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With increased interest in source attribution of foodborne pathogens, there is a need to
sort and assess the applicability of currently available methods. Herewith we reviewed
the most frequently applied methods for source attribution of foodborne diseases,
discussing their main strengths and weaknesses to be considered when choosing the
most appropriate methods based on the type, quality, and quantity of data available,
the research questions to be addressed, and the (epidemiological and microbiological)
characteristics of the pathogens in question. A variety of source attribution approaches
have been applied in recent years. These methods can be defined as top–down,
bottom–up, or combined. Top–down approaches assign the human cases back to
their sources of infection based on epidemiological (e.g., outbreak data analysis, case-
control/cohort studies, etc.), microbiological (i.e., microbial subtyping), or combined
(e.g., the so-called ‘source-assigned case-control study’ design) methods. Methods
based on microbial subtyping are further differentiable according to the modeling
framework adopted as frequency-matching (e.g., the Dutch and Danish models)
or population genetics (e.g., Asymmetric Island Models and STRUCTURE) models,
relying on the modeling of either phenotyping or genotyping data of pathogen strains
from human cases and putative sources. Conversely, bottom–up approaches like
comparative exposure assessment start from the level of contamination (prevalence
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and concentration) of a given pathogen in each source, and then go upwards in the
transmission chain incorporating factors related to human exposure to these sources
and dose-response relationships. Other approaches are intervention studies, including
‘natural experiments,’ and expert elicitations. A number of methodological challenges
concerning all these approaches are discussed. In absence of an universally agreed
upon ‘gold’ standard, i.e., a single method that satisfies all situations and needs for all
pathogens, combining different approaches or applying them in a comparative fashion
seems to be a promising way forward.

Keywords: source attribution, foodborne pathogen, epidemiological studies, typing methods, frequency-
matching models, population genetics models, quantitative risk assessment, expert knowledge elicitation

INTRODUCTION

Source attribution of foodborne diseases is defined as the
partitioning of the human cases caused by foodborne pathogens
among their animal, food, and environmental reservoirs and/or
transmission routes (Pires et al., 2009). Estimating the relative
contributions of different sources to the human disease burden
is crucial to set priorities for food safety interventions and to
measure the impact of such interventions.

Source attribution has become an ‘umbrella term’ that
includes a growing number of methodological approaches and
types of data (Pires et al., 2009). A detailed overview of definitions
and terminology for source attribution is available elsewhere
(Pires et al., 2009; Wagenaar et al., 2013). In brief, for pathogens
of animal origin, the animals are usually defined as reservoirs
(i.e., amplifying hosts in which the pathogen normally lives
and multiplies). Food, the environment, direct contact with
animals, etc. are examples of transmission routes, whereas meat,
eggs, milk, etc. are examples of exposures, and consumption of
raw meat, swimming in open water, living in a farm, etc. are
examples of risk factors (Wagenaar et al., 2015). In practice,
however, the term ‘source’ refers to any of these points across the
transmission chain.

A variety of source attribution methods has been developed
for foodborne pathogens. Conceptually, these methods can
be defined as ‘top–down,’ ‘bottom–up,’ or combined. Top–
down approaches assign the human cases (i.e., the ‘top’ of the
transmission chain) back to their sources of infection (i.e., the
‘bottom’). They correspond to: (1) epidemiological methods, e.g.,
analysis of outbreak investigations (Pires et al., 2010; Batz et al.,
2012; Painter et al., 2013) and case-control/cohort studies of
sporadic infections (Domingues et al., 2012; Kintz et al., 2017),
(2) microbiological methods, i.e., based on microbial subtyping
(Barco et al., 2013), or (3) combination of both (Mughini Gras
et al., 2012; Mughini-Gras et al., 2014b, 2018b; Mossong et al.,
2016; Rosner et al., 2017). In addition, source attribution based
on microbial subtyping can be further differentiated according to
the computational modeling framework adopted: (1) frequency-
matching models (Hald et al., 2004; Mullner et al., 2009a; Pires
and Hald, 2010; David et al., 2013a; Mughini-Gras et al., 2014b,c),
and (2) population genetics models (Pritchard et al., 2000; Wilson
et al., 2008; Sheppard et al., 2009; Strachan et al., 2009; Mughini
Gras et al., 2012, Mughini-Gras et al., 2014c; Miller et al., 2017).

Conversely, bottom–up approaches like comparative exposure
assessment (Pintar et al., 2016) predict the number of human
cases caused by each source starting from the bottom, i.e.,
the level of contamination (prevalence and concentration) with
a given pathogen in a source, and then go upwards in the
transmission chain incorporating factors like human exposure
to these sources and dose-response relationships. Other source
attribution approaches are intervention studies, sometimes also
referred to as ‘natural experiments’ (Vellinga and Van Loock,
2002; van Pelt et al., 2004; Sears et al., 2011; Tustin et al., 2011;
Friesema et al., 2012) and expert knowledge elicitation (Havelaar
et al., 2008; Butler et al., 2015a; Hald et al., 2016).

Each approach has advantages and disadvantages to be
considered when performing and/or interpreting a source
attribution analysis (Figure 1). Herewith, we critically reviewed
the currently available methods and data types for source
attribution of foodborne pathogens, discussing their main
strengths and weaknesses in order to guide readers toward
the most appropriate methods based on the type, quality and
availability of data, the food safety questions to be addressed, and
the (epidemiological and microbiological) characteristics of the
pathogens in question.

EPIDEMIOLOGICAL APPROACHES

Epidemiological Studies of Sporadic
Foodborne Infections
Human cases of a foodborne disease may occur sporadically, or
clustered as part of an outbreak. Case-control and cohort studies
are used extensively to identify risk factors for infection. The
principle is to compare the frequency of exposure to a given (risk)
factor in a group of cases to the frequency of exposure in a control
group (case-control study design), or to compare the frequency of
case occurrence among those exposed to a given risk factor vs. an
unexposed group (cohort study design).

Case-control studies are used more often for attribution of
sporadic foodborne infections. Case-control studies are subject
to several types of bias (e.g., selection bias, classification bias,
recall bias, etc.), possibly differential for cases and controls.
Ideally, the group of patients should be representative of all cases
occurring in the population, and the control group should be at
risk of acquiring the disease upon exposure, i.e., originate from
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FIGURE 1 | General overview of the different source attribution approaches for foodborne diseases.

a population with the same characteristics as the one where the
patients come from. Deviation from this basic principle results in
selection bias. In some studies, cases and controls are matched
by age, gender, place of residence, etc. to control for potential
confounding effects and gain analytical efficiency. Selection of
several controls per case allows for increased statistical power, but
the associated study costs rise in parallel (Fullerton et al., 2012).

Case definition is usually based on clinical symptoms and/or
laboratory testing results, which may also include pathogen
characterization. Collecting data on exposure to putative risk
factors is usually retrospective in nature and mainly performed
using questionnaires or interviews, with the recall period usually
being the maximum duration of the incubation period for
the disease in question. The investigated risk factors are often
those that may have caused or favored transmission of the
pathogen; that is, consumption of specific food items and general
eating habits, underlying (possibly chronic) health conditions,
behavioral or seasonal factors, etc. Typically, questionnaires are
built on the findings of previous studies, possibly including new
hypotheses (exposures) to be tested. These are comparatively
more generic than the food items listed in the so-called
‘trawling questionnaires’ used in outbreak investigations, which

are constructed to rapidly target specific food products to
withdraw from the market.

The usual measure of association between the disease and
the risk factors is the Odds Ratio (OR), whose interpretation
for source attribution is not as direct as the Relative Risk (RR),
although there are methods to convert them to one another
(Grant, 2014). Logistic regression modeling is often the statistical
method of choice for analyzing case-control study data. When a
biologically plausible causal link between exposure and disease
exists, calculating a Population Attributable Fraction (PAF) can
provide an estimate of the number of cases attributable to a
given risk factor (i.e., source) in question; that is, the cases that
may be averted by eliminating exposure to such a risk factor
(Stafford et al., 2008). Systematic reviews and meta-analyses
of published case-control studies are useful to provide pooled
ORs to identify the main risk factors for foodborne infections
(Domingues et al., 2012; Kintz et al., 2017). They may also help
increasing the number of sources to be considered and overcome
the geographical and temporal limitations inherent of individual
case-control studies.

In summary, case-control studies of sporadic foodborne
diseases can provide valuable insights into determinants
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and risk factors for infection at the point of exposure
(Hedberg, 2012; Fullerton and Mahon, 2013). Although these
studies are challenged by several biases, recent examples show
their usefulness in pinpointing specific sources. For instance,
the link between consumption of ‘cantaloupe’ melons and
L. monocytogenes infection in the United States of America
(USA) was first suggested by a case-control study of sporadic
cases (Varma et al., 2007). These studies are particularly useful
for attribution of diseases that are sporadic in nature, such as
campylobacteriosis (Kapperud et al., 2003; Wagenaar et al., 2015).

