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Clinical and genetic markers associated
with tuberculosis, HIV-1 infection, and TB/
HIV-immune reconstitution inflammatory
syndrome outcomes
Nathalia Beatriz Ramos de Sá1, Marcelo Ribeiro-Alves2, Tatiana Pereira da Silva1, Jose Henrique Pilotto1,3,
Valeria Cavalcanti Rolla4, Carmem B. W. Giacoia-Gripp1, Daniel Scott-Algara5, Mariza Gonçalves Morgado1* and
Sylvia Lopes Maia Teixeira1

Abstract

Background: Tuberculosis (TB) and AIDS are the leading causes of infectious disease death worldwide. In some TB-
HIV co-infected individuals treated for both diseases simultaneously, a pathological inflammatory reaction termed
immune reconstitution inflammatory syndrome (IRIS) may occur. The risk factors for IRIS are not fully defined. We
investigated the association of HLA-B, HLA-C, and KIR genotypes with TB, HIV-1 infection, and IRIS onset.

Methods: Patients were divided into four groups: Group 1- TB+/HIV+ (n = 88; 11 of them with IRIS), Group 2- HIV+
(n = 24), Group 3- TB+ (n = 24) and Group 4- healthy volunteers (n = 26). Patients were followed up at INI/FIOCRUZ
and HGNI (Rio de Janeiro/Brazil) from 2006 to 2016. The HLA-B and HLA-C loci were typed using SBT, NGS, and KIR
genes by PCR-SSP. Unconditional logistic regression models were performed for Protection/risk estimation.

Results: Among the individuals with TB as the outcome, KIR2DS2 was associated with increased risk for TB onset
(aOR = 2.39, P = 0.04), whereas HLA-B*08 and female gender were associated with protection against TB onset
(aOR = 0.23, P = 0.03, and aOR = 0.33, P = 0.01, respectively). Not carrying KIR2DL3 (aOR = 0.18, P = 0.03) and carrying
HLA-C*07 (aOR = 0.32, P = 0.04) were associated with protection against TB onset among HIV-infected patients. An
increased risk for IRIS onset was associated with having a CD8 count ≤500 cells/mm3 (aOR = 18.23, P = 0.016);
carrying the KIR2DS2 gene (aOR = 27.22, P = 0.032), the HLA-B*41 allele (aOR = 68.84, P = 0.033), the KIR2DS1 + HLA-
C2 pair (aOR = 28.58, P = 0.024); and not carrying the KIR2DL3 + HLA-C1/C2 pair (aOR = 43.04, P = 0.034), and the
KIR2DL1 + HLA-C1/C2 pair (aOR = 43.04, P = 0.034),

Conclusions: These results suggest the participation of these genes in the immunopathogenic mechanisms related
to the conditions studied. This is the first study demonstrating an association of HLA-B*41, KIR2DS2, and KIR + HLA-
C pairs with IRIS onset among TB-HIV co-infected individuals.

Keywords: Tuberculosis, HIV-1, Immune Reconstitution Inflammatory Syndrome, HLA-B genes, HLA-C genes, KIR
genes
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Background
Approximately 36.9 million people worldwide were liv-
ing with HIV infection in 2017, and 6.3 million new
cases of tuberculosis (TB) were reported in 2016 [1]. Of
these 6.3 million people with TB, 7.6% (476,774) were
also HIV-1 infected, of whom 85% were on combined
antiretroviral therapy (cART), making TB the most com-
mon opportunistic infection leading to death among
HIV-1 patients [1]. Approximately 69,500 new cases of
TB were reported in 2016 in Brazil, and 9.4% of these
cases were associated with HIV-1 infection [2]. In Rio de
Janeiro, the Brazilian state where the individuals in-
cluded in this study were recruited, the incidence rate of
TB was 61.2/100,000 inhabitants in 2016, 8.9% of which
also had an associated HIV-1 infection [2].
Genetic studies have provided valuable insights into

the resistance, susceptibility, and progression of infec-
tious diseases since the enormous diversity of pheno-
types associated with these diseases reflects the
heterogeneous composition of host genotypes. Studies
have suggested that both innate and adaptive immunity
are involved in the pathogenesis of infectious diseases [3,
4]. Therefore, the characterization of immune response
genes is an important step in understanding the factors
that can lead to TB and/or HIV-1, TB-HIV co-infected
individuals, and IRIS onset. It is known that HLA (hu-
man leukocyte antigen) class I and KIR (killer-cell
immunoglobulin-like receptor) genes influence the out-
comes of HIV-1 infections and TB [5–7]. In particular,
the HLA-B locus plays a dominant role in the selection
of cytotoxic T-lymphocyte (CTL) responses when com-
pared with other class I molecules [7–9]. HLA-C has a
dual role of presenting antigens to CTL and serving as
ligands to KIR receptors on NK cells, thus regulating the
lysis of target cells mediated by NK cells [10]. Many KIR
genes and KIR-HLA-B/KIR-HLA-C pairs have been as-
sociated with distinct outcomes in the context of HIV-1
infection [6, 11–14]. In the same way, genetic studies in-
volving protection or susceptibility to pulmonary tuber-
culosis have also highlighted the role of HLA-B and KIR
genes, as well as KIR + HLA-C pairs [5, 15–18].
On the other hand, studies associating both innate and

