. One of the main conclusions of this
work is that there is not a universally good tracker for all bio-imaging problems. A tracking
algorithm has to be chosen depending on the motion model of the objects to be tracked. For
instance, the LAP trackers of TrackMate are well suited for objects that are freely diffusing or
bound. The Linear motion tracker is well suited for objects that are transported.

This causes a chicken-and-egg problem in our case, since we actually want to determine
what is the motion model of the NEMO dots by analyzing tracks. Practically, we carefully
looked at the movies and and assessed whether it was plausible for the dots to be transported.
Their motion seemed erratic, and so we started with the LAP tracker. As we will see later, we
found that the dots have a motion type for which the LAP trackers are well suited, so our
choice appears valid a posteriori. This is close to having a circular reasoning fallacy. However,
we must temper this criticism. The choice of the right tracker is important to yield accurate
tracks that faithfully follow the true particles over time. The analysis of tracks is a subsequent
step. So first, an inadequate choice of a tracker can be detected by checking the tracks manu-
ally, following a dozen of them and looking for jumps to another particles or early breaks.
And second, we can be in a situation where the particle density and the detection quality is
such that the choice of the tracker will not matter. This is the subject of an exercise below.

In TrackMate, the trackers suited for non-transported motion are the LAP trackers.
They are based on minimizing the total cost to link a set of spots in one frame to the spot
in the next frame, or the cost to link track segments together. We have the LAP tracker and
its Simple LAP tracker version. They actually wrap the same algorithm, but the latter offers
fewer configuration options. The LAP tracker can be configured to generate tracks that are
splitting (as for cell division) or merging. The cost to link one spot to another one can be
altered by differences in spots features values, such as intensity, radius, … The
Simple LAP tracker only offers to bridge gaps in tracks caused by missed detections, and the

linking costs are simply based on distance. It results in tracks being linear, that is without
merges or splits, and at most one spot per frame. We observe that the NEMO dots do not
merge or split, so this is the right tracker to pick.

3 Kalman filter on Wikipedia: 7 https://en.wikipedia.org/wiki/Kalman_filter.

The NEMO Dots Assembly: Single-Particle Tracking and Analysis

https://en.wikipedia.org/wiki/Kalman_filter

78

4

 ? Exercise 4.3
The Simple LAP tracker has 3 parameters to configure it, that set

 5 the maximal distance to link from one frame to the next;
 5 the maximal frame gap to bridge over missing detections;
 5 the maximal distance to bridge over missing detections.

Try and find a suitable parameter set that yields acceptable results, based on you checking
the tracks.

 v Solution
As explained in Jaqaman et al. (2008), this tracker performs spatially global
optimization, and therefore is rather robust against a lot of variation in parameter
values. You should find acceptable results for a wide range of parameters, provided
they are not aberrant. Try some of them and click the Next button to get the tracking

results displayed on the image. Click on the Previous button to change parameters

and start again. Check . Fig. 4.7 for values that work.

 . Fig. 4.7 Configuring the
Simple LAP tracker

 J.-Y. Tinevez and S. Herbert

79 4

4.5.5 Step 5: Filtering Tracks

The image should be updated with tracks, as shown in . Fig. 4.8. We note that there are
about 3 tracks that seem to display a large excursion in the cell. Also, there are many tracks
that are very short and are probably made of spurious spots. We want to filter them out.
Move on to the next panel.

 ? Exercise 4.4
The track filtering panel works like for the spot filtering panel. Find a combination of
filters that can remove tracks originating from spurious spots.

 v Solution
Spurious spots arise from noise in the image. As long as there are only a few of them, it is
therefore very unlikely that spurious spots appear many times consecutively in the vicinity
of the same location. If they are ever linked in a track, it will be short compared to tracks
originating from true spots, that can be followed over many frames. A good strategy is
therefore to filter tracks based on the number of spots they contain. It has a side benefit:
the MSD analysis we will perform later in this chapter requires the tracks to be long for
accuracy. Since the histogram for the number of spots in tracks have a large peak at low
values that precede a gap at N = 20, we can use this value as a threshold (. Fig. 4.9).

So we are now left with a small number of long tracks (. Fig. 4.10).

 ? Exercise 4.5
Go back 3 steps and try to perform tracking with the Linear motion LAP tracker . As we said,

it is not the optimal tracker for the motion type we suspect the NEMO dots have.
Check whether the tracking results differ from those of the LAP tracker .

 . Fig. 4.8 Raw tracking results

The NEMO Dots Assembly: Single-Particle Tracking and Analysis

80

4

 v Solution
Even though we do not have many tracks in our case, visual inspection is not enough.
A good approach for a first comparison of tracking results is to compare tracks based
on the feature values that are calculated for them. To do this, once the TrackMate GUI

shows the Display options panel (. Fig. 4.10), click on the Analysis button.