Outbreak Investigations
Rapid collection of information about the possible causes of a
foodborne outbreak, soon after case identification, favors the
implementation of measures to prevent and finally stop the
spread of the disease. Indeed, a foodborne outbreak investigation
aims at identifying the contaminated food items, so that
appropriate measures (e.g., recall of retailed products) can be
implemented and lessons for prevention and management of
future outbreaks can be drawn. During a typical foodborne
outbreak investigation, health authorities would essentially
collect three types of data: (1) epidemiologic data (e.g.,
spatiotemporal and sociodemographic distribution of cases,
foods consumed and other exposures); (2) trace-back data (e.g.,
common points of contamination in the distribution chain
of suspected foods, findings from food safety inspections in
production facilities); (3) microbiological data (e.g., laboratory
detection and possible subtyping of the pathogens in question
from human cases, food, animal and/or environmental samples).
The analysis of epidemiological data may include testing
hypotheses in a case-control study or a retrospective cohort
study, which allows for a comparison of the frequency of
occurrence of the disease among consumers and non-consumers
of suspected foods. Retrospective cohort studies are often
used in outbreaks affecting confined communities, such as
schools, hospitals, nursing homes, mass-gathering events, etc.
Recently, there have been methodological developments in
outbreak investigation settings, particularly in the USA, that
move away from community-based case-control studies, such
as the increasing use of case-cluster interviews to compare
case-patients reporting consumption of specific foods before
illness onset to population expected values (Laughlin et al.,
2019). Microbiological data may provide strong evidence for the
identification of the source of a foodborne outbreak, as infection
with specific pathogen subtypes may be a criterion for definition
and exclusion of cases that are not infected with the outbreak
clone. For the purpose of source attribution, foodborne outbreaks
(and individual cases therein) caused by a given pathogen in a
defined time period are usually categorized by transmission route
(e.g., food, direct contact with animals, person-to-person, etc.),
and then further categorized by food source (e.g., chicken meat,
eggs, dairy, etc.). The use of a standardized food classification
system is strongly advocated (Painter et al., 2009). The broadness
of defined food groups depends on the original resolution of
available data and the objectives of the attribution assessment.
Some methods allow considering the different ingredients of
composite meals, which outbreaks can then be attributed to

(Painter et al., 2009; Pires et al., 2010, 2012). The results are
usually presented as the proportion of outbreaks (or outbreak
cases) attributable to each source. This proportion can provide
an estimate of the relative contributions of different food sources
to the human disease burden. However, it should be kept in mind
that outbreaks usually provide a partial picture of all infections
occurring in the population (Pires et al., 2009).

In summary, outbreak data may cover a wide range of
food sources and pathogens, so their analysis has the potential
to provide insights for source attribution. However, data
completeness is dependent on the quality and coverage of the
surveillance system. Outbreaks of severe diseases, those caused
by rare pathogens, and those with a high attack rate have a higher
chance of being identified, thoroughly investigated and reported,
whereas outbreaks of mild diseases, involving a few people and/or
caused by less virulent pathogens, are more likely to remain
unascertained and uninvestigated.

In absence of an investigation, the identification of the source
of the outbreak relies on anecdotal information or on information
supplied by, e.g., physicians, patients themselves, etc. In these
cases, the strength of the evidence linking an outbreak to a
given source is weak and tends to confirm notoriously high-risk
foods, with possible overestimation of their contributions. The
burden of foodborne pathogens that are sporadic in nature (e.g.,
Campylobacter, Toxoplasma, etc.) is poorly estimated by source
attribution based on outbreak data, and other approaches (e.g.,
case-control studies) are preferable.

APPROACHES BASED ON MICROBIAL
SUBTYPING

Brief Overview of Typing Methods
Applied to Foodborne Pathogens
Typing methods for foodborne pathogens have been developed
with the main objective to characterize and compare strains with
one another, as to determine their distinctive features, origins
and similarities. The two main families of typing methods for
microorganisms are based on either their expressed phenotype
or on the nucleotide composition (genotype) of their full or
partial genome. For Salmonella, two reviews encompass general
considerations described in this section (Barco et al., 2013;
Ferrari et al., 2017).

Phenotyping Methods
Biotyping is the basis of speciation using traditional
microbiological tests for bacteria already defined at the
genus, species, and subspecies levels. This involves identifying
metabolic pathways (e.g., sugar utilization), specific enzyme
activities (e.g., lysine decarboxylation, etc.) or biological,
physiological or biochemical properties (e.g., Gram staining,
mobility, etc.) of a given bacterium. When at least one or several
characteristics are specific for a group within a species/subspecies
(e.g., Listeria ivanovii subsp. ivanovii), then a specific biotype
(e.g., Shigella sonnei biotype G ornithine decarboxylase positive)
can be determined.
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Serotyping describes the antigenic diversity within
microorganisms. By means of agglutination using hyper-
immune sera, the aim is to detect which antigens among those
determining the serotype pattern are present on the tested strains.
The sera used are directed against variable cell-wall antigens
within the species of bacteria that possess them (poly-O chains of
LPS for Gram-negative bacteria, polysaccharides or capsules for
Gram-negative and Gram-positive bacteria, called factor O, and
against the flagella antigens, called factor H, and rarely capsular
antigens on the surface of some enteric bacilli, called factor K).
An updated scheme that identifies the antigenic diversity present
in the species, and the way to characterize a specific serotype, is
a prerequisite, e.g., the White-Kauffmann-Le Minor scheme for
Salmonella1. The serotype is then expressed in the form of an
antigenic formula, such as a list of factors O and factors H in the
case of E. coli (e.g., E coli O157:H7). The scheme also provides
a step-by-step procedure, which, by successive eliminations,
leads to the single antigenic formula of the serotype (also called
serovar). Many pathogenic bacteria have serotyping schemes
more or less used by the scientific community according to their
recognized discriminatory characteristics. The aforementioned
White-Kauffmann-Le Minor scheme for Salmonella is an
example of a serotyping scheme that is still a reference despite
the advent of the more discriminatory (molecular) subtyping
approaches. This scheme also has the particularity of associating
a serotype name with a determined antigenic sequence. For
instance, Salmonella enterica serotype Agona possesses the
antigenic formula 1,4,[5],12:f,g,s:[1,2]. In contrast, no serotyping
is available for foodborne viruses. Indeed, most of them (e.g.,
norovirus, hepatitis A virus, hepatitis E virus, etc.) are not
cultivable in vitro, limiting the use of serum neutralization for
typing purposes. In addition, no viral antigen detection tests are
available for these viruses.

Antibiotyping involves testing the susceptibility of
bacterial strains to different antibiotics. Their profiles of
resistance/sensitivity to these antibiotics then defines the
antibiotypes. If the list of molecules with antibiotic activity used
is constant and for each molecule the concentration limit beyond
which the bacterium is considered resistant is standardized
by international or national organizations (i.e., EUCAST:
European Committee on antimicrobial susceptibility testing),
the antibiotype (or antibiotic resistance phenotype) becomes a
characteristic (Threlfall et al., 1999) of a given strain and could
contribute on works on source attribution (David et al., 2013a).

Phage typing is a phenotypic approach based on the
sensitivity/resistance of a bacterium to bacteriophages. The
method determines, among other things, the presence/absence of
a bacterial receptor specific to each phage tested. The presence of
this receptor is visualized by the appearance of lysis plaques on
a culture of the bacterium in the presence of a suspension of the
bacteriophage of adequate concentration. The method relies on
a standard and stable panel of phages that determines the phage
type (PT), and was developed for a limited number of bacterial
species (Audurier et al., 1979) or subtypes (Anderson et al., 1977;
Glosnicka and Dera-Tomaszewska, 1999).

1https://www.pasteur.fr/sites/default/files/veng_0.pdf

Current developments in phenotyping methods are related
to proteomics. The identification and analysis of polypeptide
spectra expressed by a microorganism using MALDI-TOF
(Matrix-Assisted Laser Desorption Time-Of-Flight) Mass
Spectrometry is a good example of this novelty. These spectra,
consisting of several hundred polypeptides expressed by the
microorganism, can be exploited for identification of the genus
and/or species or, under certain conditions, for the comparison
of strains and also antibiotyping. The stability of the spectra
according to the culture conditions must be verified beforehand.
These methods are booming in diagnostic laboratories and are
replacing classical phenotypical methods. Rapid improvement
of these methods and their ability to provide cost-effective,
high-quality data, highlight their relevance for future application
in source attribution (Shell et al., 2017).

PCR-Based Methods
The first genotyping approaches were based on the amplification
of genome fragments (genes or gene fragments, or even non-
coding regions) by endpoint or real-time Polymerase Chain
Reaction (PCR or qPCR) or Reverse Transcription PCR (RT-
PCR). The analysis of this amplification is performed either
directly by detecting the presence or absence of the expected
gene fragment(s) or indirectly after digestion of the latter by an
appropriate restriction enzyme. The selected restriction enzymes
target short and frequently occurring cleavage sites on the
genome. Under these conditions, a limited number of small-sized
fragments are produced and these can be easily separated on an
electrophoresis gel. The RFLP thus becomes a characteristic of the
microorganism analyzed. For example, the sequences encoding
16S RNA in bacteria can be chosen (this is the principle of
ribotyping) (De Cesare et al., 2001a,b) or more specifically, they
are genes differing within a given bacterium that can be chosen
to support this PCR-RFLP (e.g., fla-typing of Campylobacter fla
gene, or invA or fliC for Salmonella) (Djordjevic et al., 2007). The
choice of the gene and restriction enzymes used will influence
the discriminatory power of the technique (Soler-Garcia et al.,
2014). An alternative is the AFLP (Amplified fragment length
polymorphism), which is based on the prior restriction of the
genome and then the amplification of the produced fragments
(Wang et al., 2011). PCR could also be used for bacterial
genoserotyping, so by replacing the classical serotyping by a
molecular serotyping for Listeria monocytogenes (Doumith et al.,
2004). In the case of foodborne viruses, the reference detection
method is real-time RT-PCR (RT-qPCR) with a specific probe
or even digital PCR (dPCR). This approach may allow for a
first level of typing with group-specific probes (e.g., norovirus
Genogroup I or II).

Another approach consists of performing non-specific
amplifications (degenerate primers and/or sub-stringent PCR
conditions) in order to obtain, from the entire genome, randomly
amplified DNA fragments that are variable but compatible with
a migration in agarose gel. Under these conditions, the PCR
generates a limited and reproducible number of fragments in
a given laboratory. Their migration in a conventional agarose
gel reveals the fragment size polymorphism (Random Amplified
Polymorphic DNA or RAPD) for a microorganism. Different
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RAPD profiles then identify different strains. This approach has
significant limitations regarding reproducibility and its value in
comparing large microbial populations over time is rather low.