adaptive immune response genes with outcomes of TB-
HIV co-infection are scarce. Some of the markers
already described are HLA-A, −B, and -DRB1 alleles [19,
20]. The management of TB-HIV co-infected individuals
may have specific characteristics that can bring complex-
ity to its dynamics. One example is the improvement of
survival provided by the use of cART during TB treat-
ment, which can restore immune function [21]. How-
ever, simultaneous treatment with anti-TB drugs and
cART can lead to a paradoxical clinical worsening with
exacerbation of the immune response, known as im-
mune reconstitution inflammatory syndrome (IRIS) [21,

22]. The syndrome is currently classified into two forms,
named paradoxical IRIS and unmasked IRIS. In paradox-
ical IRIS, the signs and symptoms of a pre-existing op-
portunistic infection, partially treated, recur, or worsen
intensely despite a positive response before cART [23,
24]. Unmasked IRIS is characterized by the discovery of
a previously undiagnosed/latent infection. In this way,
the signs and symptoms of opportunistic infection do
not appear initially, appearing after the introduction of
cART [23, 24]. IRIS has been associated with a large var-
iety of other pathogens and autoimmune diseases [21,
25, 26], but mycobacterial infections are the most preva-
lent cause of IRIS [21, 27, 28]. TB/HIV-IRIS occurs in
4–54% of patients starting cART during TB treatment
[29], depending on various features. In South America,
this estimated incidence was 10% in an extensive meta-
analysis comparing TB/HIV-IRIS cases from different
parts of the world [30]. The few Brazilian studies regard-
ing IRIS report an estimated incidence of approximately
12%, which limits the recruitment and analysis of these
individuals [31, 32]. Pathogenic mechanisms involved in
IRIS development have been suggested, such as antigenic
load, degree of immune restoration after treatment with
cART, and genetic susceptibility of the host, and there is
evidence that these mechanisms can interact with each
other and together cause the syndrome [23, 25, 33].
However, studies linking host genetics to the pathogen-
esis of IRIS are still scarce [34–37]. Based on the micro-
array analysis of gene expression of isolated monocytes,
Tran et al. (2013,2014) [34, 35] demonstrated upregula-
tion of genes related to the role of pathogen pattern rec-
ognition to bacteria and viruses and the complement
system, highlighting the potential role of monocytes and
complement in the predisposition/development of TB-
IRIS. Besides, Affandi et al. (2013) [36] demonstrated
that the susceptibility to TB-IRIS was associated with
the presence of specific single nucleotide polymorphisms
(SNPs) of cytokine-related genes.
Moreover, clinical risk factors already known to be as-

sociated with IRIS pathogenesis are (a) low baseline
CD4+ T-cell count (< 50–100 cells per mm3) combined
with a short time interval between the beginning of TB
treatment and cART [38–42] and (b) dissemination of
TB to extrapulmonary sites, possibly reflecting a high
bacterial load [43, 44]. Nevertheless, despite the few bio-
marker descriptions associated with IRIS, there is still no
one capable of predicting IRIS development currently
being used in the clinical practice.
Innate and adaptive immunity are directly involved in

the pathogenesis of IRIS [3, 26, 44, 45]. Characterization
of immune response genes is an important approach to
assess genetic profiles that could be associated with sus-
ceptibility/resistance to the syndrome. In this way, this
study aimed to investigate the distribution of HLA-B,
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HLA-C, and KIR genotypes and their potential influence
on susceptibility and/or resistance to TB and/or HIV-1
as well as on the occurrence of TB-IRIS.

Methods
Patients’ enrolment and study design
This is a genetic study nested in two clinical and im-
munological follow-up studies previously conducted in
the Laboratory of AIDS and Molecular Immunology
(IOC/FIOCRUZ), which assessed immunological charac-
teristics of TB-HIV co-infected individuals and the risk
factors for paradoxical TB/HIV-IRIS [32, 46, 47]. The
HLA-B, HLA-C and KIR genetic profiles were deter-
mined from 162 individuals divided into four groups as
follows: Group 1 - individuals infected with HIV-1 and
tuberculosis (HIV+/TB+ group, n = 88; 11 of them with
IRIS); Group 2 - individuals infected with HIV-1 without
diagnosis of TB (HIV-1+ group, n = 24); Group 3 - indi-
viduals with tuberculosis and seronegative for HIV-1 in-
fection (TB+ group, n = 24); and Group 4 - healthy
volunteers without HIV-1 infection and/or TB (control
group, n = 26).
Individuals were enrolled and followed up at the Tu-