Three tables should appear, and we just want to retain the Track statistics one.

Duplicate it (File Duplicate when the table is active) and give it a name like Track

statistics-LAP. Then go back 3 steps, select the Linear motion LAP tracker and

perform tracking as before. Regenerate the Track statistics table and compare
with the previous one. You will find that we have identical tracks. The track labels will
be different because they are regenerated every-time we perform tracking, but you
will see they are made of the same spots.

 . Fig. 4.9 Filtering tracks
based on the number of spots
they contain

 J.-Y. Tinevez and S. Herbert

81 4

This worked in our case only because we have an easy case for tracking: the spots that
remain after filtering are few and well spaced. The density is so low that the motion type
of the tracker does almost not matter. As shown in Chenouard et al. (2014), at high
density the difference of performance among trackers is exacerbated.

4.5.6 Step 6: Export Results

We want now to export the track results in a format that can easily be re-imported in
MATLAB. The XML file that is generated when you press the Save button in the GUI
contains all the information to restore a tracking session: settings, parameter values, path
to images, etc. It is probably not well suited to the simple track import we want to perform.

Move to the last panel of the TrackMate GUI called Select an action. It offers a
selection of miscellaneous actions that do not fit in other panels. In the list, one action
called Export tracks to XML will generate the format we want. It is a simple format derived
from the one used in the ISBI single-particle tracking challenge (whose results are the
subject of Chenouard et al. (2014)) and suited for tracks that do not have split nor fusion
events. Execute the action and a new file called Cell_02_Tracks.xml should be gen-
erated. Its content looks like this:

 . Fig. 4.10 The final tracking results

The NEMO Dots Assembly: Single-Particle Tracking and Analysis

82

4

<?xml version="1.0" encoding="UTF-8"?>
<Tracks nTracks="22" spaceUnits="um" frameInterval="0.5" timeUnits="s"
generationDateTime="Wed, 5 Sep 2018 14:11:51" from="TrackMate v3.8.0">
<particle nSpots="112">
<detection t="0" x="53.66873043851335" y="11.384524705860331" z="0.0" />
<detection t="1" x="53.6447201035091" y="11.417907762121915" z="0.0" />
<detection t="3" x="53.565164363562936" y="11.45756457406076" z="0.0" />
...

This is what we will use in MATLAB later. You can see that each track is represented by a
particle section, containing several detection items, with t, x, y and z. In our case,
z is always 0 since we have 2D time-series.

 ? Exercise 4.6
Perform tracking and exports for all the other movies included in the dataset. Then
move on to the next section.

4.6 Motility Analysis with Mean-Square Displacement

Tracking is almost never the last step of an analysis workflow. Tracking tools such as
TrackMate produce tracks and their role stops there. But tracks are just an intermediate
data structure in the workflow. Their subsequent analysis will produce the numbers upon
which we will draw a scientific conclusion. Because this track analysis is specific to the
scientific question to be addressed, tracking tools remain generic and seldom include
 specialized analysis modules. Another toolset is required for track analysis, and in this
module we will focus on using MATLAB. The main reason for this choice is that there
exist ready-to-use functions to import the XML files we produced in the previous section,
which underlies the importance of interoperability.

There are other alternatives however. For instance, KNIME provides excellent tools to
read XML, and things such as MSD of coordinates of any dimensionality can easily be
computed. See for instance Hauer et al. (2017).

4.6.1 Step 1: Importing Tracks into MATLAB

Close Fiji and launch MATLAB. We want to import the tracks generated above into
the MATLAB workspace. Rather than writing our own XML importer, we can use
one that was made specifically for TrackMate, and that is distributed with Fiji. It is
called importTrackMateTracks and you can find it in the scripts folder
of Fiji:

 J.-Y. Tinevez and S. Herbert

83 4

tinevez@lilium:~/Development/Fiji.app/scripts$ ls
ImageJ.m copytoImg.m
InstallJava3D.m copytoImgPlus.m
IsJava3DInstalled.m copytoMatlab.m
Matlab3DViewerDemo_1.m importTrackMateTracks.m
Matlab3DViewerDemo_2.m trackmateEdges.m
Matlab3DViewerDemo_3.m trackmateFeatureDeclarations.m
Matlab3DViewerIntroduction.m trackmateGraph.m
Miji.m trackmateImageCalibration.m
Miji_Test.m trackmateSpots.m
bfopen.m

To make these scripts usable from MATLAB, open the path editor, and add the scripts
folder to the path (. Fig. 4.11).

This can also be achieved using addpath('./path/to/your/Fiji.app/
scripts'); in the MATLAB prompt.