Another technique based on PCR is MLVA (Multi-Locus
Variable Number Tandem repeat). Its principle is the following:
in the genomes of bacteria and parasites, some sequences are
repeated in tandem a certain number of times (Variable Number
Tandem Repeat or VNTR, minisatellites or microsatellites). For a
given VNTR, the size of the sequence is variable in multiples of
the repeated unit. In addition, several VNTR zones of different
compositions may be present in a genome. It is then possible
to assess the diversity of the VNTR loci and, for each VNTR
zone, the size of the amplified fragments, either by PCR and
gel or by capillary sequencing or directly by analyzing the
sequence. The standardization of this MLVA approach requires
determining the number of VNTR loci retained in the analysis
and considering the number of repeats found at each locus
(Ferrari et al., 2017).

Methods Based on the Analysis of Restriction
Fragments Length Polymorphism (RFLP)
The analysis of RFLP of the entire genome by Pulsed-Field Gel
Electrophoresis (PFGE) is probably the one that benefited the
most from developments before the arrival of high-throughput
sequencing. The principle is to fragment a genome (from
a bacterial culture) by restriction enzymes that target rarely
represented cleavage sites. This results in a relatively limited
number of fragments. Since the latter are large, they must
be separated by specific electrophoresis, allowing for their
migration. The development of this approach requires, for each
bacterium, to select a set of enzyme (a single or several, i.e.,
AscI/ApaI enzymes for L. monocytogenes) capable of cutting
the genome into more or less 15 fragments of variable sizes
for different strains (Graves and Swaminathan, 2001). The
discriminatory power can be increased by using, in parallel,
several restriction enzymes. This principle of digestion can also
be applied not only to the genome, but on the plasmids extracted
from bacteria (the enzymes are then chosen to generate fragments
of size compatible with the normal agarose gel migration
conditions). In doing so, one can obtain a plasmid profile for
each bacterium. Thus, before comparing strains from a source
attribution perspective, a protocol must be precisely defined,
including the number and nature of the enzymes as well as the
migration device used. This technique is robust and reproducible
from one laboratory to another, but it may prove ineffective
in discriminating closely related strains, i.e., strains belonging
to the same species, originating from the same individual
and having limited evolution from a genetic standpoint. This
approach, which until recently has been recognized as a reference
for many bacteria, is being now replaced by sequencing-
based approaches.

Methods Based on the Analysis of Genomic
Sequences
Multi-Locus Sequence Typing (MLST) relies on the presence of
allelic diversity at a certain number of loci in the genome of a
bacterial species. After sequencing each locus, an allele number

is determined, with the combination of these numbers defining
the sequence type (ST) and clonal complexes (CC). Before relying
on an MLST method to compare strains, a consensus must
be reached on the number and nature of the loci to sequence
for ST identification. There is also a need for a large ST bank
(in terms of number and diversity) to be established before
defining the discriminatory power of this method for a given
microorganism. For viruses, the block fragments are chosen
in a genomic region with discriminatory power. This genomic
region must be framed by sequences sufficiently conserved to be
amplified using consensus primers and must contain sufficient
variability to differentiate the different subtypes or subgroups.

The CRISPR-Cas system is considered to be a prokaryotic
immune system based on the integration of bacteria-specific
nucleotide sequences in specific regions of the genome: CRISPR
(Clustered Regularly Interspaced Short Palindromic Repeats).
These regions are reorganized over time by bacteria (new
spacer acquisitions, depletion of obsolete ones). Therefore, the
sequencing of these zones of the genome makes it possible to
differentiate the strains and even to infer their phylogeny.

The latest developments in molecular methods are based
on preliminary comparative results of whole genomes. This
comparison establishes a list of genes whose presence/absence
is frequent enough to distribute the population of the
tested bacteria. This technique is particularly adapted to
genomes showing great plasticity. In Campylobacter, this CGF
(Comparative Genomic Fingerprinting) technique is based on the
detection of 40 genes (by a reasonable number of multiplex PCRs)
and produces a presence/absence code for these 40 genes: the
typical CGF. The CGF technique delivers consistent results with
the MLST scheme and provides a higher level of discrimination
among strains (Ravel et al., 2017). This approach is also
often called haplotyping, expressly developed for Salmonella
Typhi (>80 genes).

Whole Genome Sequencing (WGS) is enabled by high-
throughput sequencing techniques. The benefit is then the
availability of complete genomes to be compared. Given the
huge amount of data provided simultaneously by WGS, the
challenges of analyzing the sequences, as well as to define
their quality criteria and to obtain alignment, require advanced
bioinformatics skills. The harmonization of these bioinformatics
‘pipelines’ is the key to standardization of these approaches.
Sequencing of complete genomes allows for the number and
position of single nucleotide polymorphisms (SNPs) to be
identified and differentiated among strains, including bacterial
species previously considered to be highly homogeneous from a
genetic point of view. An ultimate level of discrimination among
close strains is reached. The availability of these sequences makes
it possible to select those that are relevant for the comparison (or
phylogeny) of the strains. The application of MLST approaches to
the core genome (cgMLST) or whole-genome genes (wgMLST)
is an example of the development of highly discriminatory
typing methods derived from WGS approaches applicable to
source attribution (Sheppard et al., 2012). For example, if MLST
would compare 5–7 loci, the cgMLST would be based on the
comparison of several hundreds or thousands of genes or variable
sequences. For example, cgMLST for L. monocytogenes allows
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for rapid analysis of sequences based on the comparison of
allele numbers and their sum up in a cgMLST type (CT)
with a number (e.g., CT577) that could be easily exchanged
among laboratories, food business operators and risk managers
(Moura et al., 2016).

Standardization, Automation, and
Discriminatory Power of Typing Methods
For the purpose of source attribution, a suitable subtyping
method must essentially satisfy the following three conditions
(Table 1): (1) be standardized in order to facilitate the exchange
of data and the comparison of results among laboratories;
(2) be automated with a reference data set allowing for
the establishment of a nomenclature within the microbial
species (e.g., serotyping, MLST, PFGE, cgMLST, etc.); (3) be
discriminatory at the level of the individual microorganism.

Standardization and validation of a typing method are the
result of a consensus by the scientific community on a common
protocol of analysis, providing comparable data based on an
inter-laboratory study and a satisfactory level of discrimination
in terms of diversity among strains. It may be a serotyping
scheme (e.g., White-Kauffman-Le Minor for Salmonella), the
nature and number of restriction enzymes necessary to establish
a PFGE profile for L. monocytogenes, or the nature and
number of sequences to be analyzed for characterizing a
Campylobacter ST. Yet, this consensus is not always reached. This
is true both for phenotyping approaches (e.g., for Salmonella,
several different phage typing systems have long existed in
parallel) and for MLST approaches (i.e., the number of
genes analyzed to define the ST differs among laboratories).
Sometimes standardization is impossible because the results
are not that reproducible, such as in the case of RAPD. As

several laboratories are nowadays engaged in the characterization
of strains, there is a needed for standardization of typing
methods and assessment of performance in inter-comparison
tests before pooling results from different origins (e.g., the
PulseNet International Protocol)2. For WGS, a working group
ISO TC34/SC9/WG25 at ISO (International Organization for
standardization) developed an international standard on WGS,
typing and genomic characterization of foodborne bacteria.

For noroviruses and hepatitis A virus, there is a standard
established by the European Committee for Standardization
(CEN) and internationally validated on horizontal methods of
analysis of foodstuffs (EN ISO15216-1 and CEN ISO/TS 15216-
2). These methods defining the conditions for viral detection or
quantification in food matrices are based on RT-qPCR and allow
for discrimination among genogroups GI and GII in specific
foods. For parasites, there is no standardized detection method
for Toxoplasma gondii in meat or vegetables, but when the
parasite is isolated, genotyping methods can be applied (e.g.,
microlens, MLVA, RFLP). The complete sequencing technique
is being developed (34 strains of T. gondii have been fully
sequenced to date). For Cryptosporidium and Giardia duodenalis,
there is a standardized method for detection in water (NF T 90-
455), fresh leafy green vegetables and berries (EN ISO 18744),
without characterization or genotyping. For strains from human
or animal reservoirs, characterization is genotypic and relies on
microsatellite MLVA typing or on the analysis of the sequence
diversity of regions amplified by PCR or qPCR (Table 2).

Automation is rarely complete. The most recent techniques
incorporate certain automated steps, such as DNA or RNA
extraction, validation of process quality including sequencing,
and use of pipelines for bioinformatics. Currently available typing

2https://www.cdc.gov/pulsenet/pathogens/pfge.html

TABLE 1 | Typing methods and their discriminatory power, level of automation and standardization.

Method type Method name Discriminatory power Automatization Standardization

Phenotyping Speciation-biotyping Low Yes Yes

Antibiotyping Low Partially Yes

Agglutination serum Serotyping Low to high No Yes

Lysotype Lysotyping Moderate No Yes

Maldi-Tof MS spectra Maldi-TOF (mass spectometry) Low to moderate Yes Yes

Phagetyping Moderate No Yes

DNA macrorestriction on gel Ribotyping Moderate Partially Yes

Plasmid profiling Low No No

AFLP Moderate No No

RAPD Moderate No No

IS2001 Moderate No No

PFGE Moderate to high No Yes

Nucleotide targets Targeted sequencing High Yes Yes

MLST Moderate to high Yes Yes

MLVA High Yes Yes

CRISPR Moderate Yes No

Real-time RT-qPCR High Yes No

WGS (cgMLST, wgMLST, SNP) High Yes No

1 IS 200 Amplification by PCR of an insertion sequence (Threlfall et al., 1994).
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TABLE 2 | Typing techniques of reference, those routinely used and those most discriminatory per each foodborne pathogen.

