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ABSTRACT
Regulatory T-cells (Tregs) are crucial for the maintenance of immune tolerance and homeostasis as well as for
preventing autoimmune diseases, but their impact on the survival of cancer patients remains controversial. In
the TC-1 mouse model of human papillomavirus (HPV)-related carcinoma, we have previously demonstrated
that the therapeutic efficacy of the CyaA-E7-vaccine, targeting the HPV-E7 antigen, progressively declines
with tumor growth, in correlation with increased intratumoral recruitment of Tregs. In the present study, we
demonstrated that these TC-1 tumor-infiltrating Tregs were highly activated, with increased expression of
immunosuppressive molecules. Both intratumoral effector CD4C T-cells (Teffs) and Tregs expressed high
levels of PD-1, but anti-PD-1 antibody treatment did not impact the growth of the TC-1 tumor nor restore
the therapeutic effect of the CyaA-E7 vaccine. To analyze the mechanisms by which Tregs are recruited to
the tumor site, we used MHC-II KO mice with drastically reduced numbers of CD4C effector T-cells. We
demonstrated that these mice still had significant numbers of Tregs in their lymphoid organs which were
recruited to the tumor. In MHC-II KO mice, the growth of the TC-1 tumor was delayed in correlation with a
strong increase in the intratumoral recruitment of CD8C T-cells. In addition, in mice that spontaneously
rejected their tumors, the infiltration of E7-specific CD8C T-cells was significantly higher than in MHC-II KO
mice with a growing tumor. These results demonstrate that tumor-specific CD8C T-cells can be efficiently
activated and recruited in the absence of MHC class II molecules and of CD4C T-cell help.
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Introduction

The role of immunity and immunosurveillance in cancer was sus-
pected in the beginning of the 20th century and established in recent
decades. Three phases of tumor interaction with the immune sys-
tem have been proposed: the elimination phase, the equilibrium
phase and the escape phase, in which the tumor grows uncontrolla-
bly, establishes an immunosuppressive microenvironment and
escapes the immune system.1 Several mechanisms are involved in
tumor escape, including the activation and accumulation of immu-
nosuppressive cells, such as myeloid-derived suppressor cells
(MDSCs) and regulatory T-cells (Tregs) at the tumor site.1,2

Tregs are a subset of CD4C T-cells expressing the Foxp3 tran-
scription factor and exerting immunosuppressive functions: they
are crucial for the maintenance of immune tolerance to self-anti-
gens, preventing the development of autoimmune diseases in
healthy individuals.3 They exert immune suppression through
the expression of surface molecules, such as CTLA-4, CD39 and
CD73, or through the secretion of suppressive cytokines such as
IL-10, TGF-ß or IL-35.4,5 These properties are currently being
manipulated to improve patient health and survival after organ

transplant and to prevent graft rejection. Furthermore, their
involvement in cancer is being intensively investigated as they
also dampen the immune response to tumor. However, their
impact on prognosis and tumor progression is still controversial
depending on the tumor type.6 Treg numbers are indeed
increased in peripheral blood, in tumor-draining lymph nodes
(dLN) and at tumor sites in patients and in mouse models of
cancer. Their increased levels have a positive impact in B cell
lymphomas and colorectal cancers,7–9 while they are associated
with a poor prognosis in patients with lung, gastric, pancreatic,
ovarian or hepatocellular carcinoma.10–14 They are also associ-
ated with a poor prognosis in cervical carcinoma.6,15

Cervical carcinoma is the second most frequent gynecologic
cancer worldwide. Human papilloma virus (HPV) infections
cause proliferative lesions in infected skin and squamous mucosa,
resulting in hyperplasia, papillomas and condylomas. Although
most HPV infections are transient, in some patients, high-risk
HPV can induce persistentmucosal lesions in the ano-genital tract
and the oropharynx, leading to in situ or invasive carcinomas.16
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Our team has recently developed a new immunotherapeutic
vaccine candidate, CyaA-E7, that is currently undergoing clini-
cal trials: the detoxified adenylate cyclase (CyaA) from B. per-
tussis, carrying the E7 oncoprotein from HPV-16. This vaccine
is able to elicit an E7-specific CD8C T-cell response, to reduce
Treg recruitment to the tumor site17 and to induce complete
tumor eradication in the TC-1 mouse model of HPV-related
carcinoma. However, its therapeutic efficacy against larger
tumors is reduced.18 As observed in cancer patients, we found a
massive accumulation of Tregs at the tumor site very early after
tumor inoculation. They represented up to 80% of tumor-infil-
trating CD4C T-cells, thus likely contributing to the impaired
anti-tumor immune response induced by the CyaA-E7 vaccine
in mice with large tumors.18

Understanding the mechanisms by which Tregs migrate and
accumulate in tumors is important in order to develop strategies to
overcome their recruitment and immunosuppressive properties. In
a previous study,19 we investigated whether tumor infiltration by
Tregs is due to inflammation promoting themigration and conver-
sion of CD4C T-cells into tumor tissue, or to antigen-driven activa-
tion and expansion of Treg cells. This study established that TC-1
tumor-infiltrating Tregs displayed CDR3 spectratyping profiles
characteristic of biased and strongly perturbed T-cell repertoires,
typical of clonal expansions, suggesting that strong T-cell responses
have occurred within the tumor tissue. In addition, we demon-
strated that a large proportion of tumor-infiltrating Treg sequences,
especially those encoding public sequences, are found in the reper-
toire of Treg cells obtained from the draining lymph node (dLN),
but were absent in the repertoire of Tregs isolated from na€ıve mice.
These observations suggest that Treg cells may be activated in the
dLN and then migrate to the tumor site where they continue to
proliferate and accumulate.

In the present study, we aimed to further analyze the mecha-
nisms by which Tregs accumulate in the tumor tissue and to
determine whether their activation and recruitment is depen-
dent upon antigen presentation by MHC class II molecules.

We first characterized their phenotype and demonstrated that
tumor-infiltrating Tregs were highly activated with increased
expression of suppressive molecules, such as ICOS, CD39,
CD103 but also PD-1, but exhibited suppressive functions similar
to naive Tregs. However, treatment of TC-1-bearing mice with
an anti-PD-1 antibody had no effect on the growth of the tumor,
or on the therapeutic effect of the CyaA-E7 vaccine.