Once this is done, the functions in this folder are visible and can be called from
MATLAB. For instance, we can now get the help of the function we want to use in
MATLAB:

>> help importTrackMateTracks
 |importTrackMateTracks| Import linear tracks from TrackMate
 This function reads a XML file that contains linear tracks gener-
ated by TrackMate (http://fiji.sc/TrackMate). Careful: it does not
open the XML TrackMate session file, but the track file exported in Track-
Mate using the action 'Export tracks to XML file'. This file format
 contains less information than the whole session file, but is enough fo
r linear tracks

 (tracks that do not branch nor fuse).
...

 . Fig. 4.11 Add the Fiji script folder to the MATLAB path

The NEMO Dots Assembly: Single-Particle Tracking and Analysis

84

4

 ? Exercise 4.7
Read the help section of the function and try to find the correct syntax to import the
tracks in a desirable way. For instance, we do not need the Z coordinates, since we
dealt with a 2D dataset, and we do not need the time to be scaled by a physical units.

 v Solution
The proper syntax is something along the lines of:

>> track_file = '/Users/tinevez/Desktop/Tracking-NEMO-movies_subset/
 NEMO-IL1/Cell_02_Tracks.xml';
>> tracks = importTrackMateTracks(track_file, true, false);

You need of course to specify the path to the XML file we saved in the previous section.
The first flag true is used to specify that we do not need to import the Z coordinates,
and the second flag false is used to specify that we want a time interval in integer
units of frames.
The imported content is made of a cell list of several N × 3 arrays:

>> tracks
tracks =
 22x1 cell array
 112x3 double
 268x3 double
 159x3 double
...

And each array contains 3 columns with the frame, X and Y coordinates, one line per
time point of a complete track:

>> tracks1
 ans =
 0 53.6687 11.3845
 1.0000 53.6447 11.4179
 3.0000 53.5652 11.4576
 4.0000 53.6317 11.3376
 5.0000 53.6501 11.3377
 6.0000 53.5482 11.4344
...

From it, we can plot an example trajectory:

>> x = tracks1(:,2);
>> y = tracks1(:,3);
>> plot(x,y, 'ko-', 'MarkerFaceColor', 'w'), axis equal, box off

 J.-Y. Tinevez and S. Herbert

85 4

4.6.2 Step 2: Create and Add Data to the MSD Analyzer

As stated above, @msdanalyzer is a MATLAB class. If you do not know what is a class,
you can think of it roughly as a collection of functions organized around a common and
clearly defined data structure. The functions of a class are called methods and we will use
this denomination in the following. If you followed the instruction of 7 Sect. 4.3, the
@msdanalyzer should be on the MATLAB path. You should be able to access the help
for the class and the help for the constructor of the class:

>> help msdanalyzer
>> help msdanalyzer.msdanalyzer

The first instruction gives help about the class itself and the second syntax gives you help
about the syntax to use when creating an analyzer. You can retrieve the list of methods
defined for this class with

>> methods('msdanalyzer')

and the help for a method called addAll is obtained via:

>> help msdanalyzer.addAll

The NEMO Dots Assembly: Single-Particle Tracking and Analysis

86

4

We need to create an analyzer first, before giving it data. This is done like this:

>> ma = msdanalyzer(2, 'um', 'frames')

Now ma is an empty msdanalyzer object, set to operate for 2D data (this is the meaning
of the ‘2’ as first argument), using µm as spatial units (‘um’ because MATLAB does not
handle UTF8 characters very well) and frames as time units.

As stated above, this object is empty, and we have to feed it the tracks with the
addAll() method. Luckily for us, as you can read in the help of the addAll method,
it expects the tracks to be formatted exactly in the shape we have. So we can run directly:

>> ma = ma.addAll(tracks)
 ma =
 msdanalyzer with properties:
 TOLERANCE: 12
 tracks: 22x1 cell
 n_dim: 2
 space_units: 'um'
 time_units: 'frames'
...

Note that for now, it just has the 22 tracks of the first movie we analyzed. We want to add
the tracks coming from the other movies in the same category. For instance, we will later
add to the same msdanalyzer object all the tracks coming from all the movies of the
NEMO-IL1 folder. But for now, we can use some of the methods of the msdanalyzer to
have a nice track overview:

>> ma.plotTracks % Plot the tracks.
>> ma.labelPlotTracks % Add labels to the axis.
>> set(gca, 'YDir', 'reverse')
>> set(gca, 'Color', [0.5 0.5 0.5])
>> set(gcf, 'Color', [0.5 0.5 0.5])

In . Fig. 4.12, the results of these commands are displayed next to the TrackMate results.
The track colors happen to be the same, but this is by chance. As a side note, look at the
line 3 in the above snippet. When displaying images, the Y axis runs from top to bottom.