berculosis Clinic of the National Institute of Infectious
Diseases Evandro Chagas, Oswaldo Cruz Foundation
(INI/FIOCRUZ), Rio de Janeiro, Brazil from 2006 to
2011 [32, 46] and at the Nova Iguaçu General Hospital
(HGNI), Rio de Janeiro, Brazil from 2014 to 2016. For
this study, recruited patients were eligible if they were
18 years old or older. Group 1 included individuals with
TB newly diagnosed for HIV-1 infection, with CD4+ T-
cell count < 350 cells/mm3, starting consecutive (30 ± 10
days interval) anti-tuberculosis and cART treatments.
The exclusion criteria were as follows: (1) for Group 1
and Group 2 - baseline hepatic enzymes elevation, CD4+
T-cell count above 350 cells/mm3 at the time of tuber-
culosis diagnosis, and being on antiretroviral and/or
anti-tuberculosis treatment and developing tuberculosis,
to exclude unmasking IRIS; (2) for Group 3 - being on
treatment for tuberculosis; and (3) for Group 4 - could
not be diagnosed with HIV, TB, hepatitis and other dis-
eases. Patients included in groups 1 to 3 were starting
cART and/or anti-tuberculosis treatments, respectively,
prescribed according to the Brazilian Ministry of Health
guidelines [48] and the National Tuberculosis Program
[49]. cART therapy was offered according to contempor-
ary Brazilian National Guidelines that were periodically
updated [48] using two nucleoside reverse transcriptase
inhibitors (NRTI) + one non-nucleoside reverse tran-
scriptase inhibitor (NNRTI). The anti-tuberculosis treat-
ment was composed of the combination of rifampicin,
isoniazid, pyrazinamide, and, from 2009 on, ethambutol,
according to the recommendation of the National TB
program of the Brazilian Ministry of Health [49].

During follow-up, Group 1 patients were investigated
for the identification of IRIS development in both clin-
ical centers. All IRIS cases observed in the study were
classified as paradoxical, tuberculosis-associated IRIS,
described as an worsening of TB signs and symptoms
starting after cART initiation during TB-treatment,
mainly presenting enlargement of lymph nodes and in-
flammatory signs, not explained by any other diseases or
by an adverse effect of drug therapy [50, 51], as recently
detailed/reviewed by our group [52]. In general, the IRIS
cases included in the present study were self-resolving,
or, if necessary, the patients were treated with corticoid-
based therapy, such as Prednisone.
Demographic and clinical data throughout the follow-

up period, as well as blood samples from the baseline
visit, were available for the present study. Skin color was
self-declared.

Genomic DNA extraction
DNA was extracted from whole blood using the
QIAamp DNA Blood Mini Kit (Qiagen, Hilden,
Nordrhein-Westfalen, Germany) according to the manu-
facturer’s instructions. The DNA concentration was de-
termined using a Thermo Scientific NanoDrop 2000
(Thermo Fisher Scientific, Waltham, Massachusetts,
USA), and the filtrates containing the isolated DNA were
stored at −20 °C until the genomic analyses.

HLA typing
High-resolution HLA typing of HLA-B and HLA-C
genes was determined by sequencing-based typing (SBT)
according to the manufacturer’s instructions on an ABI
platform using commercial kits (SeCore® Sequencing Kit
– Invitrogen by Life Technologies, Brown Deer, Wiscon-
sin, USA). HLA-B and HLA-C genes were assigned
using a four-digit designation using uTYPE® v6.0 SBT
software (Invitrogen by Life Technologies, Brown Deer,
Wisconsin, USA), which also solves the ambiguous re-
sults. Due to technical issues, HLA-C typing was per-
formed for 21 individuals by next-generation sequencing
(NGS) - MiSeq platform. A pre-validation assay showed
that the alleles assigned by SBT and by NGS are the
same, which means that the results are comparable (data
not shown). The grouping of HLA-B genes in HLA Bw4
and/or Bw6 epitope-associated specificities followed the
Immuno Polymorphism Database (IPD)-international
ImMunoGeneTics project (IMGT)/HLA nomenclature
guidelines [53]. All HLA-B alleles with the Bw4 epitope
were grouped, regardless of the amino acid composition
in the position 80 (80I or 80 T). In this study, we did not
evaluate HLA-Bw4 epitope-associated specificity found
in some HLA-A alleles. The grouping of HLA-C genes
in C1 (HLA-C*01/*03/*07/*08/*12/*14/*16) and C2
(HLA-C*02/*04/*05/*06/*15/*17/*18) epitope-associated
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specificities was based in the classification broadly used
in the literature [54, 55].

KIR genotyping
The presence or absence of KIR genes was determined
using a commercial kit based on a sequence-specific pri-
mer amplification method – SSP (SSP KIR Genotyping
kit – Invitrogen, Brown Deer, Wisconsin, USA). A total
of 14 KIR genes (2DL1, 2DL2, 2DL3, 2DL4, 2DL5, 2DS1,
2DS2, 2DS3, 2DS4, 2DS5, 3DL1, 3DL2, 3DL3, and
3DS1) and 2 KIR pseudogenes (2DP1 and 3DP1) were
screened using this approach. KIR group genotype no-
menclature was designated according to the current
working definition, which characterizes genotypes AA
and Bx based on the combinations of haplotype A (ab-
sence of all the activating genes, except KIR2DS4) and
haplotype B (presence of one or more of the activating
genes) [12, 56]. We also classified KIR genotypes by the
ID assigned by the Allele Frequency Net Database
(http://www.allelefrequencies.net). KIR-HLA pairs were
named according to the presence of at least one allele of
a particular allotype (Bw4 or Bw6; C1 or C2), as follows:
Bw4/Bw4, Bw4/Bw6, Bw6/Bw6 and C1/C1, C1/C2, C2/
C2.