MHC-II KO mice were used to determine whether Tregs
require antigen presentation by MHC class II molecules to be
recruited to the tumor site. These mice lack five genes involved in
antigen presentation to CD4C T-cells, and have drastically reduced
numbers of CD4C T-cells. However, CD4C Foxp3C T cells are
found in secondary lymphoid tissues, but not in the thymus, of
these MHC class II deficient mice and can exert regulatory func-
tions.20–22 In these mice, Tregs were still recruited to the tumor site,
although their activation state and their suppressive phenotype
were altered compared with their counterparts from wild-type
(WT) mice. TC-1 tumor growth was delayed in MHC-II KOmice,
correlating with increased numbers of tumor-infiltrating CD8C T-
cells with amore activated phenotype. In addition, surprisingly, the
MHC-II KO mice developed significantly increased numbers of
E7-specific CD8C T-cells after vaccination with CyaA-E7. An
increased percentage of E7-specific CD8C T-cells was also observed

in the tumors of MHC-II KO mice, which spontaneously rejected
the TC-1 tumor compared tomice with progressing tumor.

Our results clearly show that in tumor-bearing mice, Tregs
alter the activation and intratumoral recruitment of CD8C T-
cells. These suppressive properties must be overcome to restore
an efficient anti-tumor immune response.

Results

Tumor-infiltrating CD4C Foxp3C T-cells are highly
activated with increased expression of immunosuppressive
molecules

First, we analyzed the phenotype of tumor-infiltrating CD4C

Tregs and Teffs in the TC-1 mouse model of HPV-related carci-
noma. TC-1 tumor cells were s.c. injected into Foxp3-GFP mice,
and the infiltration of lymphocyte subsets and the phenotype of
Tregs and effector T cells (Teffs) in tumors, dLN and spleens
were analyzed twenty-five days later (Fig. S1 A-C). As previously
described,18,19 Tregs were highly accumulated at the tumor site
(Fig. S1D-G). We have also previously shown that both tumor-
infiltrating Tregs and Teffs are highly activated with an enhanced
memory phenotype as shown by increased expression of CD69
and CD44 and decreased expression of CD62L.19 Next, we ana-
lyzed the expression of other markers characterizing Treg pheno-
type and function (Fig. 1). We found that tumor-infiltrating
Tregs had significantly increased expression of PD-1 and CD39
compared with naive Tregs, while their CD73 expression was
significantly decreased. Recent studies have identified highly sup-
pressive Treg subsets in tumors characterized by enhanced
expression of CD103 or ICOS.2–25 Indeed, the expression of these
molecules was significantly increased on Tregs from both dLN
and tumors, showing that Treg activation had already occurred
in the dLN. Tumor Tregs also showed an increased level of
GITR and PD-L1,26,27 whereas the expression of CTLA-4 did
not vary significantly (Fig. 1). The expression of PD-1, CD39,
CD73, CD103, GITR, ICOS, PD-L1 and CTLA-4 was also signif-
icantly increased on tumor-infiltrating Teffs compared to naive
Teffs (Fig. S2). These data clearly showed that both Treg and
Teff tumor-infiltrating CD4C T-cells were highly activated with
an enhanced immunosuppressive phenotype.

Recent data have established that neuropilin-1 (Nrp1) expres-
sion distinguishes natural Tregs (nTregs) from induced Tregs
(iTregs).28,29 We observed that a high percentage of Tregs iso-
lated from the spleen and LN from naive or tumor-bearing
mice, as well as from the tumor, expressed Nrp1 (Fig. S3A-C),
clearly showing that tumor-infiltrating Tregs are nTregs and not
Teffs that have been converted to iTregs by the tumor immuno-
suppressive microenvironment. In contrast to Tregs, Teffs
expressed a low level of Nrp1 in the lymphoid tissues. However,
the tumor-infiltrating Teffs had significantly increased expression
of this molecule (Fig. S3D-F), showing that Nrp1 expression on
Teffs is a marker of their activation as previously suggested.30

Anti-PD-1 treatment does not improve CyaA-E7-induced
tumor regression in mice

Treatment with anti-PD-1 mAb was shown to induce tumor
regression in mouse models and in patients.31 Since the
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expression of PD-1 was significantly increased on both CD4C

and CD8C intratumoral T-cells, we then analyzed whether treat-
ment by an anti-PD1 antibody would enhance the effect of the

CyaA-E7 vaccine on tumor regression. Tumor-bearing mice
were vaccinated with CyaA-E7/CpG either 14 or 24 days after
tumor injection and treated chronically with anti-PD-1 or

Figure 1. Increased suppressive phenotype of tumor-infiltrating Tregs. Foxp3-GFP mice were injected on day 0 with 1 £ 106 TC-1 cells, and 25 days later, the mice were
sacrificed and cell suspensions were prepared from the spleens (SpT), tumor-dLN (dLN) and tumors, stained and analyzed by flow cytometry, and compared with the LN
(LNN) and spleen (SpN) from naive mice. (A-D) The surface expression of PD-1, CD39, CD73, CD103, ICOS, GITR, PD-L1 and CTLA-4 (filled grey line) by CD4C Foxp3C Tregs
purified from the indicated organs is shown. Labeling with isotype controls is represented by black lines. Data from one representative experiment are shown in A and C,
whereas the geometric mean fluorescence intensity (MFI) § SEM is shown in B and D. The results represent the cumulative data from 4 independent experiments (n D
8–9 mice per group). � p < 0.05, �� p < 0.01, ��� p < 0.001 and ���� p < 0.0001 as determined by the Mann-Whitney test.
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control mAb.This anti-PD-1 treatment alone had no impact on
tumor growth (Fig. 2). As shown in Fig. 2A, vaccination with
CyaA-E7/CpG at day 14 induced rejection of the tumor in 93%
of mice. The combination with anti-PD-1 mAb did not enhance
this effect. When administered 24 days after tumor graft, the
CyaA-E7/CpG induced complete tumor regression in only 56%
of mice, and the combination with anti-PD1 did not improve
this effect (Fig. 2).

