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Abstract 

Background 

The antibody response generated following infection with SARS-CoV-2 is expected to decline over time. This may cause 

individuals with confirmed SARS-CoV-2 infection to test negative according to serological diagnostic tests in the months 

and years following symptom onset.   

Methods 

A multiplex serological assay was developed to measure IgG and IgM antibody responses to four SARS-CoV-2 Spike (S) 

antigens: spike trimeric ectodomain (Stri), its receptor-binding domain (RBD), spike subunit 1 (S1), and spike subunit 2 (S2). 

Antibody responses were measured in serum samples from patients in French hospitals with RT-qPCR confirmed infection 

(n = 259), and negative control serum samples collected before the start of the SARS-CoV-2 epidemic in 2019 (n = 335). 

The multiplex antibody data was used to train a random forests algorithm for classifying individuals with previous SARS-

CoV-2 infection. A mathematical model of antibody kinetics informed by prior information from other coronaviruses was 

used to estimate time-varying antibody responses and assess the potential sensitivity and classification performance of 

serological diagnostics during the first year following symptom onset. 

Results 

IgG antibody responses to one S antigen identified individuals with previous RT-qPCR confirmed SARS-CoV-2 infection with 

90.3% sensitivity (95% confidence interval (CI); 86.1%, 93.4%) and 99.1% specificity (95% CI; 97.4%, 99.7%). Using a 

serological signature of IgG to four antigens, it was possible to identify infected individuals with 96.1% sensitivity (95% CI; 

93.0%, 97.9%) and 99.1% specificity (95% CI; 97.4%, 99.7%). Antibody responses to SARS-CoV-2 increase rapidly 1-2 weeks 

after symptom onset, with antibody responses predicted to peak within 2-4 weeks. Informed by prior data from other 

coronaviruses, one year following symptom onset antibody responses are predicted to decay by approximately 60% from 

the peak response. Depending on the selection of sero-positivity cutoff, we estimate that the sensitivity of serological 

diagnostics may reduce to 56% – 97% after six months, and to 49% – 93% after one year.  

Conclusion 

Serological signatures based on antibody responses to multiple antigens can provide more accurate and robust serological 

classification of individuals with previous SARS-CoV-2 infection. Changes in antibody levels over time may cause reductions 

in the sensitivity of serological diagnostics leading to an underestimation of sero-prevalence. It is essential that data 

continue to be collected to evaluate this potential risk. 
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Introduction 

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causing coronavirus disease 2019 (COVID-19) emerged in 

Wuhan, China in December 2019. Since then, it has spread rapidly, with confirmed cases being recorded in nearly every 

country in the world. The presence of viral infection can be directly detected via reverse transcriptase quantitative PCR 

(RT-qPCR) on samples from nasopharyngeal or throat swabs. For individuals who display symptoms, SARS-CoV-2 virus is 

detectable in the first 2-3 weeks following symptom onset [1,2]. Viral shedding is however shorter in mild cases with only 

upper respiratory tract symptoms (1-2 weeks) [3]. For asymptomatic individuals, the duration for which SARS-CoV-2 virus 

can be detected is uncertain. In most countries neither mild cases nor asymptomatic cases will be tested by RT-qPCR 

(unless they are direct contacts of known cases), and even among tested individuals many may be viremia negative at 

time of testing due to low viral load or improper sampling. While not suitable for diagnosis of clinical cases, serology is a 

promising tool for identifying individuals with previous infection by detecting antibodies generated in response to SARS-

CoV-2. However, the utility of serological testing depends on the kinetics of the anti-SARS-CoV-2 antibody response during 

and after infection.  

An individual is sero-positive to a pathogen if they have detectable antibodies specific for that pathogen. From an 

immunological perspective, an individual can be defined as sero-positive if they have either antibody secreting plasma 

cells and/or a matured memory B cell response to antigens on that pathogen. In practice, serological assays are used to 

measure antibody responses in blood samples. However, individuals who have never been infected with the target 

pathogen may have non-zero antibody responses due to cross-reactivity with other pathogens or background assay noise. 

To account for this, defining sero-positivity is reduced to determining whether the measured antibody responses is greater 

or lower than some defined cutoff value [4].   