Statistical analyses
Mann–Whitney U tests were used in the comparisons of
the sociodemographic, clinical, and laboratory character-
istics for continuous numerical variables, while for cat-
egorical nominal variables, Fisher’s exact tests were used
in the evaluation of frequencies between groups. For the
last, P-values were computed by Monte Carlo simulation
with B = 1,000,000 simulations [57]. The frequencies of
HLA-B, HLA-C, and KIR genes and genotypes were de-
termined by direct count, and their proportions within
95% confidence intervals (CI) were computed according
to the Gamma distribution [58]. The protection/risk es-
timation was performed using an adjusted odds ratio
(aOR) with 95% CI for each gene and estimated through
unconditional logistic regression models. We introduced
as confounders, any clinical phenotypic marker associ-
ated with the different outcomes in the modeling of all
other genetic or phenotypic analysis to eliminate any
possible bias introduced for having more or fewer indi-
viduals living with HIV in the aOR numerator or de-
nominator of any analysis. Whenever needed, we
categorized continuous numerical variables using as cut-
offs the round integer number closest to the medians of
the outcome’s sets defined by the continuous numeric
variable. Sociodemographic, clinical, and laboratory
characteristics with the outcomes of interest and P-
values <0.2 in the bivariate analysis were included in
multiple unconditional logistic regression models to ac-
count for biases. All statistical analyses were performed

using R version 3.6.0 (R Core Team, 2019). HLA allele
frequencies were also compared between the different
groups of patients and individuals from the Brazilian Na-
tional Registry of Bone Marrow Donors (REDOME) re-
leased in March 2013, which represents a reliable and
representative sample of the Brazilian population, with
almost 3 million registered donors (www.imunogenetica.
org).

Results
Clinical and epidemiological characteristics
The main sociodemographic, clinical, and laboratory fea-
tures of all individuals included in the present study, cat-
egorized according to the presence (Group 1 + Group 3)
or absence (Group 2 + Group 4) of TB, are depicted in
Table 1. Among the 88 TB-HIV co-infected individuals
included in the study, 11 had paradoxical TB/HIV-IRIS.
Most of the participants were males (69.8%). Regarding
schooling, 41.4% of the individuals have lower secondary
education, and 30.2% have upper secondary education.
The proportion of individuals with white and brown skin
color was equivalent (40.7 and 39.5%, respectively), and
individuals with black skin color made up the remainder
of the study population (19.8%). The education level,
gender, HIV status, CD4 T-cell count/mm3, and CD4/
CD8 ratio were significantly distinct between the groups
of individuals with (Group 1 + Group 3) and without
(Group 2 + Group 4) TB (Table 1).
We further analyzed the main sociodemographic, clin-

ical, and laboratory characteristics of HIV-1-infected in-
dividuals included in this study, also categorized
according to the presence (Group 1) or absence (Group
2) of TB, as depicted in Additional file 1: Table S1. A
total of 75% of HIV-1-infected individuals identified
themselves as heterosexual and 23.2% as men who have
sex with men (MSM). Most males (62.5%) and hetero-
sexual subjects (58.9%) belonged to Group 1. The educa-
tion level was diverse, with an unequal distribution
between Group 1 and Group 2 (P = 0.011). There were
no statistically significant differences in clinical and la-
boratory variables between Group 1 and Group 2 pa-
tients (Additional file 1: Table S1).

Distribution of HLA-B, HLA-C, and KIR genes
All 162 individuals had their HLA-B genotypes deter-
mined, and 30 allelic groups were identified. Given the
large variety of the specific HLA-B alleles detected, we
opted to present the results using the two-digit designa-
tion, in an attempt to facilitate the interpretation of the
associations here described. The most frequent HLA-B
alleles were HLA-B*15, HLA-B*44, HLA-B*35 and HLA-
B*07, with prevalence rates of 26.5, 20.4, 18.5, and
14.2%, respectively (Additional file 1: Table S2). Twenty-
four individuals (14.8%) were HLA-Bw4 homozygous,
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and 53 (32.7%) were HLA-Bw6 homozygous, while Bw4/
Bw6 heterozygosity was found in 85 individuals (52.5%)
(Additional file 1: Table S2). No statistically significant
differences were observed between the HLA-B sero-
logical epitopes and the groups studied (Additional file
1: Table S3). Comparing the frequencies of all HLA-B al-
leles found in this study with those reported for the gen-
eral Brazilian population (REDOME dataset), we
observed a significant difference in the frequencies of
HLA-B*15, HLA-B*53, HLA- B*81 alleles (Additional file
1: Table S4).
One hundred sixty out of the 162 individuals included