Tumor-infiltrating Tregs are functional

Tomore precisely characterize the phenotype and properties of the
tumor-infiltrating CD4C T-cells, we then analyzed the mRNA
expression by purified Tregs and Teffs of transcription factors
involved in the differentiation of naive CD4C T-cells into effector
T-cells. As expected, only Tregs expressed Foxp3 (Fig. 3A), while
RORgc expression was barely detectable in Teffs and Tregs
(Fig. 3B). T-bet was expressed by Teffs of lymphoid organs and
was significantly increased in Teffs purified from tumors (Fig. 3C).
The expression of GATA-3 by tumor-infiltrating Teffs was similar
to that of Teffs from lymphoid tissues (Fig. 3D), showing that
CD4CFoxp3¡ Teffs infiltrating the TC-1 tumor were mainly Th1
cells. The T-bet expression byTregs purified from lymphoid organs
was very low but was significantly increased in tumors (Fig. 3C). In
contrast, GATA-3 expression was greatly increased in Tregs
purified from tumor. The increased intracellular expression of the
T-bet protein by tumor Teffs and Tregs was confirmed by flow
cytometry (Fig. 3E-F).

Since tumor-infiltrating Tregs displayed increased expres-
sion of immunosuppressive molecules, we determined whether
they were endowed with increased immunosuppressive activity.
However, both Tregs isolated from either tumor or normal
spleen similarly suppressed the proliferation of Teffs and their
production of IFN-g after polyclonal stimulation with an anti-
CD3 mAb (Fig. 3G-H).

The transcriptomic analysis of genes involved in apoptosis
demonstrated a significant increase in TRAIL in tumor Tregs
(Fig. S4A). Analysis of the expression of genes of the BCL2
family showed that both pro- and anti-apoptotic genes were
activated in tumor-infiltrating T-cells, but no clear trend was
observed (data not shown). Of the caspase genes analyzed, only
caspase-14 was significantly increased in tumor Tregs
(Fig. S4B). A strong increase in the expression of Redd (for
Regulated in Development and DNA damage responses) and
HIF1a was also observed in Tregs (Fig. S4C-D), strongly sug-
gesting that the TC-1 tumor microenvironment is hypoxic.

We also analyzed the mRNA expression of cytokine genes
and found that neither IL-10 nor TGF-ß genes were increased
in tumor-infiltrating Tregs compared with Tregs from naive
mice (data not shown).

Treg activation and recruitment to tumors is independent
of Ag presentation by MHC-II molecules

We have previously demonstrated that the TCR repertoire of
the Tregs infiltrating the TC-1 tumors is skewed towards public
sequences that are only shared by Tregs from dLN but not by
those of naive mice.19 In addition, the present results
suggest that tumor-infiltrating Tregs are nTregs. Thus, we

Figure 2. Anti-PD-1 antibody treatment does not enhance the therapeutic efficacy
of the CyaA-E7 vaccine. C57 BL/6 J mice were injected with 6 £ 105 TC-1 cells on
day 0, and after 14 (A) or 24 (B) days were i.v. immunized with CyaA-E7 (50 mg/
mouse) and CpG-B-DOTAP (left panels) or received PBS (right panels). On day 13
(A) or 23 (B) and then every 3 days after vaccination, the mice were left untreated
(upper panels) or received either i.p. injection of anti-PD-1 (middle panels) or iso-
type control antibodies (lower panels) for a total of 4 injections (250 mg/mouse/
injection on days 13, 17, 20 and 23 in A or days 23, 27, 30 and 33 in B). The results
represent the cumulative data from 2 independent experiments (n D 14–15 mice
per group).
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hypothesized that tumor Tregs are activated in dLN by antigen-
presenting cells (APCs) through the presentation of tumor anti-
gen(s) by MHC-II molecules and then migration to the tumor.
To test this hypothesis, we used MHC-II KO mice, which have
a dramatically reduced CD4C T-cell compartment, mainly
composed of nTregs, due to the inability of their APCs to pres-
ent antigens to CD4C T-cells.21,32

TC-1 tumor cells were injected into MHC-II KO mice and
C57BL/6J wild-type (WT) mice as a control, and tumor growth

was followed and T-cell infiltration in tumors analyzed on day
25 (the gating strategy is shown in Fig. S5A-D). TC-1 tumor
cells did not express MHC-II molecules, as determined either
after in vitro culture or ex vivo on MHC-II KO or C57 BL/6J
WT mice grafted with TC-1 cells (Fig. S6).

The growth of the TC-1 tumor was clearly delayed in MHC-
II KO mice compared to WT mice, with 13% of mice rejecting
the tumor (Fig. 4A). As expected, strongly reduced numbers of
CD4C T-cells were found in the spleen and LN of MHC-II KO

Figure 3. Functional analysis of tumor-infiltrating T-cells. Foxp3-GFP mice were injected on day 0 with 1 £ 106 TC-1 cells, and the spleens, dLN and tumors were proc-
essed 25 days later to obtain cell suspensions. The spleens and lymph nodes from naive mice were used as controls. CD4C Foxp3-GFPC Tregs and Foxp3-GFP¡ Teffs were
FACS sorted, and then total RNA was purified from the sorted cells and reverse-transcribed. The corresponding cDNA material was then subjected to quantitative PCR
micro-arrays with primers specific to Foxp3 (A), RORgc (B), T-bet (C) and GATA-3 (D). The results represent the mRNA expression normalized to house-keeping genes and
are expressed as the mean arbitrary units § SD from 2 independent experiments in which cells from each organ were pooled from 5–6 mice per group. One-way ANOVA
was performed separately for each subset to compare its gene expression in the different tissues. �p<0.05 was obtained for T-bet expression in both Tregs and Teffs (C)
and ��p<0.01 for GATA-3 expression in Tregs (D). (E-F) The cell suspensions were stained and analyzed by flow cytometry. The intracellular expression of T-bet in Tregs
and Teffs is shown in E, while F shows the mean MFI § SEM of cumulative data from 3 independent experiments (n D 5–6 mice per group). � p< 0.05 as determined by
the Mann-Whitney test in F. (G-H) After AutoMacs CD90C cell enrichment, CD4C Foxp3-GFPC Tregs and Foxp3-GFP¡ Teffs were FACS sorted, mixed together at different
ratios, and cultured in anti-CD3-coated plates (5 mg/mL) for 72 hours. Cell proliferation was determined by [3H]-thymidine incorporation (G), and IFNg was measured in
culture supernatants (H). The results are expressed as the mean § SEM from 2 independent experiments in which cells from 8 mice were pooled.

ONCOIMMUNOLOGY e1404213-5



compared to WT mice (Fig. 4B-E), while the CD8C T-cell com-
partment was enlarged, especially in the LNN. B cell numbers were
also significantly increased, especially in tumor-bearingmice.

