L. Barco, F. Barrucci, E. Cortini, E. Ramon, J. E. Olsen et al., 12:i:-by MLVA and inferring the sources of human salmonellosis due to the two serovars in Italy, Front. Microbiol, vol.6, p.301, 2015.

P. R. Bessell, O. Rotariu, G. T. Innocent, A. Smith-palmer, N. J. Strachan et al., Using sequence data to identify alternative routes and risk of infection: a case-study of campylobacter in Scotland, BMC Infect. Dis, vol.12, p.80, 2012.

L. Boysen, H. Rosenquist, J. T. Larsson, E. M. Nielsen, G. Sørensen et al., Source attribution of human campylobacteriosis in Denmark, Epidemiol. Infect, vol.142, pp.1599-1608, 2014.

J. Dale, E. P. Price, H. Hornstra, J. D. Busch, M. Mayo et al., Epidemiological tracking and population assignment of the nonclonal bacterium, Burkholderia pseudomallei, PLoS Negl. Trop. Dis, vol.5, p.1381, 2011.

J. M. David, D. Guillemot, N. Bemrah, A. Thébault, A. Brisabois et al., The Bayesian microbial subtyping attribution model: robustness to prior information and a proposition, Risk Anal, vol.33, pp.397-408, 2013.
URL : https://hal.archives-ouvertes.fr/pasteur-01112825

J. M. David, P. Sanders, N. Bemrah, S. A. Granier, M. Denis et al., Attribution of the French human Salmonellosis cases to the main foodsources according to the type of surveillance data, Prev. Vet. Med, vol.110, pp.12-27, 2013.
URL : https://hal.archives-ouvertes.fr/pasteur-01111002

L. V. De-knegt, S. M. Pires, and T. Hald, Attributing foodborne salmonellosis in humans to animal reservoirs in the European Union using a multi-country stochastic model, Epidemiol. Infect, vol.143, pp.1175-1186, 2015.

L. V. De-knegt, S. M. Pires, C. Löfström, G. Sørensen, K. Pedersen et al., Application of molecular typing results in source attribution models: the case of multiple locus variable number tandem repeat analysis (MLVA) of salmonella isolates obtained from integrated surveillance in Denmark, Risk Anal, vol.36, pp.571-588, 2016.

B. L. Dearlove, A. J. Cody, B. Pascoe, G. Méric, D. J. Wilson et al., Rapid host switching in generalist Campylobacter strains erodes the signal for tracing human infections, ISME J, vol.10, pp.721-729, 2016.

X. Didelot and D. Falush, Inference of bacterial microevolution using multilocus sequence data, Genetics, vol.175, pp.1251-1266, 2007.

L. Excoffier, G. Laval, and S. Schneider, Arlequin (version 3.0): An integrated software package for population genetics data analysis, Evol. Bioinform. Online, vol.1, pp.47-50, 2005.

E. Franz, L. M. Gras, and T. Dallman, Significance of whole genome sequencing for surveillance, source attribution and microbial risk assessment of foodborne pathogens, Curr. Opin. Food Sci, vol.8, pp.74-79, 2016.

I. H. Friesema, A. H. Havelaar, P. P. Westra, J. A. Wagenaar, and W. Van-pelt, Poultry culling and Campylobacteriosis reduction among humans, the Netherlands, Emerg. Infect. Dis, vol.18, pp.466-468, 2012.

K. E. Fullerton, E. Scallan, M. D. Kirk, B. E. Mahon, F. J. Angulo et al., Case-control studies of sporadic enteric infections: a review and discussion of studies conducted internationally from 1990 to, Foodborne Pathog. Dis, vol.9, pp.281-292, 2009.

C. Guo, R. M. Hoekstra, C. M. Schroeder, S. M. Pires, K. L. Ong et al., Application of Bayesian techniques to model the burden of human salmonellosis attributable to U.S. food commodities at the point of processing: adaptation of a Danish model, Foodborne Pathog. Dis, vol.8, pp.509-516, 2011.

T. Hald, D. M. Lo-fo-wong, and F. M. Aarestrup, The attribution of human infections with antimicrobial resistant Salmonella bacteria in Denmark to sources of animal origin, Foodborne Pathog. Dis, vol.4, pp.313-326, 2007.

T. Hald, D. Vose, H. C. Wegener, and T. Koupeev, A Bayesian approach to quantify the contribution of animal-food sources to human salmonellosis, Risk Anal, vol.24, pp.255-269, 2004.