in the study had their HLA-C genotypes determined,
and 14 allelic groups were identified. The DNA samples
from the remaining two individuals were submitted re-
peatedly times to the sequencing protocol, but the typing

was unsuccessful. A large variety of specific HLA-C al-
leles was also detected, and, as well as was done for
HLA-B alleles, and we opted to present the results using
the two-digit designation. The most frequent HLA-C al-
leles were HLA-C*07, HLA-C*04, HLA-C*06, and HLA-
C*03, with prevalence rates of 40.0, 37.5, 19.4, and
18.8%, respectively (Additional file 1: Table S2). Forty-
three individuals (26.9%) were HLA-C1 homozygous,
and 41 individuals (25.6%) were HLA-C2 homozygous,
while seventy-six individuals (47.5%) were HLA-C1/C2
heterozygous (Additional file 1: Table S2). Unfortu-
nately, HLA-C frequencies are not available at the
REDOME dataset for comparisons of our data with the
general Brazilian population.
All 16 KIR genes (14 genes and 2 pseudogenes)

were detected in the study population. One hundred

Table 1 Sociodemographic, clinical, and laboratory data for individuals included in the study categorized according to the presence
(Group 1 + Group 3) or absence (Group 2 + Group 4) of TB

Features Overall
N = 162

With TB
(G1 + G3)
N = 112

Without TB
(G2 + G4)
N = 50

P-valuea

Gender; n (%)

Female 49 (30.2) 26 (23.21) 23 (46) 0.005

Male 113 (69.8) 86 (76.79) 27 (54)

Skin Colorb; n (%)

Black 32 (19.8) 25 (22.32) 7 (14) 0.379

Brown 64 (39.5) 41 (36.61) 23 (46)

White 66 (40.7) 46 (41.07) 20 (40)

Educationc; n (%)

Bachelor 13 (8) 6 (5.36) 7 (14) <0.001

Upper-secondary 49 (30.2) 27 (24.11) 22 (44)

Lower-secondary 67 (41.4) 46 (41.07) 21 (42)

Primary 26 (16) 26 (23.21) 0 (0)

Unknown 7 (4.3) 7 (6.25) 0 (0)

HIV status; n (%)

Negative 50 (30.9) 24 (21.43) 26 (52) 0.0002

Positive 112 (69.1) 88 (78.57) 24 (48)

CD4 count (cell/μL) (IQR) 153 (654.25) 130.5 (116.51) 674 (1348) 0.003

(≤50); n (%) 40 (25.3) 28 (25) 12 (24) 0.846

(>50); n (%) 118 (74.7) 80 (71.43) 38 (76)

CD8 (IQR) 588 (562) 591 (527.7) 564 (1.128)

(≤500); n (%) 65 (42.5) 44 (39.28) 21 (42) 1

(>500); n (%) 88 (57.5) 59 (52.68) 29 (58)

CD4/CD8 (IQR) 0.29 (0.96) 0.2 (0.18) 0.69 (1.38) 0.004

(≤1); n (%) 111 (72.5) 85 (75.89) 26 (52) 0.0002

(>1); n (%) 42 (27.5) 18 (16.07) 24 (48)

N number of individuals in each group, TB tuberculosis, IQR interquartile range, VL viral load, G1 group 1, G2 group 2, G3 group 3, G4 group 4
aP-values were calculated using Fisher’s exact test. Differences were considered significant with a value of * P < 0.05. Significant P-values are labeled in bold. bSkin
color categorization followed the classificatory system employed by the Brazilian Institute of Geography and Statistics (IBGE) [59]. cClassification, according to the
International Standard Classification of Education (ISCED) maintained by the United Nations Educational, Scientific and Cultural Organization (UNESCO)
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sixty-one out of the 162 individuals included in the
study had their KIR genotypes determined. These
profiles ranged in their frequency from 0.62% (1/161)
to 28.6% (46/161). Twenty-two of the 43 profiles
identified were unique to a single individual, reinfor-
cing the high degree of polymorphism of these genes.
The most representative KIR genotypes were AA1
(46/161, 28.6%), Bx4 (16/161, 9.9%), Bx5, Bx6 (11/161,
6.8%), and Bx2 (10/161, 6.2%) (Additional file 1: Table
S5). The inhibitory KIR genes were more frequent
than the activating genes (58.7% vs. 24.5%) (Add-
itional file 1: Tables S2 and S5). Considering the AA
and Bx genotype classification, 112 individuals (69.1%)
had KIR genes arranged as Bx haplotypes, and in the
50 remaining individuals (30.9%), the AA genotype
was observed (Additional file 1: Table S2). The KIR
Bx genotype was more frequent among all groups of
patients, with 70.4% in Group 1, 66.7% in Group 2,
75.0% in Group 3, and 61.5% in Group 4 (Additional
file 1: Table S2). Statistically significant differences
were not observed between the HLA-B serological
epitopes and the groups studied (Additional file 1:
Table S6).
The results of the unconditional logistic multiple re-

gression model comparing the groups with TB (Group
1 + Group 3) and without TB (Group 2 + Group 4)
showed that HLA-B*08 [aOR = 0.23 (95% CI, 0.06–0.89),
P = 0.033] and female gender [aOR = 0.33 (95% CI, 0.13–
0.8), P = 0.014] were associated with protection against
TB onset, while KIR2DS2 was associated with increased
risk for TB onset [aOR = 2.39 (95% CI, 1.03–5.54), P =
0.043]. Among the HIV-1 infected individuals (Group 1
vs Group 2), not carrying KIR2DL3 [aOR = 0.18 (95% CI,