 . Fig. 4.12 TrackMate tracks displayed in MATLAB

 J.-Y. Tinevez and S. Herbert

87 4

But MATLAB displays data in plots where it runs in the other direction, so we had to
invert it here to make the tracks look like their Fiji counterparts.

 ? Exercise 4.8
Repeat this procedure to add all the tracks to the same msdanalyzer object. Be
careful to use the ma = ma.addAll() syntax each time.

 v Solution
Supposing we continue with the msdanalyser object we created above (and using
the XML files that are already distributed with the dataset…):

>> tracks2 = importTrackMateTracks('/Users/tinevez/Desktop/Track-
ing-NEMO-movies_subset/NEMO-IL1/ Cell_03_Tracks.xml', true, false);

>> ma = ma.addAll(tracks2);
>> tracks3 = importTrackMateTracks('/Users/tinevez/Desktop/Tracking-

NEMO- movies_subset/NEMO-IL1/ Cell_04_Tracks.xml', true, false);
>> ma = ma.addAll(tracks3);
>> ma
 ma =
 msdanalyzer with properties:
 TOLERANCE: 12
 tracks: 614x1 cell
 n_dim: 2
 space_units: 'um'
 time_units: 'frames'
...

4.6.3 Interlude: A Short Word About Mean-Square
Displacement Analysis

Let’s consider particles undergoing Brownian motion. Let’s suppose that all the parti-
cles were released from a single point at t = 0, that r is the distance to this point, and that
D is the diffusion coefficient of all these particles in the medium they diffuse in. We can
find the equation for their density for instance in one of Einstein’s historical papers
(Einstein (1905)):

r r(,) expr t r
Dt

= -
æ

è
ç

ö

ø
÷0

2

4

Using this formula, one can derive the mean square displacement (MSD) for such parti-
cles. After a delay τ, the mean-square displacement of the particle ensemble is:

MSD()t t= =r dD2 2

(4.1)

We see that the plot of the MSD value as a function of time delay τ should be a straight line
in the case of simple freely diffusing movement. We therefore have a way to check what is
the motion type of the particles. If the MSD is a line, then it is diffusing, and the slope gives
us the diffusion coefficient. If the MSD saturates and has a concave curvature, then
its movement is impeded: it cannot freely diffuse away from its starting point. On the

The NEMO Dots Assembly: Single-Particle Tracking and Analysis

88

4

contrary, if the MSD increases faster than at linear rate, then it must be transported,
because Brownian motion could not take it away that fast. See Qian et al. (1991) for a first
application to biological data.

This is great, because to decide whether the erratic movement of a particle that you are
observing is freely diffusive, impeded, or transported, you would only have to follow the
particle for a finite amount of time. This equation can be evaluated to check what the
particle movement type is. So we just need a way to evaluate it practically.

Experimentally, the MSD for a single particle is also taken as a mean. If the process is
stationary (that is: the “situation”, experimental conditions, etc… do not change over time)
and spatially homogeneous, the ensemble average can be taken as a time average for a
single trajectory, and MSD for a single particle i can be calculated as

r t r t r ti i i
2 2(,) () ()t t= + -()

We then average over overall possible t for a given delay τ to yield MSDi (),t and then
average the resulting MSDi over all particles. This is exactly what the @msdanalyzer
class was built for, as we will see now.

We note that for finite trajectories, the smaller delays τ will be more represented in the
average than longer delays. For instance, if a trajectory has N points in it, the delay corre-
sponding to one frame will have N − 1 points in the average, and the delay corresponding
to N frames will only have one. This has major consequences on measurement certainty,
see Michalet (2010). This is one of the reason why we insisted above on having tracks that
were not too short. Additionally, one has to keep in mind that processes are rarely station-
ary over long period of times and anomalous diffusion (any case when the MSD is not a
line) processes are families of various origins which can have more specific effects on MSD.

4.6.4 Step 3: Compute the Mean-Square Displacement

The @msdanalyzer automates the calculation. Using the object we prepared in step 2,
calculating MSD is as simple as:

>> ma = ma.computeMSD
 Computing MSD of 614 tracks... Done.
 ma =
 msdanalyzer with properties:
 TOLERANCE: 12
 tracks: 614x1 cell
 n_dim: 2
 space_units: 'um'
 time_units: 'frames'
 msd: 614x1 cell
...

Notice that now the msd field of the object has some content. However interpreting it is
not trivial. The plot of the individual MSD curves look like this:

>> ma.plotMSD

 J.-Y. Tinevez and S. Herbert

89 4

0
0 200 400 600

Delay (frames)

M
SD

 (u
m

2)

800 1000

10

20

30

40

50

60

70

80

90

We can plot the ensemble-mean MSD, averaged over all particles:

>> ma.plotMeanMSD

0
0 200 400

Delay (frames)

600 800 1000

0.5

1

1.5

M
SD

 (u
m

2)

2

0
0 10 20

Delay (frames)

30 40 50

0.02

0.04

0.06

M
SD

 (u
m

2)

0.14

0.12

0.1

0.08

The NEMO Dots Assembly: Single-Particle Tracking and Analysis

90

4

Apart from the bumps beyond a delay of 200 frames, the ensemble curve looks like a
straight line. However, looking at smaller delays, we see that this curve displays a slight
concavity.