Pathogen Reference technique Standardized techniques in common practice Most discriminatory
technique

Bacillus cereus Genotyping, toxins and toxin genes Genotyping WGS2

Clostridium perfringens Toxins and toxin genes Toxinotyping1 WGS

Campylobacter spp. Biochemistry and MLST Biochemistry and MLST WGS

STEC Serotyping, toxin profiling Serotyping, toxin profiling,2 PFGE WGS

Listeria monocytogenes Genoserotyping, MLST, cgMLST, SNPs Genotyping, PFGE (PulseNet protocol), AFLP (UK),
MLST, cgMLST, wgMLST, SNPs

cgMLST, SNPs

Salmonella spp. Serotyping (White-Kauffmann-Le Minor), PFGE
(PulseNet protocol)

Serotyping, PFGE, MLST, MLVA (Typhimurium and
Enteritidis), WGS

WGS

Shigella spp. Serotyping and biotyping Serotyping, biotyping, MLVA WGS

Staphylococcus aureus Serotyping Serotyping, PFGE, spa typing, MLST WGS

Yersinia enterocolitica Biotyping, serotyping, PFGE Biotyping, serotyping, PFGE, SNPs, cgMLST WGS

Norovirus Real-time or conventional RT-PCR + sequencing,
genogrouping and genotyping

Genogrouping and genotyping Genogrouping

HAV Real-time or conventional RT-PCR + sequencing,
genogrouping and genotyping

Genogrouping and genotyping Genotyping

HEV Real-time or conventional RT-PCR + sequencing,
genogrouping and genotyping

Genotyping and subtypes Genotyping and
subtypes

Cryptosporidium spp. Real-Time PCR (ARN 18S) and PCR of the
microsatellites gp60 (for all species) and Cp47 (for
C. parvum) and then sequencing

Real-time PCR (RNA 18S) and PCR of the
microsatellites gp60 (for all species) and Cp47 (for
C. parvum) and then sequencing

Microsatellites gp60,
Cp47, RPGR, MSC6-7

Giardia duodenalis PCR of the tpi (triose phosphate isomerase) gene and
of the β-giardine gene and then sequencing

PCR of the tpi (triose phosphate isomerase) gene and
of the β-giardine gene and then sequencing

Sequencing
β-giardine + tpi

Toxoplasma gondii Microsatellite genotyping and RFLP Microsatellites and RFLP Microsatellites

1Typing of toxins; 2Pathogenicity genes: eae, ehxA, stx variants and WGS methods: SNPs, cgMLST, wgMLST.

approaches still require some fundamental manual activity to
varying degrees. It should also be considered that these typing
steps are preceded by detection methods, which require direct
interventions and specific ‘know-hows’ as well. For example,
the search for viruses in non-vegetable matrices may require
dissection procedures for digestive tissues of mollusks or grinding
of complex meat-based matrices (e.g., degreased sausages), but
the automation of these procedures is not often foreseen.

Discriminatory power is not a performance characteristic of a
given method but the product of the method and microorganism
in question (including the set of strains studied). The most
striking example is the passage of two to three restriction
enzymes for S. Enteritidis pulsotyping when two are sufficient
to differentiate PFGE profiles from S. Typhimurium. Similarly, if
an MLST is unable to differentiate two epidemiologically distant
strains, the addition of loci to be sequenced (toward cgMLST or
haplotyping) can overcome this difficulty. But these adjustments
have to be made a priori and cannot be considered as possible
adjustments during the analysis. The discriminatory power is
therefore not a limit, especially when dealing with sequences of
the complete genome.

Source Attribution Models Based on
Microbial Subtyping
The principle of source attribution based on microbial subtyping
is to attribute human cases caused by a given pathogen
to a number of putative sources of infection based on the
distribution of pathogen subtypes in humans and sources.
The subtypes are usually defined by phenotyping (namely
serotyping, phage typing, and antimicrobial profiling, e.g.,

for Salmonella) and/or genotyping methods (e.g., cgMLST
for Listeria monocytogenes and Campylobacter) (Sheppard
et al., 2012; Taboada et al., 2012; Ruppitsch et al., 2015; Moura
et al., 2016; Thepault et al., 2017). The use of standardized
subtyping methods is then a prerequisite (e.g., PulseNet
International, a laboratory network dedicated to tracking
foodborne infections worldwide by promoting standards for
PFGE for molecular typing of foodborne pathogens), as is
the optimal level of discrimination of the typing method in
question. Of note, these methods are particularly demanding
in terms of data requirements and computational capacity.
For source attribution, besides subtyping data per se, it
is also crucial to consider the representativeness of strain
collections. Inclusion of data on the level of contamination
(i.e., pathogen prevalence/concentration) of the sources, as well
as data on the degree of exposure of the population to these
sources (e.g., amount of food consumed) are also sometimes
necessary to scale the similarities in pathogen subtypes between
humans and sources.

The optimal discrimination power of the subtyping method
depends on the source attribution method applied. The subtypes
or groups of subtypes should be chosen to address the need
to have groups large enough to find matches between cases
and sources, but not too large to penalize precision in the
attribution results. Alternatively, some source attribution models
may use phylogenic relations among strains, accounting for their
potential evolution by, e.g., explicitly addressing mutation and
recombination events.

Source attribution methods based on microbial subtyping
attribute cases to a priori chosen sources. Consequently, all
main potential sources must be included in the analysis, with a
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representative and heterogeneous distribution of subtypes among
these sources. Travel-related cases need also to be identified and
excluded from the source attribution analysis, as they are not
due to exposure to domestically available foods. Only one case
per outbreak event is usually included in the analysis to avoid
inflating attributions to a given food source because of, e.g.,
poor hygiene practices of food preparation and consumption,
and not because the actual level of contamination of the
source itself. Moreover, excluding outbreak-related cases from
the source attribution analysis (of sporadic cases) would avoid
over-representing those cases attributable to a specific source
due to increased testing in response to public alert following an
outbreak event receiving considerable media attention. Examples
are the large Salmonella Thompson outbreak linked to smoked
salmon in the Netherlands in 2012 leading to over 1100 cases
identified (Friesema et al., 2014), or the German outbreak of
E. coli O104:H4 linked to sprouts where over 4000 cases were
reported (Buchholz et al., 2011).

Frequency-Matching Models
Frequency-matching models for source attribution infer
probabilistically the most likely sources of human cases by
comparing their subtype frequencies, weighted by factors
like prevalence in these sources and the human exposure to
them. Frequency-matching models therefore assume that the
subtypes remain stable when passing from their (food, animal,
or environmental) sources to humans. A measure of the area of
overlap between the subtypes frequency distributions of human
and source strains can be computed using the Proportional
Similarity Index (PSI) or Czekanowski Index (Feinsinger and
Spears, 1981; Rosef et al., 1985). Figure 2A illustrates a situation
in which all human cases are associated with four subtypes of
a given pathogen: 80 cases associated with subtype 1, 400 cases
with subtype 2, 40 cases with subtype 3, and 200 cases with
subtype 4. The frequencies of detection of these four subtypes in
the three sources considered are:

• Subtype 1: 1, 2, and 1% for sources 1, 2, and 3, respectively.
• Subtype 2: 3, 1, and 1% for sources 1, 2, and 3, respectively.
• Subtype 3: absence of isolation in all three sources.
• Subtype 4: 1, 1, and 3% for sources 1, 2, and 3, respectively.

Assuming that the exposure to the three sources is the same,
the calculation of the attributable fractions for, e.g., subtype 1,
would be 25% [1/(1 + 2 + 1)], 50% [2/(1 + 2 + 1)] and
25% [1/(1 + 2 + 1)] for sources 1, 2, and 3, respectively.
By applying these percentages to the number of human cases
caused by subtype 1 (i.e., 80 cases), it can be calculated that
20, 40, and 20 cases are attributable to sources 1, 2, and 3,
respectively. This calculation is then repeated for all subtypes,
and a summation over subtypes gives the total number of cases
attributed to each source.

As mentioned before, the subtype frequencies can also be
weighted by factors like the level of exposure to sources and
the ability of the different subtypes to cause infection (e.g.,
pathogenicity). Figure 2B illustrates the same calculation by
integrating a weight reflecting these factors for each source.
The population now appears to be twice as likely to be exposed to

source 3; thus, the weighted frequencies now lead to 20, 40, and
40% attributions of subtype 1 to sources 1, 2, and 3, respectively.

The results of a source attribution analysis are usually
presented as the number, or percentage, of human cases
attributed to each source. These estimates are often accompanied
by confidence intervals or, more commonly, credibility intervals
when Bayesian models are used. A temporal dimension for source
attribution has also been proposed (Mullner et al., 2009a; Pires
and Hald, 2010; Ranta et al., 2011; Mughini-Gras et al., 2014a).
The frequency-matching models commonly used in the literature
are the Hald (‘Danish’) and the Dutch models.

The Hald (‘Danish’) model and its adaptations
Hald et al. (2004) proposed a Bayesian model for source
attribution of non-typhoid salmonellosis in Denmark based on
serotyping and phage typing data. The model is written as:

oi ∼ Poisson
(
6jλij

)
with λij = pij ×Mj × qi × aj

where,
i: Index of subtypes, varying from 1 to I,
j: Index of sources, varying from 1 to J,
Data:
oi: Observed number of human cases caused by subtype i,
pij: Prevalence of subtype i in source j,
Mj: Amount of food from source j consumed

by the population.
Parameters to be estimated:
λij: Expected number of human cases of subtype i from

source j,
aj: Source-dependent parameter,
qi: Subtype-dependent parameter.
The Hald model therefore takes into account the subtype

prevalence in each source (pij), the amount of food consumed
from each source (Mj), the ability of each source to act as a
vehicle for the pathogen in question (aj), and the ability (e.g.,
pathogenicity, infectious dose, fitness, etc.) to cause infection
of each subtype (qi). As an example, the average number of
human S. enterica serotype Heidelberg infections deriving from
consumption of chicken would be proportional to the prevalence
of S. Heidelberg in chicken, the amount of chicken consumed by
the population, the ability of chicken meat to allow for S. enterica
transmission to humans, and the ability of S. Heidelberg to cause
infection in humans. While pij and Mjare based on known values,
aj and qi are unknown and are, thus, estimated by the model.