0.04–0.74), P = 0.034] and carrying HLA-C*07 ([aOR =
0.32 (95% CI, 0.11–0.94), P = 0.038] were associated with
protection against TB onset (Table 2).
Additionally, according to the presence (Group 1 +

Group 3) or absence (Group 2 + Group 4) of TB, a ten-
dency for an association of KIR2DL2 with increased risk
for TB onset was observed [aOR = 2.13 (95% CI, 0.93–
4.9), P = 0.075]. Among the HIV-1-infected individuals
(Group 1 vs. Group 2), white skin color was associated
with increased risk for TB onset [aOR = 2.62 (95% CI,
0.85–8.09), P = 0.092].

IRIS and genetic markers
Comparing the IRIS vs non-IRIS subgroups, among the
TB-HIV co-infected individuals (Group 1), an increased
risk for IRIS onset was associated with having a CD8
count ≤500 cells/mm3 [aOR = 18.23 (95% CI, 1.71–
193.79), P = 0.016]; carrying the KIR2DS2 gene [aOR =
27.22 (95% CI, 1.33–558.6), P = 0.032], the HLA-B*41 al-
lele [aOR = 68.84 (95% CI, 1.41–3369.9) P = 0.033], the
KIR2DS1 +HLA-C2 pair [aOR = 28.58 (95% CI, 1.54–
530.65) P = 0.024]; and not carrying the KIR2DL3 +
HLA-C1/C2 pair [aOR = 43.04 (95% CI, 1.32–1404.01)
P = 0.034], and the KIR2DL1 +HLA-C1/C2 pair [aOR =
43.04 (95% CI, 1.32–1404.01) P = 0.034] (Table 3). Add-
itionally, a trend for association with increased risk for
IRIS onset was observed for the occurrence of KIR2DS5
[aOR = 5.77 (95% CI, 0.83–39.96), P = 0.076], HLA-B*45
[aOR = 45.93 (95% CI, 0.61–3471.86), P = 0.083], and dis-
seminated/extrapulmonary TB [aOR = 5.65 (95% CI,
0.79–40.47), P = 0.085].
We also observed an unequal distribution of the HIV

transmission route (P = 0.027) and CD8 count (P =

Table 2 Unconditional logistic multiple regression model of risk and protection factors for tuberculosis

Features Level All the groups G1 + G3 vs. G2 + G4 HIV-1 positive individuals G1 vs. G2

With TB
(G1 + G3)
N = 112

Without TB
(G2 + G4)
N = 50

aORa 95%CI P-valueb With TB (G1)
N = 88

Without TB (G2)
N = 24

aOR 95%CI P-value

Gender Male 86 (76.79) 27 (54) Ref 70 (79.55) 16 (66.67) Ref

Female 26 (23.21) 23 (46) 0.33 0.13–0.8 0.014 18 (20.45) 8 (33.33) 0.49 0.17–1.43 0.192

HLA-B*08 not carriers 105 (93.75) 41 (82) Ref 82 (93.18) 21 (87.5) Ref

carriers 7 (6.25) 9 (18) 0.23 0.06–089 0.033 6 (6.82) 3 (12.5) 0.53 0.1–2.77 0.450

KIR2DL3 carriers 105 (93.75) 44 (88) Ref 84 (95.45) 19 (79.17) Ref

not carriers 7 (6.25) 6 (12) 0.52 0.14–1.89 0.319 4 (4.55) 5 (20.83) 0.18 0.04–0.74 0.034

KIR2DS2 not carriers 50 (44.64) 29 (58) Ref 42 (47.73) 14 (58.33) Ref

carriers 62 (55.36) 21 (42) 2.39 1.03–5.54 0.043 46 (52.27) 10 (41.67) 1.74 0.66–4.64 0.265

HLA-C*07c carriers 37 (33.64)c 20 (40) 0.75 0.32–1.71 0.489 28 (32.56)c 12 (50) 0.32 0.11–0.94 0.038

not carriers 73 (66.36)c 30 (60) Ref 58 (67.44)c 12 (50) Ref
aOdds ratios were adjusted by gender, skin color, education, HIV status, CD4 count, and CD4/CD8 ratio when appropriate. bP-values were calculated using the
unconditional logistic regression model. Differences were considered significant with a value of * P < 0.05. Significant P-values are labeled in bold. cThe HLA-C
determination was not possible for two individuals from G1. So, when considering this variable, N (G1) = 86 and N (G1 + G3) = 110
N number of individuals in each group, aOR adjusted odds ratio, 95% CI 95% confidence interval, REF Reference, G1 group 1, G2 group 2, G3 group 3. G4 group 4
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0.032) among the IRIS and non-IRIS groups (Additional
file 1: Table S7). Analyses of Bw4/Bw6 epitope groups
and AA/Bx genotypes between groups with and without
IRIS did not reach statistical significance, contrary to
what was observed for the C1/C2 epitope groups (Add-
itional file 1: Table S3 and Additional file 1: Table S6).