4.6.5 Step 4: Log-Log Fit of the Mean-Square Displacement

This is not enough for us to conclude. A cell is a complex environment and each particle
might have different properties that are confused in the ensemble mean plotted above. We
therefore turn to another strategy.

Let’s consider a single particle that diffuses freely. In that case Eq. 4.1 holds. The MSD
as a function of delay τ is a straight line. If we compute the logarithm of Eq. 4.1 we get:

MSD
MSD
diff

diff

()
log () log()

t t
t t

=
() = +

2dDi

(4.2)

that we can write y x= ´ +1 if y is (log)MSD and x is (log).t

Let us now consider a particle that moves with a nearly constant velocity vector. In that
case, r varies linearly with τ and MSD varies with the square of τ. We then can write:

MSD
MSD

trans

trans

()
log () log()

t t
t t

µ
() = ´ +

2

2

(4.3)

 or y x= ´ +2 .

So in a log-log plot, the MSD curves can be approximated by straight lines of slope 1
for diffusion motion, 2 for transported motion, and less than 1 for constrained motion.
We can therefore turn this into a test to determine the motion type of our dots. We will fit
the log-log plot of the MSD curve by a line for each particle, and measure its slope alpha.
The distribution of all slopes for a given condition will yield the motion type. We can also
use the fitting approach to add an automated quality check. For instance, we can decide
not to include slope values for fits with an R2 lower than 0.5.

Again, there is a method that does all of this for us in the @msdanalyzer class:

% Get the description of the log-log fit function.
>> help ma.fitLogLogMSD
% Perform the fit:
>> ma = ma.fitLogLogMSD
Fitting 614 curves of log(MSD) = f(log(t)), taking only the first 25
% of each curve... Done.
% Note that now the loglogfit field of the analyzer is not empty any-
more:
>> ma.loglogfit
ans =
 struct with fields:
 alpha: [614x1 double]
 gamma: [614x1 double]

 J.-Y. Tinevez and S. Herbert

91 4

 r2fit : [614x1 double]
 alpha_lci: [614x1 double]
 alpha_uci: [614x1 double]

We are interested in the slope alpha, but first we want to remove all fits that had an R2 value
lower than 0.5. The R2 values are stored in the ma.loglogfit.r2fit field.

% Logical indexing:
>> valid = ma.loglogfit.r2fit > 0.5;
>> fprintf('Retained %d fits over %d.\n', sum(valid), numel(valid))
Retained 461 fits over 614.

Now we can plot the histogram of slopes:

>> histogram(ma.loglogfit.alpha(valid), 'Normalization', 'probability')
>> box off
>> xlabel('Slope of the log-log fit.')
>> ylabel('p')
>> yl = ylim;
>> line([1 1], [yl(1) yl(2)], 'Color', 'k', 'LineWidth', 2)

0
0.2 0.4

Slope of the log-log fit
0.6 0.8 1 1.2 1.4 1.81.6

0.02

0.04

0.06

p

0.14

0.12

0.1

0.08

4.6.6 Step 5: Analysis of the Log-Log Fit

The histogram displayed above shows a peak around a slope of 1, and several other peaks
below 1, around 0.4 and 0.8 judged from its shape. This suggests that there are mixed
populations in our dataset, with some particles freely diffusing and others, the majority,
probably constrained.

The NEMO Dots Assembly: Single-Particle Tracking and Analysis

92

4

The population average behavior can be assessed by computing the mean of this distri-
bution and checking whether it is significantly lower than 1 based on a t-test evaluation.

>> fprintf('Mean slope in the log-log fit: alpha = %.2f +/- %.2f
(N = %d).\n', ...
mean(ma.loglogfit.alpha(valid)), std(ma.loglogfit.alpha(valid)),
sum(valid))
>> if (h)
 fprintf('The mean of the distribution IS significantly lower than
1 with P = %.2e.\n', p)
else
 fprintf('The mean of the distribution is NOT significantly
lower than 1. P = %.2f.\n', p)
end
Mean slope in the log-log fit: alpha = 0.73 +/- 0.31 (N = 461).
The mean of the distribution IS significantly lower than 1 with
P = 4.79e-57.

This ensemble analysis is not perfectly relevant however. The t-test we ran at the end
gives a conclusion on the mean of the slope value, which is not exactly what we want to
know. We know that there are likely to be a mixed population of particles with different
motility. We expect for instance some non-specific particles to be freely diffusing or com-
pletely stuck to the substrate.