Parameter estimation is based on Bayesian inference,
including both informative and non-informative priors.
However, the model is over-parameterized, i.e., there are fewer
observations than parameters to be estimated. To circumvent
this issue, some parameters were fixed to the same values in
the original Hald model. For instance, the subtype-dependent
parameter (qi) was assumed to be identical for all phage types
within the two S. enterica serotypes Typhimurium and Enteritidis
(most frequent types in humans) and, for the most common
serotype (S. Enteritidis), this value was arbitrarily set to 1. Fixing
parameters does improve model identifiability (i.e., the true
values of the model’s underlying parameters can be theoretically
obtained from an infinite number of observations), but it does
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FIGURE 2 | Example of attribution of human cases (720 cases) of a given foodborne disease to three potential sources based on four microbial subtypes. (A) The
attribution takes into account only the prevalence of all subtypes in each source, and the exposure to each source is then assumed to be constant. (B) The
attribution takes into account both the prevalence and the exposure to each source.
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so at the expense of an artificial reduction of the uncertainty
in the estimates. Moreover, such arbitrary choices may have
important consequences in the attribution results (David et al.,
2013a). The presence of specific subtypes in sufficient number
(at least as much as the sources) allows arbitrary assumptions
to be lifted using values calculated from the data themselves
(David et al., 2013a).

Another approach allowing the model to become more
identifiable consists of parameterizing the subtype-dependent
factors (qi) as random effects from a non-informative a priori
distribution where only the first two moments (hyper-
parameters) of the distribution are estimated (Mullner et al.,
2009a). For example, in the case of a Gaussian distribution,
the first two moments would correspond to the mean and
variance. Although the type-dependent parameters are no longer
estimated, they can be predicted if necessary.

Several modifications have been proposed to adapt the
Hald model to pathogens other than Salmonella, as well as
to different epidemiological contexts and data types, including
the integration of non-food sources (Mullner et al., 2009a;
Mughini-Gras et al., 2016, 2019), use of passive surveillance
data (David et al., 2013b; Glass et al., 2016), a combination
of source data from different monitoring systems (Mullner
et al., 2009a), non-availability of exposure data (Mullner et al.,
2009a; Mughini-Gras and van Pelt, 2014; Glass et al., 2016),
different inclusion modalities for outbreak data (Glass et al.,
2016), inclusion of both epidemiological and genetic data
(Liao et al., 2019), and presence of sparse data (Mikkela
et al., 2019). Of these model adaptations, the most successful
one is probably the ‘modified Hald model’ (Mullner et al.,
2009a), which besides removing parameter (Mj) to include
also non-food sources (as this effect will be absorbed by
aj), it includes a modeled subtype-specific prevalence (pij)
derived from the product of the within-source subtype relative
frequencies and the overall prevalence of the pathogen in
question in each source.

Recently, Miller et al. (2017) developed a novel source
attribution model, named ‘sourceR’, which builds upon, and
unites, the original Hald (Hald et al., 2004) and modified Hald
(Mullner et al., 2009a) models. The model is flexible, fully joint
(as it combined the different outcomes in a single model),
and does not rely on many approximations and assumptions.
Mixing and a posteriori correlations are significantly decreased in
comparison to the modified Hald model. Moreover, a Bayesian
non-parametric model (Dirichlet process) is used to inform
strain-dependent clustering effects, allowing for the identification
of strain clusters with similar virulence, pathogenicity, and
survivability. This is a significant enhancement, allowing for
identifiability improvement over the previous models (i.e.,
fixing some parameters a priori or modeling the type effects
hierarchically as random effects). The model also incorporates
uncertainty in the prevalence, but it does so by fitting a fully joint
model rather than a two-step model like in the modified Hald
model (Mullner et al., 2009a). This has the advantage of allowing
the human cases to influence the uncertainty in the source data
and to preserve the restriction on the sum of the prevalences for
each source (Miller et al., 2017).

The Dutch model and its adaptations
The frequentist model proposed by van Pelt et al. (1999)
allows for direct (proportional) source attribution of non-typhoid
Salmonella (the so-called “Dutch” model). Using previous
notations, the model can be written as follows:

λij = P̂(source j | subtype i)× oi

In this model, the number of human cases of subtype i
attributable to source j is proportional to the observed number
of human cases of subtype i multiplied by the probability for this
subtype i of coming from source j. In the original Dutch model,
this probability is directly estimated from the frequencies of the
subtypes in the sources (rij):

P̂(source j | subtype i) =
rij∑
j rij

This model does not take into account differences among sources
(e.g., exposure) or among subtypes (e.g., pathogenicity) in their
ability to cause infection, thereby assuming an equal impact of
the different sources and subtypes on the human population.
An illustration of the Dutch model is presented in Figure 2A.
In subsequent model adaptations, the probability was estimated
using the approach proposed by Mullner et al. (2009a) and food
consumption weights were also included to take into account
differences in exposure to different sources (Ranta et al., 2011;
Mughini-Gras et al., 2014a,b). However, attributions appear
to be very sensitive to changes in these food consumption
weights. Consequently, an additional parameter denoting the
probability for these foods to be consumed raw/undercooked by
the population has been proposed (Mughini-Gras et al., 2014b;
Mughini-Gras and van Pelt, 2014). Such probability essentially
reflects the ability of the sources to act as a vehicle for the
pathogen in question, which lifts the assumption of equal impact
of the different sources on the human population.

Generalities of the Hald and Dutch models
When confidence in data is low, some authors suggest
introducing uncertainty and additional information into the
(modified) Hald and Dutch models, particularly in the prevalence
and food consumption weights (Mullner et al., 2009a; Mughini-
Gras and van Pelt, 2014). In situations where information
about human cases (e.g., subtyping of pathogens, travel status
of cases, etc.) is partially missing, Hald et al. (2004) and de
Knegt et al. (2015) proposed to reassign these cases according
to the observed distribution of subtypes and known statuses
of cases, and this has been done by others as well (Mughini-
Gras et al., 2014a). Moreover, when the prevalence of the
pathogen in a source is unknown, Mullner et al. (2009a) propose
a few methods to combine surveillance data with other data
approximating prevalence. Working with time series, Ranta et al.
(2011) proposed a non-parametric model to integrate the sources
when data are available only at certain period.

Being quite data-intensive and computationally demanding,
the modifications that have been proposed to mitigate some of
the limitations of the original Hald model are mainly applied
nowadays, with novel applications like sourceR enabling more
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straightforward attributions to be estimated (Miller et al., 2017).
Several modifications to the Dutch model have also been
proposed to mitigate some of its questionable assumptions, such
as the assumed equal impact of sources on humans (Mughini-
Gras et al., 2014a,b,c, Mughini-Gras and van Pelt, 2014). These
modifications have been mostly based on the more recent
developments of the (modified) Hald model. Notably, of the
frequentist framework of the original Dutch model for direct
attribution, its modified versions go toward a more stochastic
framework based on Monte Carlo simulation.

The (modified) Dutch and Hald models have been extensively
used for source attribution of major (bacterial) foodborne
pathogens. Studies have focused on Salmonella (Hald et al., 2004,
2007; Mullner et al., 2009a; Pires and Hald, 2010; Guo et al.,
2011; Wahlstrom et al., 2011; David et al., 2013a,b; Mughini-
Gras et al., 2014a,b,c, 2016; Mughini-Gras and van Pelt, 2014;
de Knegt et al., 2015, 2016; Vieira et al., 2016; Ahlstrom et al.,
2017; Mikkela et al., 2019) and Campylobacter (Mullner et al.,
2009a,b; Ranta et al., 2011; Boysen et al., 2014; Liao et al., 2019),
and to a lesser extent on L. monocytogenes (Little et al., 2010;
Nielsen et al., 2017), and Shiga-toxin producing E. coli (STEC)
(Mughini-Gras et al., 2018b).

An important limitation of both the Dutch and Hald models
is that they do not allow for the attribution of microbial subtypes
identified in humans but not in the sources, thus generating a
fraction of non-attributable cases or cases of ‘unknown source’.
Moreover, human cases of infections with subtypes present in the
sources will be attributed to these sources even if they are actually
linked to other sources (e.g., not considered in the model),
thereby the importance of including as many sources as possible.
It has been shown that including sources considered of minor
importance could lead to the reassignment of 25% of the cases
initially attributed to known sources of Salmonella (David et al.,
2013b). These models also assume that the different subtypes
are independent of the sources, whereas biological interactions
between specific pathogens and foods exist. In addition, no
model satisfies all needs and several models are often used in a
comparative fashion (Mullner et al., 2009a,b; Mughini-Gras et al.,
2014a,c, 2018b; Mughini-Gras and van Pelt, 2014).

Population Genetics Models
Genetic variations in microorganisms are the result of different
evolutionary forces. These can be prompted by either neutral
processes (genetic drift) or adaptive processes, such as the
emergence of a competitively advantageous mutation in a given
environment. Most bacterial populations are structured, i.e., they
do not form a genetically homogeneous unit, but rather consist of
several distinct lineages that are totally or partially isolated from
one another. Geographical isolation, combined with random
phenomena of genetic drift and sometimes with local adaptation,
drives genetic differentiation.