Discussion
The growing interest in the role of host genetic factors
in the dynamics of infectious diseases is at least in part
fueled by the possibility of finding predictive biomarkers
of disease outcomes, such as the occurrence of IRIS in
TB-HIV co-infected individuals, contributing to improv-
ing clinical management in an attempt to avoid severe
disease complications. Several reports have associated
polymorphic genes with infectious diseases in different
populations and ethnic groups [5, 7, 12, 60, 61]. Host
genetic factors have been consistently linked to varia-
tions in both susceptibility and resistance to HIV-1 in-
fection and TB [7, 15, 62, 63].
Regarding TB-HIV co-infected individuals, there are

few host factors associated with protection or suscepti-
bility mechanisms. The immunological mechanisms
underlying the development of IRIS are not yet clearly
understood [4, 37, 64, 65]. However, some authors have
described potential biomarkers as predictors of IRIS de-
velopment, for instance, interleukin-18 (IL-18) [4],
CXCL10, and IFN-α2 [65]. Similarly, Conesa-Botella
et al. reported that tumor necrosis factor (TNF),
interferon-gamma (IFN-γ), IL-6, and IL-18 were signifi-
cantly higher in patients with IRIS [66]. Increased

frequencies of IFN-γ-producing cells by Elispot in re-
sponse to PPD and 38 kDa/CFP-10 antigens were also
observed for IRIS patients in a previous study by our
group [46]. Concerning natural killer (NK) cells, Pean
et al. showed that patients with IRIS had a higher pro-
portion of NK cells degranulation levels of these cells
were predictive markers of IRIS development among
Cambodian TB-HIV co-infected individuals [3]. Our
group performed a similar analysis for a subset of pa-
tients here included, but no difference was observed in
NK degranulation between IRIS and non-IRIS groups
[47]. Also, other groups reported elevated frequencies of
KIR-γδ T-cells [67] and CD69+ NK cells [68] in TB-IRIS
patients during pre-ART, suggesting that these cells may
play a role in IRIS-associated pathology. However, it is
not completely elucidated which of these potential bio-
markers might have clinical application in predicting
IRIS.
In the present study, we examined the distribution of

HLA-B, HLA-C, and KIR genes in TB and/or HIV-
infected patients and investigated the putative role of
these genes in the occurrence of TB/HIV-IRIS. The in-
dividuals included in the present study had their
HLA-B, HLA-C, and KIR genes determined, and the
frequency data observed corroborated what has been
described for the HIV-1-infected population [12, 69]
and the general Brazilian population [70–75]. HLA-
B*08 and female gender were associated with protec-
tion against TB onset in the studied population. On
the other hand, the KIR2DS2 gene was associated
with an increased risk for TB onset (Table 2). To the

Table 3 Unconditional logistic multiple regression model of risk factors for IRIS-TB among HIV-TB individuals

Features Level Patients
without
IRIS (N =
77)

Patients
with IRIS
(N = 11)