The few remaining CD4C T-cells observed in the spleen of
naive or tumor-bearing MHC-II KO mice consisted of conven-
tional Teffs (40%, CD4C NK1.1¡ Foxp3¡), Tregs (20%, CD4C

NK1.1¡ Foxp3C) and NKT-cells (40%, CD3C CD4C NK1.1C

Foxp3¡) (Fig. S5E). In the LN of either normal or tumor-

bearing MHC-II KO mice, Tregs represented 60% of the
remaining CD4C T-cells vs of the 35% Teffs and approximately
3–5% of the NKT-cells (Fig. S5E and F).

A larger proportion of lymphocytes was observed in the
tumors of MHC-II KO mice (Fig. 4F and G), with a strong
increase in both the number and frequency of CD8C T-cells
and dramatically reduced numbers of Teffs and Tregs.
However, although the absolute number of Tregs was

Figure 4. The intratumoral recruitment of CD8C T lymphocytes is increased in MHC class II-deficient mice. (A) Wild-type C57BL/6J (WT; black lines) and MHC-II KO mice
(green lines) were injected on day 0 with 6 £ 105 TC-1 cells, and tumor growth was followed every 2–3 days. The number and percentage of tumor-free mice on day 70
compared with the total number of animals injected are shown. (B-E) Wild-type C57BL/6J and MHC-II KO mice were injected on day 0 with 6 £ 105 TC-1 cells, and on day
25, cell suspensions were prepared from spleens, dLN and tumors and analyzed by flow cytometry. The spleens and lymph nodes from naive mice were used as controls.
The numbers of lymphocyte subsets and their percentages within the total CD45C in spleen (B and C), in LN (D and E), and in tumors (F and G), respectively are shown.
B-G show the mean § SEM of cumulative results from 3 independent experiments (n D 6–7 mice per group). �p < 0.05, �� p < 0.01 and ���p < 0.001 as determined by
Mann-Whitney’s test between each lymphoid subset in WT vs MHC-II KO mice for each organ.
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drastically reduced in MHC-II KO tumors, their propor-
tions within total CD4C T-cells was slightly higher than
those in the tumors of WT mice (Fig. 4F and G and
Fig. S5G).

We then analyzed the phenotype of the T-cells in MHC-
II KO mice and found an increased level of CD44 on the
few remaining Teffs of naive or tumor-bearing MHC-II KO
mice, both in spleen and LN, in association with a

decreased level of CD62L in these lymphoid organs, sug-
gesting that they were highly activated, as confirmed by
their upregulation of ICOS, CD103, CD39 and CD73
(Fig. S7). A significant decrease in CD62L was also observed
for tumor Tregs (Fig. 5), but in contrast to WT mice, CD44
was not significantly increased on the Tregs infiltrating the
tumor. The expression of PD-1, ICOS and GITR was simi-
lar in both mouse strains (Fig. 5).

Figure 5. Similar activation status of Tregs in WT and MHC-II KO mice. WT C57BL/6J and MHC-II KO mice were injected on day 0 with 6 £ 105 TC-1 cells, and cell suspen-
sions were prepared after 25 days from spleens, dLNs and tumors and analyzed by flow cytometry. The spleens and lymph nodes from naive mice were used as controls.
The surface expression of CD44, CD62 L, PD-1, CD103, ICOS and GITR on Tregs from the indicated organs is shown in A and C. Filled grey lines represent WT mice, open
red lines represent MHC-II KO mice, while labeling with isotype controls is represented by black lines. Data from one representative experiment are shown. The MFI §
SEM shown in B and D represents cumulative results from 4 independent experiments with nD 7–11 mice per group (WT: grey histograms and MHC-II KO mice: red histo-
grams). �� p < 0.01 and ��� p < 0.001 as determined by the Mann-Whitney test.
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MHC-II KO regressor mice develop an efficient E7-specific
CD8C T-cell response

In contrast to the dramatically reduced numbers of CD4C

T-cells, higher numbers of CD8C T-cells infiltrated the
tumors of MHC-II KO mice (Fig. 4F and G), which could
explain the controlled tumor growth in these mice. The
CD8C T-cells infiltrating the tumors from both WT and

MHC-II KO mice had significantly increased expression of
CD44 and decreased expression of CD62L (Fig. 6). By con-
trast, compared to WT mice, the CD8C T-cells infiltrating
the tumor from MHC-II KO expressed a significantly
higher level of PD-1 as well as ICOS, GITR and CD103,
suggesting a higher level of activation of these cells in these
mice, which could explain their increased capacity to con-
trol the TC-1 tumor growth.

Figure 6. CD8C T lymphocytes are activated in MHC-II KO mice and recruited to the tumor, despite the absence of CD4C T-cells. WT C57BL/6J and MHC-II KO mice were
injected on day 0 with 6 £ 105 TC-1 cells, and cell suspensions were prepared after 25 days from spleens, dLN and tumors and analyzed by flow cytometry. The spleens
and lymph nodes from naive mice were used as controls. The surface expression of CD44, CD62L, PD-1, ICOS, GITR and CD103 on CD8C T-cells purified from the indicated
organs is shown in A and C. Filled grey lines represent WT mice, open red lines represent MHC-II KO mice, while labeling with isotype controls is represented by black
lines. Data from one representative experiment are shown. The MFI § SEM shown in B and D (WT: grey histograms and MHC-II KO: red histograms) represents cumulative
results from 4 independent experiments (n D 7–11 mice per group). � p < 0.05, �� p < 0.01 and ��� p < 0.001 as determined by the Mann-Whitney test.
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To further evaluate the cytotoxic functions of these CD8C T-
cells, we next quantified the CD8C T-cells specific for the HPV-
16 E7 oncoprotein, which developed in TC-1 tumor-bearing
mice. First, we compared the percentage of E7-specific CD8C

T-cells that developed in na€ıve WT and MHC-II KO mice after
immunization with the CyaA-E7 vaccine. Despite the absence
of CD4C Teffs, MHC-II KO mice developed an efficient E7-
specific CTL response, which was even significantly higher
than the response of WT mice (Fig. 7A).