S. Kittl, G. Heckel, B. M. Korczak, and P. Kuhnert, Source attribution of human Campylobacter isolates by MLST and Fla-typing and association of genotypes with quinolone resistance, PLoS ONE, vol.8, p.81796, 2013.

S. Lévesque, E. Fournier, N. Carrier, E. Frost, R. D. Arbeit et al., Campylobacteriosis in urban vs. rural areas: a case-case study integrated with molecular typing to validate risk factors and to attribute sources of infection, PLoS ONE, vol.8, p.83731, 2013.

C. L. Little, S. M. Pires, I. A. Gillespie, K. Grant, and G. L. Nichols, Attribution of human Listeria monocytogenes infections in England and Wales to ready-to-eat food sources placed on the market: adaptation of the Hald Salmonella source attribution model, Foodborne Pathog. Dis, vol.7, pp.749-756, 2010.

P. Miller, J. Marshall, N. French, J. , and C. , sourceR: Classification and source attribution of infectious agents among heterogeneous populations, PLoS Comput. Biol, vol.13, p.1005564, 2017.

J. Mossong, L. Mughini-gras, C. Penny, A. Devaux, C. Olinger et al., Human campylobacteriosis in Luxembourg, 2010-2013: a case-control study combined with multilocus sequence typing for source attribution and risk factor analysis, Sci. Rep, vol.6, p.20939, 2016.

L. Mughini-gras, J. H. Smid, J. A. Wagenaar, A. G. De-boer, A. H. Havelaar et al., Risk factors for campylobacteriosis of chicken, ruminant, and environmental origin: a combined case-control and source attribution analysis, PLoS ONE, vol.7, p.42599, 2012.

L. Mughini-gras, J. H. Smid, J. A. Wagenaar, M. G. Koene, A. H. Havelaar et al., Increased risk for Campylobacter jejuni and C. coli infection of pet origin in dog owners and evidence for genetic association between strains causing infection in humans and their pets, Epidemiol. Infect, vol.141, pp.2526-2535, 2013.

L. Mughini-gras, F. Barrucci, J. H. Smid, C. Graziani, I. Luzzi et al., Attribution of human Salmonella infections to animal and food sources in Italy (2002-2010): adaptations of the Dutch and modified Hald source attribution models, Epidemiol. Infect, vol.142, pp.1070-1082, 2014.

L. Mughini-gras, R. Enserink, I. Friesema, M. Heck, Y. Van-duynhoven et al., Risk factors for human salmonellosis originating from pigs, cattle, broiler chickens and egg laying hens: a combined case-control and source attribution analysis, PLoS ONE, vol.9, p.87933, 2014.

L. Mughini-gras, E. Franz, and W. Van-pelt, New paradigms for Salmonella source attribution based on microbial subtyping, Food Microbiol, vol.71, pp.60-67, 2018.

L. Mughini-gras, M. Heck, and W. Van-pelt, Increase in reptileassociated human salmonellosis and shift toward adulthood in the age groups at risk, the Netherlands, Euro Surveill, vol.21, p.30324, 1985.

L. Mughini-gras, C. Penny, C. Ragimbeau, F. M. Schets, H. Blaak et al., Quantifying potential sources of surface water contamination with Campylobacter jejuni and Campylobacter coli, Water Res, vol.101, pp.36-45, 2016.

L. Mughini-gras, J. Smid, R. Enserink, E. Franz, L. Schouls et al., Tracing the sources of human salmonellosis: a multi-model comparison of phenotyping and genotyping methods, Infect. Genet. Evol, vol.28, pp.251-260, 2014.

L. Mughini-gras, W. Van-pelt, M. Van-der-voort, M. Heck, I. Friesema et al., Attribution of human infections with Shiga toxin-producing Escherichia coli (STEC) to livestock sources and identification of sourcespecific risk factors, Zoonoses Public Health, vol.65, pp.8-22, 2010.

P. Mullner, G. Jones, A. Noble, S. E. Spencer, S. Hathaway et al., Source attribution of food-borne zoonoses in New Zealand: a modified Hald model, Risk Anal, vol.29, pp.970-984, 2009.

P. Mullner, T. Shadbolt, J. M. Collins-emerson, A. C. Midwinter, S. E. Spencer et al., Molecular and spatial epidemiology of human campylobacteriosis: source association and genotype-related risk factors, Epidemiol. Infect, vol.138, pp.1372-1383, 2010.

P. Mullner, S. E. Spencer, D. J. Wilson, G. Jones, A. D. Noble et al., Assigning the source of human campylobacteriosis in New Zealand: a comparative genetic and epidemiological approach, Infect. Genet. Evol, vol.9, pp.1311-1319, 2009.