When analyzing genetic data for a given microorganism
based on targets like a certain number of alleles, microsatellites,
or SNPs, the objective is often to detect whether these
microorganisms are structured into different subpopulations,
and if so, to identify the number of clusters, the strains
composing them, and possibly their recombination events

(phylogeny). Historical methods for studying the genetic
proximity of microbial populations are based on the construction
of phylogenetic trees from a matrix of proximities for each pair of
strains, with these genetic proximities being typically calculated
using the methods proposed by Nei et al. (1983) or Reynolds et al.
(1983). Once the tree is built, it can be ‘cut’ at a certain point (e.g.,
after three levels of nodes from the root) to define the different
clusters (more or less equivalent to subtypes). Another approach
is to assume that genetic data (e.g., frequency of different
allele numbers at a locus) can be explained by a probabilistic
model whose parameters are unknown. Comparing genetic data
(frequencies) among different strain populations allows us to
establish a link between them, e.g., between strains from human
cases and from different sources. Two population genetics models
that are currently widely used for source attribution of foodborne
diseases are the so-called STRUCTURE (Pritchard et al., 2000)
model and the Asymmetric Island Model (AIM) (Wilson et al.,
2008). These two models are based on different principles of
genetic structuring of microbial populations, but the overall
attribution approach is similar.

STRUCTURE
STRUCTURE has been developed by Pritchard et al. (2000) and
is one of the first explicit models examining the genetic structure
of microbial populations. This model assumes the existence of
K (unknown) populations, each of which is characterized by
a set of allelic frequencies at each genetic locus considered. In
the simplest model without admixture, each strain is attributed
to a single population. The probabilities that a strain belongs
to the other populations reflect the attribution uncertainty. In
the model with admixture, each locus of a strain is attributed
to a population: a strain can therefore be attributed jointly to
several populations.

The principle of the model is to estimate the allelic frequencies
in different populations and their admixtures using Bayesian
inference. Tracing the sources of human cases is a particular
case of this model without admixture of the source strains, that
is, the strains can only belong to one of the K populations,
each of which corresponds to a specific source. The allelic
frequencies at each locus are characterized for each of the K
populations and the strains to be attributed are established from
frequencies of characteristic allelic numbers at each locus. Using a
fictitious data set, Figure 3 illustrates the STRUCTURE approach,
including the calculation of the membership coefficients for the
different sources. In this example, 12 strains (from three different
sources) are characterized by a given allelic number at four
loci. The alleles in colored boxes are those specifically detected
(or present) in a given source. The membership coefficients
of the strains are calculated from the allelic frequencies in
the three sources. This means that, e.g., for strain 13, the
allelic number 35 at locus 1 is very specific to source 2
(present in 100% of the strains of that source), so it weighs
heavily in the calculation of the membership coefficient. The
allelic number 42 of locus 2 is also specific to source 2 (but
only 75% of the strains of this source have it). The allelic
numbers 4 and 8 of loci 3 and 4, respectively, are present
in sources 1 and 2 and absent in source 3. This explains
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FIGURE 3 | Illustration of the approach for source attribution of the STRUCTURE model. Table: allelic profile of 12 strains from three sources (source 1 in red, source
2 in green, source 3 in blue) and four human strains. Bar chart: membership coefficients of the four human strains for the three sources. Each vertical bar represents
a strain to be assigned. The relative lengths of the color bars for a strain are proportional to the membership coefficients.

why the probability for strain 13 to belong to this latter
source is very low.

STRUCTURE can be applied to different genetic targets, such
as microsatellites, MLST, RFLPs, AFLP, SNPs, etc. provided that
this information is available for different loci. It is also necessary
that common alleles show some intrinsic diversity. In theory,
this approach could work with information limited to two loci
and two variants per locus. In practice, however, data often
derive from subtyping methods that consider several loci and
variants (see section “Genotyping methods”). Most publications
using this approach attributed human cases to specific reservoirs
(Sheppard et al., 2009; Strachan et al., 2009; Kittl et al., 2013;
Roux et al., 2013), farms (Müllner et al., 2010), or sources in
general (Nielsen et al., 2017). The results are mostly presented
in graphical form like in Figure 3, also for individual strains,
or as percent attributions, corresponding to the average of the
membership coefficients. The overall attributions are sometimes
accompanied by measures of uncertainty like 95% confidence or
credibility intervals.

The model is available as an open-access software and
its main advantage is that it allows for several loci to be
considered, providing the opportunity for use of whole-genome
sequencing (WGS) derived data. The main recognized limitation
of this model is related to the definition of the optimal
number of populations (K). However, in the specific case of
source attribution, K corresponds to the number of sources,
and because of non-admixture, a strain can only originate
from one source.

Asymmetric island model (AIM)
This model was developed by Wilson et al. (2008) for
Campylobacter and, in its original formulation, it aims to infer
the population structure, as well as to explain the genetic
differentiation through phenomena of mutation, recombination
and migration, as an extension of Wright’s island model (Bodmer
and Cavalli-Sforza, 1968). In this model, the population is
separated into different islands. After a number of generations,
individuals migrate among these islands. The level of genetic
differentiation among populations is therefore a function of the
number of migrants in each island at each generation. The
extension of this model allows for different, i.e., asymmetric,
migration rates. In the framework of source attribution, the
population to be attributed corresponds to the strains from
human cases, and the different islands correspond to their
different sources. Based on the allelic frequencies at given loci
in a population of known sources, it is possible to attribute the
origins of the human strains, as well as to estimate the mutation,
recombination and migration rates. The rates of migration
from the sources to the human population correspond to the
parameters of interest, i.e., the attribution of human cases.

An illustration of the AIM based on the same data set used
previously to illustrate the STRUCTURE approach (four strains
to be attributed to three sources) is provided in Figure 4.
Migration, mutation, and recombination rates are calculated
from the alleles presented in Figure 3. Figure 4 shows the
estimates for the migration and mutation rates: source 3 has
the largest fraction associated with mutation in the same source
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FIGURE 4 | Illustration of the approach for source attribution of the asymmetric island model. Pie charts: migration rate (segments with colors different from the
source name) and mutation (black segments) for each of the three sources according to the allelic frequencies of the sources shown in Figure 3. Bar chart:
attribution probabilities of the four human strains for the three sources (source 1 in red, source 2 in green and source 3 in blue) estimated by the asymmetric island
model according to the allelic profiles presented in Figure 3. Each vertical bar represents a strain. The relative lengths of the color bars for a strain are proportional to
their attribution probability.

(black segment), and this is explained by the appearance of the
new allelic numbers 14, 15, and 27 at loci 1, 2, and 3. Sources 1
and 2 have higher migration rates than source 3, as they share the
same allelic numbers (e.g., 12 at locus 2, and 4 at locus 3). Once
mutation, recombination and migration rates are estimated, the
attribution probabilities for the human strains can be calculated.
Figure 4 shows these probabilities based on the fictional allelic
profiles of Figure 3.

The AIM can be applied to different types of genetic
markers, especially MLST and MLVA. The same data needs of
STRUCTURE apply to the AIM. Most studies using the AIM
concern Campylobacter (with 7-loci MLST as the most common
target) (Wilson et al., 2008; Sheppard et al., 2009; Mughini Gras
et al., 2012; Smid et al., 2013; Mossong et al., 2016), S. enterica (5-
loci MLVA) (Mughini-Gras et al., 2014c; Barco et al., 2015), and
L. monocytogenes (7-loci MLST) (Maury et al., 2016; Nielsen et al.,
2017). A high degree of genetic diversity within the sources, low
divergence among sources, and limited data are reported as the
main limitations to the applicability of this model (Barco et al.,
2015; Mughini-Gras et al., 2018a).

The assumptions of the AIM are stronger and closer
to the biology of some foodborne pathogens than those of
STRUCTURE. Indeed, the AIM also contemplates the possibility
of non-independence between loci and accounts for migration
of strains between sources, which is a biological reality.
However, two main limitations can be identified: (1) the
model attributes all human strains, even those that are not
found in sources; (2) a new strain that has never been found
in the sources is attributed to the source with the highest
recombination rates.

Generalities of population genetics approaches
Population genetics models can be empirically validated using
self-attribution (i.e., attribution of a random subset of sources
strains) (Sheppard et al., 2009; Kittl et al., 2013), which
provides an indication that the attributions are sound. Few
comparative studies of STRUCTURE and the AIM have been
published (Sheppard et al., 2009). It is, therefore, difficult to
recommend the use of one model over another, even though
the assumptions associated with the AIM appear to be closer
to the evolution of clones within and between different sources.

The results of the self-attribution are undoubtedly the best
criterion for choosing a model. The results obtained by these
two models are also often compared or supplemented by
other approaches, including those based on indices of genetic
proximity or diversity (e.g., Simpson’s index of diversity and
analysis of molecular variance) (Excoffier et al., 2005; Sheppard
et al., 2009; Kittl et al., 2013; Roux et al., 2013). Among
phylogenetic approaches, recombination events are taken into
account in order to improve the input data of these models
(Didelot and Falush, 2007; Strachan et al., 2009; Roux et al.,
2013), and new phylogeographic approaches have recently
been proposed to complement source attribution (Dearlove
et al., 2016). Comparison with epidemiological approaches
(case-control and case-studies) (Roux et al., 2013) or results
obtained from other population genetics models like BAPS
(Bayesian Analysis of Population Structure) (Dale et al., 2011)
are also available.

COMBINED EPIDEMIOLOGICAL AND
MICROBIOLOGICAL METHODS

Case-control studies alone do not suffice to attribute human
cases to reservoirs, as they can only trace back to the sources
of human infections up to the point of exposure (e.g., foods
consumed), which may not correspond to the original reservoirs
because of, for instance, cross-contamination or alternative
transmission routes. On the other hand, source attribution
based on microbial subtyping allows to determine the relative
contributions of different reservoirs to the human disease
burden, i.e., to attribute the human cases up to the top of
the transmission chain. Combining source attribution and case-
control data therefore allows to reconstruct the underlying
transmission pathway, from a given reservoir up to the point of
exposure/risk factor, providing a more complete epidemiological
picture than when performing separate analyses. To this aim,
subtyping of strains included in case-control studies has been
undertaken so that a combined source attribution and case-
control analysis can be performed. This combined analysis
is called “source-assigned case control study” and has been
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TABLE 3 | Overview of source attribution studies by elicitation of expert knowledge.