In tumor-bearing WT and MHC-II KO mice, the E7-spe-
cific CD8C T-cell responses which developed in the spleen
and LN in the absence of immunization were very low and
comparable to the responses of na€ıve mice without tumors
(Fig. 7B and C). However, tumor-bearing MHC-II KO mice

that were immunized with the CyaA-E7 vaccine developed
significantly higher E7-specific CTL responses in the spleen
than the WT mice. In the absence of vaccination, E7-specific
CD8C T-cells were detectable in the tumors of both WT and
MHC-II KO mice and dramatically increased in mice immu-
nized with the CyaA-E7 vaccine (Fig. 7D).

As previously observed in Fig 4A, in some MHC-II KO mice
grafted with TC-1 cells, the tumor regressed spontaneously
(regressor mice), in contrast to mice in which tumor growth
was not controlled (progressor mice) (Fig. 7E). Comparison of
the E7-specific CD8C T-cell responses infiltrating the tumors of
regressor and progressor MHC-II KO mice demonstrated that
rejection of the tumor was associated with significantly higher
percentages of E7-specific CD8C T-cells (Fig. 7F).

Figure 7. MHC-II KO mice develop strong specific anti-tumor CD8C T-cell responses after vaccination or during tumor growth, independently of CD4C T-cell help. (A)
Naive WT and MHC-II KO mice were vaccinated on day 0 with either CyaA-E7 (50 mg/mouse) and CpG-B-DOTAP (30 and 60 mg/mouse, respectively) or PBS. On day 7, the
mice were killed, cell suspensions were prepared from their spleens and the percentages of tetramer-E7C CD8C T-cells were analyzed by flow cytometry. Cumulative
results from 3 independent experiments are shown (n D 9 mice per group). (B-D) WT and MHC-II KO mice were injected on day 0 with 6 £ 105 TC-1 cells, cell suspensions
were prepared from tumors after 20 days, and the percentages of tetramer-E7C CD8C T-cells were analyzed by flow cytometry. Mice vaccinated on day 13 were used as a
positive control. The results represent cumulative data from 2 independent experiments. The percentages of tetramer E7-positive CD8C T-cells in spleen (B), LN (C) (n D
6–8 mice per group) and tumor (D) (n D 5–8 mice per group) are shown. (E-F) MHC-II KO mice were injected on day 0 with 6 £ 105 TC-1 cells. In E, the red curves repre-
sent tumor growth up to day 20 in mice that started to reject their tumor (regressor mice), while the black curves represent tumor growth in mice with growing tumors
(progressor mice). (F) Mice were killed at day 20, and the percentages of tetramer E7-positive CD8C T-cells were analyzed in the tumors of progressor and regressor
MHC-II KO mice (nD 4 mice per group). � p< 0.05, �� p < 0.01, ��� p < 0.001 and ���� p < 0.0001 as determined by the Mann-Whitney test.

ONCOIMMUNOLOGY e1404213-9



Overall, these data clearly established that in CD4C Teff-
deficient MHC-II KO mice, increased numbers of CD8C T-cells
infiltrated the tumor, with a more activated phenotype, suggest-
ing that the increased CTL responses that developed in these
mice are responsible for the enhanced control of tumor growth.

Finally, we evaluated whether Tregs CD4C Foxp3C T cells
which are found in spleen, LN and tumor of MHC class II defi-
cient mice could affect anti-tumor responses of these mice.
Wild-type C57BL/6or MHC-II KO were injected with TC-1
cells and treated either by anti-CD25 (clone PC61-5.3) or by
control isotype as previously described.33 This strategy has
been shown to successfully attenuate in vivo Treg functions,
without total depletion of this cell subset, in large numbers of
various experimental models, including infections with virus,
bacteria and parasites, as well as in anti-tumor immune
responses.34 As shown in Fig. S8, the growth of the TC-1 tumor
was clearly delayed in MHC-II KO mice treated by anti-CD25,
as compared to mice treated with anti-isotype antibodies, as
observed in wild-type C57BL/6.

Discussion

Radiotherapy and chemotherapeutic agents are widely used,
alone or in combination, for the treatment of cancer patients.
Chemotherapeutic agents have an established beneficial effect
against tumor cells, but they may also affect the immune sys-
tem. Their impact can be beneficial: indeed, cyclophosphamide
induces IFN type I responses against tumors35–37 and Treg
depletion,38 while anthracyclines favor tumor-specific CD8C T-
cell responses. Conversely, they can also compromise the anti-
tumor immune response by inducing myelo- or lympho-abla-
tive side effects. Immunotherapy is now used in combination
with other anti-cancer agents39–44 based on the demonstration
of the importance of the immune infiltrate at tumor site.37,41,45–
49 Indeed, several strategies aim to deplete or inhibit MDSCs50

or Tregs, which massively accumulate at the tumor site and/or
in the blood of cancer patients and inhibit the anti-tumor
immune response.51–53 Several strategies have been developed
for depleting Tregs or suppressing their functions, such as anti-
CD25 antibody or anti-CTLA-4, or -GITR antibodies.
Although these strategies have provided promising results,
none of them resulted in complete tumor regression.
Thus, they need to be improved and used in combination with
other immunotherapeutic agents. To achieve such an objective,
a better understanding of Treg recruitment and function is
needed.

Therefore, the aim of our study was to fully characterize the
phenotype and function of tumor-infiltrating Tregs and to
decipher the mechanism(s) responsible for their recruitment to
the tumor site in order to develop strategies to inhibit their
accumulation or their suppressive activity.

In the present study, using the TC-1 mouse model of HPV-
related carcinoma, we demonstrated that tumor-infiltrating
Tregs were highly activated, with increased expression of
immunosuppressive molecules. Both intratumoral Teffs and
Tregs expressed high levels of PD-1, but anti-PD-1 antibody
treatment did not impact the growth of the TC-1 tumor nor
restore the therapeutic effect of the CyaA-E7 vaccine. To ana-
lyze the mechanisms by which Tregs are recruited to the tumor

site, we used MHC-II KO mice with drastically reduced num-
bers of CD4C effector T-cells. We demonstrated that these
mice still had significant numbers of Tregs in the lymphoid
organs and that these Tregs were recruited to the tumor. In
MHC-II KO mice, the growth of the TC-1 tumor was delayed,
which correlated with a strong increase in the intratumoral
recruitment of CD8C T-cells. In addition, in mice that sponta-
neously rejected their tumor, the infiltration of E7-specific
CD8C T-cells was significantly higher than that in MHC-II KO
mice with growing tumors. These results demonstrate that
tumor-specific CD8C T-cells can be efficiently activated and
recruited in the absence of MHC class II molecules and of
CD4C T-cell help.