Adjusted Model

aORa 95%CI P-valueb

CD8 (>500) 47 (68.12) 3 (30) Ref

(≤500) 22 (31.88) 7 (70) 18.23 1.71–193.79 0.016

HLA-B*41 not carriers 75 (97.4) 10 (90.91) Ref

carriers 2 (2.6) 1 (9.09) 68.84 1.41–3369.9 0.033

KIR2DS2 not carriers 40 (51.95) 2 (18.18) Ref

carriers 37 (48.05) 9 (81.82) 27.22 1.33–558.6 0.032

KIR2DS1 + C2 not carriers 69 (89.61) 8 (72.73) Ref

carriers 8 (10.39) 3 (27.27) 28.58 1.54–530.65 0.024

KIR2DL3 + C1/C2 not carriers 37 (49.33) 9 (81.82) 43.04 1.32–1404.01 0.034

carriers 38 (50.67) 2 (18.18) Ref

KIR2DL1 + C1/C2 not carriers 37 (49.33) 9 (81.82) 43.04 1.32–1404.01 0.034

carriers 38 (50.67) 2 (18.18) Ref

N number of individuals in each group, OR odds ratio, aOR adjusted odds ratio, 95% CI 95% confidence interval, REF Reference, HLA human leukocyte antigen, IRIS
immune reconstitution inflammatory syndrome
aOdds ratios were adjusted by skin color, education, site of tuberculosis, and CD8 count when appropriate. bP-values were calculated using the unconditional
logistic regression model. Differences were considered significant with a value of * P < 0.05
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best of our knowledge, HLA-B*08 has not yet been
associated with TB protection. However, an increased
frequency of this allele was described among TB-HIV
coinfected individuals and HIV-1 infected patients
with rapid disease progression, reflecting different
roles for this allele in the context of TB and HIV-1
infection [76–79]. Many studies have established links
between sex-specific factors and the differential sus-
ceptibility or protection to some infectious diseases
[80, 81]. TB rates are significantly higher in men than
in women [1]. Herzmann and collaborators observed
a higher frequency of active TB among men, which
could lead to an increased risk for disease progression
[82]. KIR2DS2 recognizes HLA-C molecules of the C1
group [83]; there is no previous report associating
KIR2DS2 with TB susceptibility. Instead, KIR2DS2
has been associated with rapid disease progression
and robust immune activation, accelerating the pro-
gress to AIDS [84, 85], and promoting a higher risk
to acute lymphoblastic leukemia [86].
Not carrying KIR2DL3 and the carriage of HLA-C*07

were protective factors for TB onset among HIV-1-
infected individuals studied here (Table 2). KIR2DL3
recognizes HLA-C molecules of the C1 group [83]. Pre-
vious studies have shown that different levels of suscep-
tibility to M. tuberculosis may be due to variations in
KIR receptors and, consequently, in the repertoire of NK
cells [87–89]. In the context of TB, a higher prevalence
of KIR2DL3 among TB patients has been observed in
several studies [15, 18, 90, 91]. Biberg-Salum et al. [92]
showed that HLA-C∗07 allele conferred protection
against the development of cytomegalovirus retinitis in
Brazilian AIDS patients.
It is noteworthy that all patients who developed TB/

HIV-IRIS in our analyses were males. The predominance
of males among IRIS patients had already been docu-
mented in other studies, but in most of them, there was
no association with increased risk of IRIS onset [4, 38,
93]. However, an increased risk of being diagnosed with
IRIS was reported for men [93]. We could not confirm
this association, given the lack of women with IRIS in
our study, which prevented the inclusion of the gender
variable in the statistical models.
Interestingly, an increased risk for IRIS onset among

TB-HIV co-infected individuals was found among those
having a CD8 count ≤500 cells/mm3; carrying the
KIR2DS2, the HLA-B*41, and the KIR2DS1 +HLA-C2
pair; as well as not carrying KIR2DL3 + HLA-C1/C2 and
KIR2DL1 +HLA-C1/C2 pairs (Table 3). HLA-B*41 allo-
types have already been associated with susceptibility to
TB in patients with AIDS from the northeast region of
the state of São Paulo [20], but no association with IRIS
has been described for this allele yet. The frequency of
the HLA-B*41 allele is low in different populations

(Allele Frequency Net Database), differing from the fre-
quency found in the IRIS cases included in the present
study. The KIR2DS2 gene was also associated with IRIS
onset among TB-HIV co-infected individuals in the
present study. The high frequency of this gene described
across all studied groups (51.2%) was similar to those
observed in several other populations, such as on the Af-
rican continent (> 54%) and in the Cambodian popula-
tion (49.9%) [90], where the occurrence of IRIS is higher
than that observed in this study [31].
The results regarding activating KIR receptors

(KIR2DS2, KIR2DS1 +HLA-C2, and KIR2DS5) together
with the lack of inhibitory KIR receptors (KIR2DL3 +
HLA-C1/C2 and KIR2DL1 +HLA-C1/C2) might reflect
a high functionality of NK cells, suggesting that the pres-
ence of these activating genes modulates the NK cell re-
sponse. This mechanism may be either by no
recognition of the activating genes of the infected cells,
due to lack of ligands in the target cell, or due to over-
riding of the activation signal by the inhibitory signal de-
livered to NK cells when both activating and inhibitory
genes bind to their ligand on the surface of the target
cell [94–96]. Therefore, this might lead to an escape
from the infected cells, resulting in the exacerbation of
the pathogenesis of IRIS or HIV-1 infection and TB it-
self. Future studies should address the functional
characterization of these genes and their respective HLA
ligands.
To the best of our knowledge, this is the first study

showing the scenario of HLA-B, HLA-C, and KIR gene
frequencies in a population of HIV-1-infected patients
with TB. Importantly, the frequencies of these genes be-
tween individuals with and without IRIS were also deter-
mined. Our results suggest the participation of the
clinical and genetic markers, which were associated with
the related TB-HIV outcomes in the immunopathogenic
mechanisms related to the conditions studied here. It is
relevant to point out that some limitations of the current
study should be noted, mainly concerning the limited
sample size and the low frequency of TB/HIV-IRIS
cases. Therefore, additional studies with larger popula-
tions and suitable power analyses might be helpful to a
better understanding of the importance and role of gen-
etic host markers in the context of TB and/or TB/HIV-
IRIS.

Conclusions
We conclude that there is a relationship between KIR,
HLA-B, and HLA-C genes and the immunopathogenic
mechanisms related to the clinical conditions studied
here. This one is the first study demonstrating signifi-
cant associations of the HLA-B*41 allele, the KIR acti-
vating receptor gene KIR2DS2, and a combination of
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KIR/HLA-C pairs with increased risk of IRIS onset
among TB-HIV co-infected individuals.
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