Hoffmann
et al., 2007

Havelaar et al.,
2008

Lake et al.,
2010

Ravel et al.,
2010

Davidson
et al., 2011

Vally et al.,
2014

Butler et al.,
2015a

Hald et al.,
2016

Expert selection method Snowball Unspecified Publications Snowball Snowball Publications Snowball Snowball

Number of experts enrolled 42 16 14 54 135 12 31 72

Data collection method Mail E-mail Workshop Mail Mail Workshop E-Mail E-Mail

Assessment of level of expertise Self-assessed Self-assessed Unspecified Self-assessed Self-assessed Unspecified Self-assessed Unspecified

Serial elicitation No No No No No Yes Yes No

performed for Campylobacter in the Netherlands (Mughini Gras
et al., 2012) Luxembourg (Mossong et al., 2016), Germany
(Rosner et al., 2017), Scotland (Bessell et al., 2012), Canada
(Levesque et al., 2013), and New Zealand (Mullner et al.,
2010), as well as for S. enterica (Mughini-Gras et al., 2014b)
and STEC (Mughini-Gras et al., 2018b) in the Netherlands,
showing that the outcome of classical case-control studies
can be greatly enhanced by incorporating source attribution
data and vice versa. The principle is to first attribute human
cases included in a case-control study to sources using the
microbial subtyping approach to determine their likely sources,
and then to compare the exposures of the attributed cases
with those of the controls to identify source-specific risk
factors for infection, as well as to infer the underlying
transmission pathways.

QUANTITATIVE EXPOSURE/RISK
ASSESSMENT FOR SOURCE
ATTRIBUTION

Quantitative Exposure Assessment (QEA) is a bottom-up
approach to quantify consumers’ exposure to a pathogen and
determine the relative importance of known food sources.
Coupling estimates of exposure to the pathogen dose-response
relationship, including possible differences in vulnerability of
consumer subpopulations, allows for the estimation of associated
health risks in terms of predicted number or cases due to
the different sources. Potential attribution points with QEA
range from primary production to consumption. It is indeed
theoretically possible to use this method to assess the relative
contributions of different reservoirs, transmission routes, risk
factors, etc. In practice, however, QEA is mainly used to assess
the relative importance of a few sources to which consumers are
directly exposed.

The importance of a given food exposure for pathogen
transmission depends on pathogen prevalence and
concentration, as well as on food processing and handling
conditions and on frequency of consumption. These practices
are characterized and their influence on source contamination is
assessed (e.g., effects of duration of low-temperature vs. ambient
storage, consumption of raw/undercooked or thoroughly cooked
foods, food handling practices resulting in cross-contamination,
etc.). The models developed describe the dynamics of
contamination levels along the food production chain and
can, therefore, be very complex, accounting for microbial

survival, growth, transfer, etc. and requiring a great deal of data
from surveys on food consumption, consumer’s habits, etc.

Input data for these models are characterized by natural
variability (intrinsic property of the measured data) and
uncertainty, reflecting the quality and incompleteness of
information (which may be reduced by increasing the number
of measurements). These two levels of indeterminacy are
usually converted into probability distributions. Data are then
introduced in the model using stochastic approaches. Yet,
exposure can also be assessed by a simpler deterministic approach
multiplying the average consumption of one food per person,
the fraction of contaminated portions, the average pathogen
concentration in the contaminated portions, and the microbial
fraction actually ingested after food preparation. As examples,
Evers et al. (2008) estimated the mean number of Campylobacter
bacteria ingested per person/day to assess the relative importance
of 31 routes of transmission from food, direct contact with
animals, and the environment in the Netherlands. These authors
suggested that raw food consumption and direct contact are the
most significant transmission routes of Campylobacter. Buettner
et al. (2010) have also used a similar approach to estimate the
incidence of foodborne campylobacteriosis in Switzerland from
contact with pets or travel abroad.

Incorporating probability distributions for the input data in
the QEA model often relies on Monte Carlo simulations. When
this approach is used to translate the impact of variability on the
estimates, the results are expressed as a distribution of exposure
or of individual risk (Lake et al., 2011; Opsteegh et al., 2011).
The same process can also be performed to quantify the impact
of uncertainty expressed as a credibility interval around the
exposure or risk estimates (Evers et al., 2008; Buettner et al.,
2010). Monte Carlo simulations are sometimes used to simulate,
in an undifferentiated way, the impact of both variability and
uncertainty (Kosmider et al., 2010). In this case, these two
sources of indeterminacy are combined. Otherwise, the impact
of variability and uncertainty can be assessed separately using
‘two-dimensional’ Monte Carlo simulations (FDA, 2003). The
variability distributions (1st dimension) of individual risk or that
of exposure to the hazard are then set in a region of credibility
(2nd dimension).

Quantitative Exposure Assessment (QEA) has the advantage
of accounting for factors that are difficult to observe with
the usual surveillance tools and are therefore complementary
with epidemiological methods based on disease surveillance. In
theory, QEA allows for source attribution at a very high level
of detail/resolution to quantify the contributions of different
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sources of human infections and the potential impact of targeted
interventions. Practically, as this approach requires extensive data
on the level of contamination, as well as its evolution along
the transmission chain, including data on consumer’s practices
and dose-response relationships, the complexity of these models
and imperfections in the input data often lead to estimates
characterized by high uncertainty.

ELICITATIONS OF EXPERT OPINION FOR
SOURCE ATTRIBUTION

In absence or paucity of available data, source attribution
can be obtained from experts’ knowledge and opinions,
gathered and analyzed through elicitations. Expert elicitation
methods described in the literature (Butler et al., 2015b) are
generally categorized according to the way experts interact
with one another and with the facilitators who collect data
at workshops through questionnaires and/or interviews. Each
expert is seen as complementary, from the own field of
expertise, or traducing a certain kind of variability of individual
experience. Keeping experts’ anonymity, without direct expert
exchanges, increases independence of expertise, but it does
not allow for checking of experts’ correct understanding of
questions or answers. Collective workshops may be pressuring
for experts, and moderating debates to ensure an equal treatment
of diverse, perhaps contradictory opinions, is necessary. The
‘nominal group’ technique is the most commonly used for data
collection in structured elicitations of experts at workshops
(Delbecq et al., 1975).

Before starting an expert elicitation, the topic of interest has
to be defined. A literature review can help identifying where
knowledge is lacking and where to target expert elicitations. The
questions addressed to experts are prepared by an independent
steering group, the members of which do not participate as
experts in the elicitation. The steering group takes decision,
according to the nature of the questions asked, the elicitation
method of choice, and formulate the questions in a language
adapted to the experts. The most widely used method for
selecting experts is based on the relevance of their competences
as shown, for instance, by their record of accomplishments (Efsa,
2014). Experts can also be selected through the non-probabilistic
‘snowball’ sampling method, consisting of randomly drawing
possible candidates from the initial target population of experts,
then asking to identify colleagues who should be experts in the
field. The experts not included in the initial list will complement
the group of experts. For the purpose of source attribution,
the number of elicited experts varies and has been up to 50
(Butler et al., 2015b).

Participants to the elicitation are informed about the
objectives and context of the study and are reminded of
definitions of key terms. Training experts on basic concepts of
uncertainty estimation is recommended (Efsa, 2014). The level
of expertise of the participants in an expert elicitation needs
to be assessed. Experts are therefore asked to, e.g., self-assess
their expertise by, for instance, indicating where they doubt their
ability to provide accurate estimates. The elicitation process can

then be serial (e.g., questionnaire distribution following group
discussion, or multiple discussions and groups). A ‘series’ of
discussions can dispel certain confusions or overcome some
points of disagreement between experts. The Delphi method, for
example, emphasizes these serial laps of elicitation (Linstone and
Turoff, 1975). The opinions of different experts are eventually
aggregated with behavioral, mathematical, or mixed methods.
In the behavioral aggregation methods, moderated expert
discussions end with consensus (i.e., a common estimate). In
mathematical aggregation methods, the individual assessments of
each expert are aggregated according to value-driven rules, such
as measures of central tendency, extremes of data distribution,
etc. Mixed approaches allow for interaction between experts
and the use of mathematical criteria. Commonly used expert
elicitation protocols include:

• The Sheffield protocol, based on a behavioral
aggregation of data.
• The Cooke protocol, based on expert ‘calibration’

through exercises, then mathematical aggregation of
their numerical assessments.
• The Delphi protocol, based on written answers to a

questionnaire, then discussion. A mixed model based
on behavioral and mathematical aggregation criteria is
then used.

Each stage of expert elicitation is exposed to possible biases.
Elicitation by calibrated experts mitigates biases or favors their
identification. An overview of published articles on source
attribution based on expert elicitation is reported in Table 3.

NATURAL EXPERIMENTS

Several ‘epidemiological disasters’ involving poultry and
Campylobacter have served as natural experiments of the effect
of a major and sudden reduction of consumer’s exposure to
Campylobacter. For instance, in 1999, the dioxin crisis in
animal feed in Belgium led to the national withdrawal from
the market of various poultry products. Concurrently with this
withdrawal, there was a drastic reduction in the nationwide
consumption of chicken meat, which was associated with a
drop of 40% in campylobacteriosis in Belgium (Vellinga and
Van Loock, 2002). Similarly, in 2003, an epidemic of avian
influenza (H7N7) hit the Netherlands. To control this epidemic,
massive bird culling measures targeting predominantly laying
hens were implemented, and several poultry slaughterhouses
were closed. This was associated with concurrent declines
in campylobacteriosis, locally and nationally, by 30–50%,
depending on the province (Friesema et al., 2012). Although
sales of poultry meat declined, this alone could not explain the
reduction in campylobacteriosis, which continued far beyond the
recovery in poultry meat sales. Overall, this natural experiment
has suggested that a significant fraction of campylobacteriosis
cases could be prevented by reducing the environmental burden
of Campylobacter originating from poultry. Unfortunately, such
natural experiments only allow for the retrospective observation
of effects. The implementation of national intervention programs
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to reduce Campylobacter on poultry meat, however, allows for
prospective opportunities to study the effect of reduced
exposure to poultry-associated Campylobacter. For instance,
following interventions in New Zealand, the total number of
campylobacteriosis cases decreased by 54% (Sears et al., 2011).