Using Foxp3-GFP mice, to clearly distinguish Tregs from
Teffs, we demonstrated that tumor-infiltrating Tregs were
highly activated with significantly increased expression of sup-
pressive molecules, including CD39, CD103 and PD-1.
Although tumor-infiltrating Tregs as well as Teffs had signifi-
cantly increased expression of PD-1, the treatment of tumor-
bearing mice with an anti-PD-1 mAb did not induce tumor
regression or enhance the therapeutic effect of the CyaA-E7
vaccine. These results were surprising given that a beneficial
effect of anti-PD-1/PD-L1 treatment was demonstrated in the
same mouse model of HPV-related cervical carcinoma. Indeed,
it was reported in two previous studies using the TC-1 model
that the combination of PD-1 or PD-L1 blockade with anti-
tumor vaccine improved the therapeutic effect of the vac-
cine.54,55 This discrepancy with our results could be explained
by the different experimental conditions used. Indeed, in these
studies, mice received repeated injections of the vaccine few
days after tumor grafting (days 9 to 12 or 8, 15 and 22), whereas
in our study, TC-1 tumor-bearing mice received a single injec-
tion of the CyaA-E7 vaccine at day 14 or 24 when tumors were
larger (> 7 mm). In addition, we started the injection of the
anti-PD-1 mAb on day 13 or 23, in contrast to day 8 in
the study by Mkrtichyan et al.54 We have previously established
that the antitumor efficacy of the CyaA-E7 vaccine gradually
decreased when the time between TC-1 tumor graft and vacci-
nation increased and the vaccine had no effect if the tumor
diameter was greater than 8 mm,18 demonstrating the difficulty
to overcome escape mechanisms at late stages of tumor growth.

Another hypothesis to explain the lack of efficacy of the
treatment by the anti-PD-1 mAb could be that TC-1 tumor
cells express high levels of PD-L156 which could compete with
the anti-PD-1 mAb for binding to PD-1 at the surface of Teffs.
This competition could be more marked in large tumors. The
absence of beneficial effect of PD-1 blockade could be also due
to the compensatory upregulation of other immune check-
points such as CTLA-4, TIM-3 or LAG-3 on treated T-cells.57,58

Dual or a triple blockade might thus be required to induce an
improved anti-tumor immune response.58

CD39 expression was also significantly increased on tumor
Tregs, but since CD73 is significantly reduced, these results
suggest that tumor Tregs do not exert their immunosuppressive
activity through the up-regulation of intracellular AMP via the
CD39-CD73 pathway. Recent studies have shown that highly
suppressive Tregs that accumulate in tumors are characterized
by increased expression of ICOS.24,25 Since we also observed
increased expression of ICOS on tumor and dLN Tregs, this
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finding suggests that inhibition of the ICOS-ICOS-L pathway
could be a promising strategy for enhancing the anti-tumor
immune response. Similar results were obtained for the CD103
molecule, which was significantly increased on tumor and dLN
Tregs. CD103 was shown to be a hallmark of tumor-infiltrating
Tregs.23 However, this integrin, which is required for T-cell
homing to the intestinal mucosa, is also expressed by T lym-
phocytes in epithelial tissues59 and by tissue-resident innate
lymphoid cells and innate-like T cells.60 Importantly, resident
memory cells (Trm), defined by the expression of CD103 and
CD69, were recently shown to play a key role in the efficacy of
cancer vaccine to inhibit tumor growth.61 In agreement with
these findings, the expression of CD103 was also significantly
increased on tumor-infiltrating Teffs.

Furthermore, we demonstrated that tumor Tregs had signifi-
cantly increased expression of T-bet. According to recent data
showing that Tregs increase the expression of transcription fac-
tors involved in the differentiation of the effector cells they are
suppressing,62–64 we hypothesized that tumor Tregs had
increased suppressive activity towards Teffs, which were mainly
Th1 (T-bethigh) in the tumor.

Unexpectedly, however, our data showed that in a polyclonal
assay, Tregs purified from tumors had a similar suppressive abil-
ity as Tregs isolated from the spleen of naive mice. However, we
have previously demonstrated that the Tregs that infiltrated the
TC-1 tumor displayed CDR3 spectratyping profiles characteris-
tic of biased and strongly perturbed repertoires, typical of clonal
expansion.19 Thus, it could be suggested that Tregs may have
increased suppressive activity only toward certain antigenic spe-
cificities, which cannot be detected in a polyclonal assay.

This previous study has also established that the TCR repertoire
of tumor-Tregs shares public sequences with Tregs from dLN but
not with those from spleen or from naive mice.19 Indeed, in six
independent experiments, we demonstrated public sequences that
are shared by all TC-1 tumor-infiltrating Treg samples. These
results were confirmed with the B16-OVA melanoma tumor.
The public sequences were, however, completely different between
the two tumor models, corroborating the observation that tumor-
infiltrating Tregs are specific for tumor antigens for each tumor
type. Furthermore, these sequences were not shared by tumor-infil-
trating Teff cells, suggesting that the conversion process does not
actively contribute to Treg enrichment of the tumor. Our present
results showing that the tumor-infiltrating Tregs were nTregs con-
firm this hypothesis.

The demonstration that the TCR repertoire of tumor Tregs
is skewed towards public sequences present in the dLN suggests
that Tregs accumulate in the tumor tissue through an antigen-
driven mechanism that is specific to each tumor model and dif-
ferent from that of Teff cells. To test this hypothesis, we used a
strain of MHC-II KO mice that lacks all classical MHC class II
genes32 and shows nearly complete absence of CD4C T-cells in
the spleen and LN.32 The few remaining CD4C T-cells had an
activated phenotype characterized by high levels of CD44 and
low levels of CD62L. In these KO mice, CD8C T-cells differen-
tiated normally.32

In the present study, we confirmed that CD4C T-cells were
detectable in the spleen and LN of MHC-II KO mice in agree-
ment with other studies.20 In addition, we demonstrated that
the few remaining CD4C T-cells observed in the spleen of naive

or tumor-bearing MHC-II KO mice consisted of conventional
Teffs (40%, CD4C NK1.1¡ Foxp3¡), Tregs (20%, CD4C