E. M. Nielsen, J. T. Björkman, K. Kiil, K. Grant, T. Dallman et al., Closing Gaps for Performing a Risk Assessment on Listeria Monocytogenes in Ready-to-Eat (RTE) Foods: Activity 3, the Comparison of Isolates From Different Compartments Along the Food Chain, and from Humans Using Whole Genome Sequencing (WGS), Analysis. EFSA Supporting Publications, vol.14, 2017.

S. M. Pires, E. G. Evers, W. Van-pelt, T. Ayers, E. Scallan et al., Attributing the human disease burden of foodborne infections to specific sources, Foodborne Pathog. Dis, vol.6, pp.417-424, 2009.

S. M. Pires, A. R. Vieira, T. Hald, C. , and D. , Source attribution of human salmonellosis: an overview of methods and estimates, Foodborne Pathog. Dis, vol.11, pp.667-676, 2014.

S. M. Pires, H. Vigre, P. Makela, and T. Hald, Using outbreak data for source attribution of human salmonellosis and campylobacteriosis in Europe, Foodborne Pathog. Dis, vol.7, pp.1351-1361, 2010.

J. K. Pritchard, M. Stephens, and P. Donnelly, Inference of population structure using multilocus genotype data, Genetics, vol.155, pp.945-959, 2000.

J. Ranta, D. Matjushin, T. Virtanen, M. Kuusi, H. Viljugrein et al., Bayesian temporal source attribution of foodborne zoonoses: Campylobacter in Finland and Norway, Risk Anal, vol.31, pp.1156-1171, 2011.

A. Ravel, M. Hurst, N. Petrica, J. David, S. K. Mutschall et al., Source attribution of human campylobacteriosis at the point of exposure by combining comparative exposure assessment and subtype comparison based on comparative genomic fingerprinting, PLoS ONE, vol.12, p.183790, 2017.

B. M. Rosner, A. Schielke, X. Didelot, F. Kops, J. Breidenbach et al., A combined case-control and molecular source attribution study of human Campylobacter infections in Germany, Sci. Rep, vol.7, p.5139, 2011.

F. Roux, E. Sproston, O. Rotariu, M. Macrae, S. K. Sheppard et al., Elucidating the aetiology of human Campylobacter coli infections, PLoS ONE, vol.8, p.64504, 2013.

S. K. Sheppard, J. F. Dallas, N. J. Strachan, M. Macrae, N. D. Mccarthy et al., Campylobacter genotyping to determine the source of human infection, Clin. Infect. Dis, vol.48, pp.1072-1078, 2009.

J. H. Smid, L. Mughini-gras, A. G. De-boer, N. P. French, A. H. Havelaar et al., Practicalities of using non-local or non-recent multilocus sequence typing data for source attribution in space and time of human campylobacteriosis, PLoS ONE, vol.8, p.55029, 2013.

N. J. Strachan, F. J. Gormley, O. Rotariu, I. D. Ogden, G. Miller et al., Attribution of Campylobacter infections in Northeast Scotland to specific sources by use of multilocus sequence typing, J. Infect. Dis, vol.199, pp.1205-1208, 2009.

N. J. Strachan, M. Macrae, A. Thomson, O. Rotariu, I. D. Ogden et al., Source attribution, prevalence and enumeration of Campylobacter spp. from retail liver, Int. J. Food Microbiol, vol.153, pp.234-236, 2012.

W. Van-pelt, A. Van-de-giessen, W. Van-leeuwen, W. Wannet, A. Henken et al., Oorsprong, omvang en kosten van humane salmonellose. Deel 1. Oorsprong van humane salmonellose met betrekking tot varken, rund, kip, ei en overige bronnen, Infect. Bull, vol.10, pp.240-243, 1999.

A. R. Vieira, J. Grass, P. J. Fedorka-cray, J. R. Plumblee, H. Tate et al., Attribution of Salmonella enterica serotype Hadar infections using antimicrobial resistance data from two points in the food supply system, Epidemiol. Infect, vol.144, 1983.

D. J. Wilson, E. Gabriel, A. J. Leatherbarrow, J. Cheesbrough, S. Gee et al., Tracing the source of campylobacteriosis, PLoS Genet, vol.4, p.1000203, 2008.

, Conflict of Interest Statement: The authors declare that the research was

. Copyright-;-mughini-gras, A. Kooh, . David, . Fravalo, J. Guillier et al., Watier and The Anses Working Group on Source Attribution of Foodborne Diseases. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, 2018.