CHOOSING THE APPROPRIATE
SOURCE ATTRIBUTION METHOD

Table 4 and Figure 5 provide an overview of the elements guiding
the choice of a source attribution method. The choice of the
source attribution method depends on the point of attribution
across the farm-to-fork continuum, the quality/completeness
of data available and the characteristics of the pathogen in
question, including data on subtyping and microbial fitness (e.g.,
plasticity, clonality, diversity, pathogenicity, etc.). The specific
public health issues to address may also guide the choice of the
methods (Figure 5). For instance, epidemiological methods like
case-control studies are best suited to attribute sporadic cases
‘downstream’ to specific food exposures, including transmission
routes and risk factors. On the other hand, microbiological
methods, such as the frequency-matching models, can also
attribute sporadic cases up to the level of reservoir, requiring
data on pathogen subtyping (for humans and sources), as
well as data on prevalence and exposure (for sources), with
additional data on pathogen fitness being a potentially useful
piece of information to incorporate in the models. As exposure
sources are dynamic in nature and may change rapidly,
timeliness is an important feature of source attribution studies.
Methods that are more suited to detect changes over time
(e.g., those based on the microbial subtyping approach) are
therefore also more suited to evaluate the impact of control
strategies, as exemplified in the aforementioned Campylobacter-
control intervention in New Zealand (Sears et al., 2011).
Yet, most of the methods described here depend on the
stability of source data to be reliably interpreted. While
methods to minimize the consequences of having to use
non-recent (and non-local) data have been proposed (Smid
et al., 2013), timeliness should be more directly called out
as a design feature of source attribution studies. As an
example concerning the analysis of outbreak data, in the
United States of America, the Interagency Food Safety Analytics
Collaboration (IFSAC) has incorporated a process to weight
more recent outbreak data to reflect changes in underlying
patterns of risk.

For microbiological methods, the sampling point of the
sources essentially determines the point of attribution (Mughini-
Gras et al., 2014a). The use of these methods is not suited to
pathogens with low genotypic or phenotypic diversity (i.e., non-
heterogeneous distribution) among the source. Furthermore,
for frequency-matching models, the subtypes upon which the
attribution relies must possess some stability along the farm-to-
fork continuum, as they are often compared between primary
production and human cases. If this is not the case, population
genetics models, which account for evolutionary processes
in the genetic targets investigated, are to be preferred. In TA

B
LE

4
|O

ve
rv

ie
w

of
th

e
m

ai
n

ch
ar

ac
te

ris
tic

s
an

d
ne

ce
ss

ar
y

da
ta

fo
r

so
ur

ce
at

tr
ib

ut
io

n
m

et
ho

ds
.

P
o

in
t

o
f

at
tr

ib
ut

io
n

P
at

ho
g

en
d

at
a

H
um

an
d

at
a

S
o

ur
ce

d
at

a

M
et

ho
d

R
es

er
vo

ir
∗

E
xp

o
su

re
Tr

an
sm

is
si

o
n

ro
ut

e
R

is
k

fa
ct

o
r

S
ub

ty
p

in
g

Fi
tn

es
s

S
ub

ty
p

in
g

S
p

o
ra

d
ic

o
r

ep
id

em
ic

st
at

us

E
xp

o
su

re
&

ri
sk

fa
ct

o
rs

∗
∗

S
ub

ty
p

in
g

P
re

va
le

nc
e

an
d

ex
p

o
su

re
∗
∗
∗

N
ee

d
to

co
ns

id
er

al
lp

o
te

nt
ia

l
so

ur
ce

s

E
pi

de
m

io
lo

gi
ca

l(
ca

se
-c

on
tr

ol
st

ud
y)

N
o

Ye
s

Ye
s

Ye
s

N
o

N
o

N
o

S
po

ra
di

c
Ye

s
N

o
N

o
H

ig
h

E
pi

de
m

io
lo

gi
ca

l(
ou

tb
re

ak
in

ve
st

ig
at

io
n)

N
o

Ye
s

Ye
s

Ye
s

N
o

N
o

N
o‡

E
pi

de
m

ic
Ye

s
N

o
N

o
H

ig
h

M
ic

ro
bi

ol
og

ic
al

(fr
eq

ue
nc

y-
m

at
ch

in
g

m
od

el
s)

Ye
s

Ye
s

Ye
s

N
o

Ye
s

N
o‡

Ye
s

S
po

ra
di

c
an

d
ep

id
em

ic
N

o‡
Ye

s
Ye

s
M

ed
iu

m

M
ic

ro
bi

ol
og

ic
al

(p
op

ul
at

io
n

ge
ne

tic
s

m
od

el
s)

Ye
s

Ye
s

Ye
s

N
o

Ye
s

N
o

Ye
s

S
po

ra
di

c
or

ep
id

em
ic

N
o

Ye
s

N
o

H
ig

h

Q
ua

nt
ita

tiv
e

ex
po

su
re

/r
is

k
as

se
ss

m
en

t
Ye

s
Ye

s
Ye

s
Ye

s
N

o
Ye

s
N

o
N

/A
Ye

s
N

o
Ye

s
M

ed
iu

m

E
xp

er
te

lic
ita

tio
ns

Ye
s

Ye
s

Ye
s

Ye
s

N
o

N
o

N
o

S
po

ra
di

c
or

E
pi

de
m

ic
N

o
N

o
N

o
Lo

w

N
/A

,n
ot

ap
pl

ic
ab

le
.∗

O
r

am
pl

ify
in

g
ho

st
s.
∗
∗
In

cl
ud

in
g

tr
av

el
st

at
us

.∗
∗
∗
In

th
is

ca
se

,f
oo

d
co

ns
um

pt
io

n
w

ei
gh

ts
.‡

B
ut

ca
n

be
us

ed
if

av
ai

la
bl

e.

Frontiers in Microbiology | www.frontiersin.org 17 November 2019 | Volume 10 | Article 2578

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-10-02578 November 9, 2019 Time: 14:6 # 18

Mughini-Gras et al. Source Attribution of Foodborne Diseases

FIGURE 5 | Preferential choice of source attribution methods based on public health issues. (a)Ranking and/or quantifying the relative importance.

general, microbiological methods for source attribution are data-
intensive and their use is often conditional to the existence of
well-established integrated surveillance systems, as well as the
systematic and harmonized application of subtyping methods
that are sufficiently discriminating for human and source strains,
but also harmonized metadata linked to these strains. These
methods are particularly helpful in quantifying the relative
contributions of several putative sources of human sporadic
infections, with the relevance of the results being also dependent
on the number of sources, including the distinction between
imported and domestic foods, and the information taken into
account in the models. Moreover, if surveillance data are available
for multiple time periods, attributions can be performed over
time, making it possible to monitor trends in the contributions
of different sources and to evaluate the impact of interventions
that target one or part of the sources. Population genetics models
require a representative collection of strains from human cases,
and sources and no information on exposure is in principle
needed. Yet, to limit erroneous attributions, the panel of potential
sources included in the analysis is critical and needs to be as
complete as possible, as no fraction of non-attributable cases
is contemplated, with each case being assigned a probability to
originate from each source based on the genetic proximity to
the source strains.

Quantitative Exposure Assessment models can estimate the
proportion of cases attributable to sources at all levels of

the food production chain. These models, however, require
extensive data on source contamination, exposure and microbial
characteristics. The availability of relevant (e.g., up-to-date, local,
pathogen-specific, etc.) input data is the main limitation of
QEA. Moreover, estimating the number of cases attributable to
various sources based on pathogen prevalence, concentration
and exposure (food consumption) often means ignoring which
strains of this pathogen are actually relevant to public health,
i.e., which are those that infect (and are therefore pathogenic
for) humans. Indeed, not all strains of a pathogen that
contaminate a source are responsible for the human disease
burden. Differences among strains in their virulence and
survivability in certain sources are difficult to be accounted
for in QEA models, as the latter are generally built to
estimate how much pathogen (as a whole) reaches the human
population, but not the fraction that actually causes disease, as
addressed in a recent paper (Fritsch et al., 2018). Moreover,
QEA models do not account for host-related conditions (e.g.,
comorbidities, impaired immune system, etc.) predisposing to
disease. These conditions are intrinsically accounted for when
starting from what we see in humans and trying to trace back
their sources by looking at, e.g., the associated risk factors
or the distribution of strains in the sources. Finally, expert
elicitations can be used to attribute all types of cases to any
point and do not require any data. Indeed, they should be
performed when no data are available. The main limitation of
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this method is that it relies only on opinions and depends on
the quality of the expert panel recruited. While data availability
and quality are the main factors that guide the selection of the
applied methods, the specific public health issues to address may
also guide the choice of the methods (Figure 5).

In conclusion, a variety of source attribution approaches
have been applied in recent years. Each approach has its
own advantages and disadvantages, including some unaddressed
methodological challenges, to be considered in a systematic
way when performing and interpreting a source attribution
analysis, or when developing a new source attribution model.
New insights from WGS, such as identifying previously unknown
(or under/overrated) sources for a specific pathogen will add new
levels of complexity. As there is clearly no single approach that
satisfies all needs, different methods may be combined or at least
applied in a comparative way.
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