NK1.1¡ Foxp3C) and NKT-cells (40%, CD3C CD4C NK1.1C

Foxp3¡). In the LN of either normal or tumor-bearing MHC-II
KO mice, Tregs represented 60% of the remaining CD4C T-
cells. These results are in agreement with previous studies that
demonstrated the presence of CD4C Foxp3C T-cells in the
spleen and LN, but not in the thymus, of MHC-II KO
mice,21,22 and also established that these Tregs are functional.
These results demonstrate that Tregs can develop and express
CD4 in the absence of conventional MHC class II molecules. In
addition, we also established that in MHC-II KO mice, Tregs
infiltrated the tumor, although to a lesser extent than in WT
Tregs and, thus, independently of antigen-presentation by
MHC-II molecules on APCs or on the TC-1 tumor cells. The
activation of Tregs and their recruitment to the tumor site in
MHC-II KO mice could be due to homeostatic expansion.
However, our previous demonstration that the TCR repertoire
of tumor Tregs is skewed towards public sequences also present
in the dLN suggest that Tregs accumulate into the tumor tissue
through an antigen-driven mechanism19 and, therefore, sup-
port the view that Tregs use restriction element(s) that differ
from MHC class II molecules and remain to be identified.

In MHC-II KO mice, compared with wild-type mice, spleen
and LN Tregs and Teffs were highly activated, as shown by the
significantly increased expression of CD44 and the reduced
expression of CD62L.

In contrast to the dramatically reduced numbers of CD4C T-
cells, higher numbers of CD8C T-cells were present in the
spleen and LN of MHC-II KO mice and infiltrated the tumor.
This finding is in agreement with previous studies and is proba-
bly due to a compensatory effect.20,32 These tumor-infiltrating
CD8C T-cells were more activated than their WT counterpart
and also showed significantly higher expression of PD-1, ICOS,
GITR, CD39 and CD103. These observations suggest that the
increased recruitment and activation of CD8C T-cells in MHC-
II KO, despite the quasi-absence of CD4C T-cells, are responsi-
ble for the more efficient control of the TC-1 tumor growth.
Indeed, the CD8C T-cells expressing higher levels of GITR,
ICOS or CD103 have a more efficient cytotoxic response.65,66

This result also suggests that Tregs did not affect the recruit-
ment of CD8C T-cells in tumor-bearing mice. However, the
treatment of MHC-II KO mice by anti-CD25 antibodies clearly
delayed the growth of the TC-1 tumor, as observed in wild-
type C57BL/6 mice, supporting the hypothesis that Tregs nega-
tively regulated the response of CD8C T-cells in these mice.
The enhanced expression of immunosuppressive molecules
(CD39) and of exhaustion markers (PD-1) by these CD8C T-
cells could also explain why only 13% of the MHC-II KO mice
completely rejected their tumor.

After immunization with the CyaA-E7 vaccine, both normal
and tumor-bearing MHC-II KO developed greater numbers
and frequencies of E7-specific CD8C T-cells in the spleen, in
agreement with our previous demonstration that the induction
of CTL responses by the CyaA vector did not require T-cell
help.67 Importantly the MHC-II KO mice that spontaneously
rejected their tumors had a significantly higher percentage of
E7-specific CD8C T-cells at the tumor site, which could explain
the improved control of tumor progression in these mice. In
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addition, the delayed tumor growth in MHC-II KO mice can
also be explained by their increased frequency of CD4C NKT-
cells, especially in the spleen.

In conclusion, this study represents an extensive analysis of
the phenotype, gene expression profile, function and recruit-
ment of tumor-infiltrating Tregs, and clearly evidences that
tumor-Tregs are highly activated nTregs that are recruited to
the tumor independently of MHC-II molecules. Our results
also show that molecules overexpressed by intratumoral Tregs,
such as ICOS, deserve further exploration for the development
of strategies aiming to deplete or suppress the activity of Tregs.

Materials and methods

Mice and tumors

Specific pathogen-free six- to eight-week-old female C57BL/6J
mice were purchased from Charles River. Foxp3-GFP
knockin68 and B6.129 S2-H2dlAb1-Ea/J (MHC-II KO)32 mice on
a C57BL/6J background were kindly given by B. Malissen (Cen-
tre d’Immunologie de Marseille-Luminy, Marseille, France) and
M. Albert (Institut Pasteur, Paris, France), respectively. All ani-
mals were kept in the Pasteur Institute animal facilities under
pathogen-free conditions with water and food ad libitum. The
animal experiments were conducted in compliance with French
and European regulations for the protection of animals used for
scientific purposes (Project authorization number: 00668.02).

TC-1 tumor cells expressing HPV-16 E6 and E7 proteins69 and
derived from primary mouse lung epithelial cells were obtained
from the ATCC LGC (Promochem). TC-1 cells were injected sub-
cutaneously (s.c.) into the shaved left flank of C57BL/6J mice (6£
105 TC-1 cells/mouse for C57BL/6J andMHC-II KOmice and 1£
106 cells/mouse for Foxp3-GFP mice). The tumor size represents
the average of two perpendicular diameters (millimeters) and was
measured with a digital caliper (Mitutoyo).

Reagents

The detoxified CyaA of Bordetella pertussis carrying a truncated
form of E7 protein from HPV-16 (CyaA-E7) was prepared as
previously described.70 CpG-B 1826 (5-TCCATGACGTTCCT-
GACGTT-3) was synthesized by Proligo and mixed with 60 mg
N-[1-(2,3-dioleoyloxyl)propyl]-NNNtrimethylammonium-
methyl sulfate (DOTAP; Roche) in 100 mL Opti-MEM.

Rat anti-mouse PD-1 (clone RMP1-14) and control IgG2 a
(clone 2A3) monoclonal antibodies (mAbs) were purchased
from BioXCell (West-Lebanon, USA) and injected intra-perito-
neally (i.p.; 250 mg/mouse). Anti-PD-1 or its control mAb were
injected one day before vaccination with CyaA-E7/CpG-B-
DOTAP and every 3 days after vaccination (total of 4 injec-
tions/mouse: days 13, 17, 20 and 23 or days 23, 27, 30 and 33).

Purified anti-CD3 (clone 145-2C11) mAb was purchased
from BD Pharmingen and used to coat the culture plates (96-
wells, round bottom) at a concentration of 5 mg/mL.