We may ask how many particles have a constrained motility and if they are the major-
ity. A way to assess this at the single particle level is to check the confidence interval for the
value of the slope in the fit. We state that if the confidence interval of the slope value is
below 1, then the particles have a constrained motility. Again, things are made easy to us,
as the confidence interval is also stored in the @msdanalyzer instance:

cibelow = ma.loglogfit.alpha_uci(valid) < 1;
ciin = ma.loglogfit.alpha_uci(valid) >= 1 & ma.loglogfit.
alpha_lci(valid) <= 1;
ciabove = ma.loglogfit.alpha_lci(valid) > 1;
fprintf('Found %3d particles over %d with a confidence interval for t
he slope value below 1.\n', ...
 sum(cibelow), numel(cibelow))
fprintf('Found %3d particles over %d with a slope of 1 inside the
confidence interval.\n', ...
 sum(ciin), numel(ciin))
fprintf('Found %3d particles over %d with a confidence interval for t
he slope value above 1.\n', ...
 sum(ciabove), numel(ciabove))
Found 345 particles over 461 with a confidence interval for the
slope value below 1.
Found 36 particles over 461 with a slope of 1 inside the confidence
interval.
Found 80 particles over 461 with a confidence interval for the
slope value above 1.

 J.-Y. Tinevez and S. Herbert

93 4

This allowed us to conclude that the majority of the dots that were tracked have a con-
strained or sub-diffusive motility at the time-scale of their appearance. A reasonable
hypothesis is that they are anchored to some static structure in the cell.

 ? Exercise 4.9
Would the conclusion have been very different if we had been much more stringent on
the R2 value we used to filter out bad tracks? For instance, with R2 = 0.8?

 v Solution
The distribution of alpha changes. The peak centered around 0.4 disappears, and the
histogram takes the shape of a large and wide peak centered at 0.8, with a secondary,
small peak around 1. The mean slope value changes accordingly, however the
conclusion on the motility type is still valid.

>> valid = ma.loglogfit.r2fit > 0.8;
>> fprintf('Retained %d fits over %d.\n', sum(valid), numel(valid))
Retained 317 fits over 614.
>> fprintf('Mean slope in the log-log fit: alpha = %.2f +/- %.2f
(N = %d).\n', ...
mean(ma.loglogfit.alpha(valid)), std(ma.loglogfit.alpha(valid)),
sum(valid))
>> if (h)
 fprintf('The mean of the distribution IS significantly lower than
1 with P = %.2e.\n', p)
else
 fprintf('The mean of the distribution is NOT signifi-
cantly lower than 1. P = %.2f.\n', p)
end
Mean slope in the log-log fit: alpha = 0.86 +/- 0.28 (N = 317).
The mean of the distribution IS significantly lower than 1 with
P = 2.31e-17.

 ? Exercise 4.10
Redo all the analysis for the control condition. In our case, the control condition
corresponds to cells that were not stimulated. The dots we observed then were
permanent instead of being transient when the cells were stimulated. They probably
correspond to some spurious particles.

 v Solution
We can re-execute the whole approach displayed above on the two movies in the
Control folder:

clear all
close all
clc
tracks1 = importTrackMateTracks('/Users/tinevez/Desktop/Tracking-
NEMO- movies_subset/NEMO-Ctrl/ Cell_01_Tracks.xml', true, false);
tracks2 = importTrackMateTracks('/Users/tinevez/Desktop/Tracking-
NEMO- movies_subset/NEMO-Ctrl/ Cell_02_Tracks.xml', true, false);
ma = msdanalyzer(2, 'um', 'frames');

The NEMO Dots Assembly: Single-Particle Tracking and Analysis

94

4

ma = ma.addAll(tracks1);
ma = ma.addAll(tracks2);
ma = ma.computeMSD;
ma = ma.fitLogLogMSD;
valid = ma.loglogfit.r2fit > 0.8;
fprintf('Retained %d fits over %d.\n', sum(valid), numel(valid))
fprintf('Mean slope in the log-log fit: alpha = %.2f +/- %.2f (N = %d).
\n', ...
 mean(ma.loglogfit.alpha(valid)), std(ma.loglogfit.alpha(valid)), sum
(valid))
[h, p] = ttest(ma.loglogfit.alpha(valid), 1, 'tail', 'left');
if (h)
 fprintf('The mean of the distribution IS signifi-
cantly lower than 1 with P = %.2e.\n', p)
else
 fprintf('The mean of the distribution is NOT signifi-
cantly lower than 1. P = %.2f.\n', p)
end

And the output is:

Computing MSD of 19 tracks... Done.
Fitting 19 curves of log(MSD) = f(log(t)), taking only the first 25%
of each curve... Done.
Retained 13 fits over 19.
Mean slope in the log-log fit: alpha = 0.87 +/- 0.24 (N = 13).
The mean of the distribution IS significantly lower than 1 with
P = 3.41e-02.