Cell isolation

Peripheral lymph nodes from naive mice (LNN; maxillary, axil-
lary and inguinal) or inguinal tumor-draining LN (dLN) were

harvested, mechanically disrupted and filtered to obtain single-
cell suspensions. Spleens from both naive (SpN) and tumor-
bearing mice (SpT) were harvested, treated for 20 minutes with
400 U/mL collagenase D and 50 mg/mL DNase I (Boehringer
Mannheim), mechanically disrupted and filtered to obtain sin-
gle-cell suspensions. The tumors were harvested and dissoci-
ated using the gentleMACS dissociator (Miltenyi Biotec, Paris,
France, program mimpTumor-01-01). The dissociated tumors
were then incubated for 45 minutes with 400 U/mL collagenase
D and 50 mg/mL DNase I and filtered to obtain single-cell
suspensions.

Flow cytometry analysis

The following mAbs were used for FACS staining: APC- or
APC eF780-conjugated anti-CD3e (clone 145-2C11), pacific-
blue-conjugated anti-CD4 (clone RM4-5 or GK1.5) and
PerCP-Cy5.5-conjugated anti-CD8a (clone 53–6.7), together
with APC-conjugated anti-CD44 (clone IM7), anti-CD45RB
(clone C363.16A), streptavidin, APCeF780-conjugated CD45.2
(clone 104), PE-Cy7-conjugated anti-CD19 (clone 6D5), anti-
CD62L (clone MEL-14), anti-CD69 (clone HI.2F), anti-CD28
(clone 37.51), PE-conjugated anti-CD39 (clone 24DMS1), anti-
CD73 (clone TY/11.8), anti-CD103 (clone 2E7), anti-GITR
(clone DTA-1) anti-PD-1 (clone J43), anti-ICOS (clone
7E.17G9), anti-Neuropilin-1 (clone 761705) biotin-conjugated
PD-L1 (clone M1H5) and relevant isotype antibodies were pur-
chased from BD Pharmingen and eBioscience. The pacific
orange Live/dead� fixable aqua dead cell stain kit (Invitrogen,
molecular probes�, France) was used to stain dead cells,
according to the manufacturer’s protocol before fixing them for
intracellular staining. PE-conjugated anti-CTLA-4 (clone
UC10-4F10-11) and anti-T-Bet (clone 4B10) and isotype anti-
bodies were purchased from BD Pharmingen and eBioscience
and used for intracellular staining. Foxp3C cells were detected
by intracellular staining with FITC-conjugated anti-Foxp3
mAb (clone FJK-16), according to the manufacturer’s protocol
(eBioscience). Streptavidin-PE-conjugated H-2Db/E749-57 tet-
ramers were purchased from MBL International Corporation.
The cells were acquired on a CyAn Coultronics (Beckman
Coulter) flow cytometer and analyzed with FlowJo software
(Tree Star).

Ex vivo tetramer staining

The mice were i.v. immunized with CyaA-E7 (50 mg/mouse)
together with CpG-B and DOTAP (30 mg and 60 mg/mouse,
respectively). Seven days after immunization, spleens were har-
vested, mechanically disrupted and filtered to obtain single-cell
suspensions. Cells were then stained with anti-CD3, anti-CD8a
and the H-2Db/E749-57 tetramers (MBL International Corpora-
tion) or the control according to the manufacturer’s
recommendations.

For the tumor-bearing mouse experiment, tumors, dLN and
spleens were harvested 20 days after TC-1 inoculation and
mechanically disrupted as described above. LN and spleen
from naive mice were used as negative controls, and dLN,
spleen and tumor from TC-1-bearing mice vaccinated on day
13 were used as positive controls. The obtained cell suspensions
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were then stained with anti-CD45, anti-CD3, anti-CD8 a and
the H-2Db/E749-57 tetramers.

Purification of Teffs and Tregs

LN, spleen, and tumor-cell suspensions from Foxp3-GFP
knock-in mice were incubated with anti-CD4 or anti-CD90.2–
coated magnetic beads (Miltenyi Biotec) according to the man-
ufacturer’s instructions. After incubation, the cells were
washed, and CD4C or CD90.2C cells were selected on an auto-
mated magnetic cell sorter (AutoMACS; Miltenyi Biotec) using
the possel_s program. Positive fractions composed of 75% to
90% positive cells were stained with anti-CD4, anti-CD8a, anti-
CD3 and the 7-aminoactinomycin D (7AAD) viability dye. The
cells were then washed and FACS-sorted into live (7AAD¡)
CD3CCD8¡CD4CFoxp3-GFP¡ effector T-cells (Teffs) or
CD3CCD8¡CD4CFoxp3-GFPC regulatory T-cells (Tregs) on
an Aria III sorter (BD). The purity of each cell type was higher
than 93%.

T-cell suppression and proliferation assays

Highly purified Tregs and Teffs were co-cultured in 96-well
plates (TPP) in triplicate and polyclonally activated with plate-
bound anti-CD3 antibody (5 mg/mL; clone 145-2C11; BD
Pharmingen) for 72 hours at a 1:1 Tregs/Teffs ratio. The Tregs
were then diluted in 2-fold steps to obtain Tregs/Teffs ratios
from 1:2 to 1:128.

Proliferative responses were measured by pulsing the cul-
tures with 1 mCi/well [methyl-3H] thymidine (Perkin Elmer,
France) for the last 18 hours of culture. The results are
expressed as the mean § SEM of duplicate or triplicate meas-
urements. IFNg production was also analyzed in the culture
supernatants by ELISA.

Quantitative gene expression analysis

Total RNA was extracted from highly purified FACS sorted
Teff and Treg cell samples using the RNeasy Plus MicroKit
(Qiagen). First-strand cDNA synthesis was conducted using
oligo-dT and RNase H-reverse transcriptase SuperScript II
(Invitrogen). Quantitative analysis of cDNA samples was per-
formed using real-time PCR. cDNA samples were mixed with
the RT2-SYBR� Green qPCR Master Mix (Qiagen) and distrib-
uted in ready-to-use PCR array plates (apoptosis, Th17 for
autoimmunity and inflammation and mTOR signaling PCR
Arrays; Qiagen). Quantitative real-time PCR was followed by
the CFX96TM detection system from Bio-Rad.

Statistical analysis

Prism software (GraphPad Software, Inc.) was used to calculate
the statistical significance for differences in particular measure-
ments between the groups. The two-tailed Mann-Whitney’s
test, Mantel–Cox log-rank or ANOVA tests were used. P values
less than 0.05 were considered statistically significant.
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