The majority of non-specific particles appears to also be stuck. So what is the difference
with the IL1-stimulation condition? In this case, the conclusion on motility is the same
but it does not apply to the same particles. The control condition movies are made of the
few cells we could find that had fluorescent dots that were visible without stimulation.
What matters is that there are few of them and that their number is not enough to change
the scientific conclusion on the dots that appear transiently upon stimulation, regardless
of their motility.

4.7 Results and Conclusion

This module is one part of the work that helped us conclude on the NEMO dot motility.
The MSD analysis indicated that the dots made of NEMO-eGFP proteins that appear
upon stimulation by IL1 are anchored to some static structure of the cell during the little
time they are visible.

We then turned to investigate what this static structure could be. So we repeated the
analysis you just did on cells for which we depolymerized actin filaments and microtu-
bules. The conclusion did not change. There was still the same proportion of NEMO dots
with the same constrained motility type.

 J.-Y. Tinevez and S. Herbert

95 4

We then led other investigations, relying on biochemistry and confocal imaging, and
concluded that NEMO dots are anchored at the cell membrane. The membrane is fluid
and the anchor point might be diffusing, but we do not see this behavior on the time-scale
of the live-imaged NEMO dots. The whole story and more can be found in the original
paper Tarantino et al. (2014).

Take Home Message

We hope this module serves as an example and shows that biophysics and image
analysis can provide new approaches to a scientific question that would otherwise
solely rely on biochemistry. The original paper contains quite some heavy biochemistry
studies, but their results are reinforced by the orthogonal approach presented here.

We relied on mean-squared-displacement analysis to reach a conclusion on the
motility type. This is the historical method and the first to have been applied on
biological data Qian et al. (1991). Its main drawback is that the tracks need to be long
and the detections accurate to have a decent accuracy on the quantities MSD analysis
yields. Good, accurate tracks are especially difficult to obtain in many life-science
cases, so several research labs have been working on developing new methods
improving on MSD. We can cite for instance the work of Hansen et al. (2018) based on
analyzing step distributions, or Briane et al. (2018) that relies on a statistical approach.

Acknowledgements We are very grateful to Emmanuel Laplantine and Nadine Tarantino,
our fellow authors on the paper, that agreed to make the raw data publicly available. We thank
Jan Eglinger (Friedrich Miescher Institute for Biomedical Research, Basel) for reviewing this
chapter.

Bibliography

Briane V, Kervrann C, Vimond M (2018) Statistical analysis of particle trajectories in living cells. Phys Rev E
97:062121 https://doi.org/10.1103/PhysRevE.97.062121. https://link. aps. org/doi/10. 1103/PhysRevE.
97. 062121

Chenouard N, Smal I, de Chaumont F, Mas ̆ka M, Sbalzarini IF, Gong Y, Cardinale J, Carthel C, Coraluppi S,
Winter M, Cohen AR, Godinez WJ, Rohr K, Kalaidzidis Y, Liang L, Duncan J, Shen H, Xu Y, Magnusson KE,
Jalden J, Blau HM, Paul-Gilloteaux P, Roudot P, Kervrann C, Waharte F, Tinevez JY, Shorte SL, Willemse
J, Celler K, van Wezel GP, Dan HW, Tsai YS, Ortiz de Solorzano C, Olivo-Marin JC, Meijering E (2014)
Objective comparison of particle tracking methods. Nat Methods 11(3):281–289

Einstein A (1905) Investigations on the theory of the brownian movement. Ann der Physik. http://www.
physik. fu-berlin. de/~kleinert/files/eins_brownian. pdf

Hansen AS, Woringer M, Grimm JB, Lavis LD, Tjian R, Darzacq X (2018) Robust model-based analysis of
single-particle tracking experiments with spot-on. eLife 7:e33125. ISSN: 2050-084X. https://doi.
org/10.7554/eLife.33125

Hauer MH, Seeber A, Singh V, Thierry R, Sack R, Amitai A, Kryzhanovska M, Eglinger J, Holcman D, Owen-
Hughes T, Gasser SM (2017) Histone degradation in response to DNA damage enhances chromatin
dynamics and recombination rates. Nat Struct Mol Biol 24(2):99–107

Jaqaman K, Loerke D, Mettlen M, Kuwata H, Grinstein S, Schmid SL, Danuser G (2008) Robust single-
particle tracking in live-cell time-lapse sequences. Nat Methods 5(8):695–702

Kalman RE (1960) A new approach to linear filtering and prediction problems. Trans ASME J Basic Eng
82(Series D):35–45

The NEMO Dots Assembly: Single-Particle Tracking and Analysis

https://doi.org/10.1103/PhysRevE.97.062121
https://link.aps.org/doi/10.1103/PhysRevE.97.062121
https://link.aps.org/doi/10.1103/PhysRevE.97.062121
http://www.physik.fu-berlin.de/~kleinert/files/eins_brownian.pdf
http://www.physik.fu-berlin.de/~kleinert/files/eins_brownian.pdf
https://doi.org/10.7554/eLife.33125
https://doi.org/10.7554/eLife.33125

96

4

Michalet X (2010) Mean square displacement analysis of single-particle trajectories with localization error:
Brownian motion in an isotropic medium. Phys Rev E Stat Nonlin Soft Matter Phys 82(4 Pt 1):041914

Qian H, Sheetz MP, Elson EL (1991) Single particle tracking. analysis of diffusion and flow in two- dimensional
systems. Biophys J 60(4):910–921. ISSN: 0006-3495. https://doi. org/10. 1016/S0006- 3495(91)82125-7.
http://www. sciencedirect. com/science/article/pii/S0006349591821257

Tarantino N, Tinevez J-Y, Crowell EF, Boisson B, Henriques R, Mhlanga M, Agou F, Israël A, Laplantine E
(2014) TNF and IL-1 exhibit distinct ubiquitin requirements for inducing NEMO–IKK supramolecular
structures. J Cell Biol 204(2):231–245. ISSN: 0021-9525. https://doi.org/10.1083/jcb.201307172. http://
jcb. rupress. org/content/204/2/231

Tinevez J-Y, Dragavon J, Baba-Aissa L, Roux P, Perret E, Canivet A, Galy V, Shorte S (2012) A quantitative
method for measuring phototoxicity of a live cell imaging microscope, chap 15. In: Michael Conn P
(ed) Imaging and spectroscopic analysis of living cells. Methods in enzymology, vol 506, pp 291–309.
Academic. https://doi. org/10. 1016/B978-0-12-391856-7. 00039-1. http://www. sciencedirect. com/sci-
ence/article/pii/B9780123918567000391

Tinevez J-Y, Perry N, Schindelin J, Hoopes GM, Reynolds GD, Laplantine E, Bednarek SY, Shorte SL, Eliceiri
KW (2017) TrackMate: an open and extensible platform for single-particle tracking. Methods 115:
80–90. ISSN: 1046-2023. https://doi. org/10. 1016/j. ymeth. 2016. 09. 016. http://www. sciencedirect.
com/science/article/pii/S1046202316303346 Image Processing for Biologists

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (7 http://creativecommons. org/licenses/by/4. 0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not included in
the chapter’s Creative Commons license and your intended use is not permitted by statutory regulation
or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

 J.-Y. Tinevez and S. Herbert

https://doi.org/10.1016/S0006-3495(91)82125-7
http://www.sciencedirect.com/science/article/pii/S0006349591821257
https://doi.org/10.1083/jcb.201307172
http://jcb.rupress.org/content/204/2/231
http://jcb.rupress.org/content/204/2/231
https://doi.org/10.1016/B978-0-12-391856-7.00039-1
http://www.sciencedirect.com/science/article/pii/B9780123918567000391
http://www.sciencedirect.com/science/article/pii/B9780123918567000391
https://doi.org/10.1016/j.ymeth.2016.09.016
http://www.sciencedirect.com/science/article/pii/S1046202316303346
http://www.sciencedirect.com/science/article/pii/S1046202316303346
http://creativecommons.org/licenses/by/4.0/

	4: The NEMO Dots Assembly: Single-Particle Tracking and Analysis
	4.1	 Introduction
	4.2	 Datasets
	4.3	 Tools and Prerequisites
	4.4	 Workflow
	4.5	 Single-Particle Tracking with TrackMate
	4.5.1	 Step 1: Loading Image Data and Launching TrackMate
	4.5.2	 Step 2: Detection
	4.5.3	 Step 3: Filtering
	4.5.4	 Step 4: Particle-Linking
	4.5.5	 Step 5: Filtering Tracks
	4.5.6	 Step 6: Export Results

	4.6	 Motility Analysis with Mean-Square Displacement
	4.6.1	 Step 1: Importing Tracks into MATLAB
	4.6.2	 Step 2: Create and Add Data to the MSD Analyzer
	4.6.3	 Interlude: A Short Word About Mean-Square Displacement Analysis
	4.6.4	 Step 3: Compute the Mean-Square Displacement
	4.6.5	 Step 4: Log-Log Fit of the Mean-Square Displacement
	4.6.6	 Step 5: Analysis of the Log-Log Fit

	4.7	 Results and Conclusion
	Bibliography