The most fundamental measure of antibody level is via concentration in a sample (e.g. in units of μg/mL), however a 

measurement in terms of molecular mass per volume is usually impossible to obtain. Instead, a range of assays can provide 

measurements that are positively associated with the true antibody concentration, e.g. an optical density from an enzyme-

linked immunosorbent assay (ELISA), or a median fluorescent intensity (MFI) from a Luminex assay. In contrast to the 

continuous measurement of antibody response provided by laboratory-based research assays, most point-of-care 

serological tests provide a binary outcome: sero-negative or sero-positive. There are several commercially available tests 

for detecting SARS-CoV-2 antibody responses, which are being catalogued by FIND Diagnostics [5]. These tests are typically 

based on lateral flow assays mounted in plastic cartridges which detect antibodies in small volume blood samples. A key 

feature of many rapid tests is that they are dependent on the choice of sero-positivity cutoff, and there may be substantial 

misclassification for antibody levels close to this cutoff.  

Antibody levels are not constant, and change over time. The early kinetics of the antibody response to SARS-CoV-2 have 

been well documented with a rapid rise in antibody levels occurring 5-15 days after symptom onset leading to sero-

conversion (depending on the choice of cutoff) [1,6-9]. There are not yet data on the long-term kinetics of the SARS-CoV-
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2 antibody response. Assuming the antibody response is similar to that of other pathogens [10-14], we expect to observe 

a bi-phasic pattern of decay, with rapid decay in the first 3-6 months after infection, followed by a slower rate of decay. 

Notably, this decay pattern may lead to sero-reversion whereby a previously sero-positive individual reverts to being sero-

negative. If a serological test with an inappropriately high choice of cutoff is used for SARS-CoV-2 serological surveys, there 

is a major risk that sero-reversion may lead to previously infected individuals testing sero-negative [15]. 

The antibody response generated following SARS-CoV-2 infection is diverse, consisting of multiple isotypes targeting 

several proteins on the virus surface including the spike protein (and its receptor binding domain) and the nucleoprotein 

[16]. This complexity of biomarkers provides both a challenge and an opportunity for diagnostics research. The challenge 

lies in selecting appropriate biomarkers and choosing between the increasing number of commercial assays, many of 

which have not been extensively validated and may produce conflicting results. The opportunity is that with multiple 

biomarkers, it is possible to generate a serological signature of infection that is robust to how antibody levels change over 

time [17-20], rather than relying on classification of sero-positive individuals using a single cutoff antibody level.  

In this analysis, we apply mathematical models of antibody kinetics to serological data from the early stages of SARS-CoV-

2 infection and predict the potential consequences for serological diagnostics within the first year following infection.  
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Methods 

Samples 

We analysed 97 serum samples from 53 patients admitted to hospitals in Paris with SARS-CoV-2 infection confirmed by 

RT-qPCR [21,22], and 162 serum samples from healthcare workers in hospitals in Strasbourg (Table 1). 335 samples 

collected before December 2019 were used as negative controls. Samples from patients with RT-qPCR confirmed SARS-

CoV-2 infection underwent a viral inactivation protocol by heating at 56 °C for 30 minutes. Negative control samples did 

not undergo the viral inactivation protocol. Serum samples positive for anti-malaria IgG antibodies were tested before 

and after the inactivation protocol. The viral inactivation protocol did affect measured IgG levels (data not shown). 

Notably, we did not assess the potential effect of the viral inactivation protocol on measured IgM levels. 

Table 1: Serum samples. Positive control serum samples are from patients with RT-qPCR confirmed SARS-CoV-2 infection. Negative 

control samples are from panels collected pre-epidemic cohorts with ethical approval for broad antibody testing. 

Source RT-qPCR confirmed N: participants N: samples 

Hôpital Bichat, Paris Yes 4 34 
Nouvel Hôpital Civil & Hôpital de 
Haute Pierre, Strasbourg  

Yes 162 162 

Hôpital Cochin, Paris Yes 49 63 
Thai Red Cross pre-epidemic negative controls 68 68 
Peru negative controls pre-epidemic negative controls 90 90 
France blood donor 
(Établissement français du sang) 

pre-epidemic negative controls 177 177 

 

Serological assays 

Four antigens derived from SARS-CoV-2 S protein were used. This includes Stri and RBD, produced as recombinant proteins 

in mammalian cells in the Structural Virology Unit at Institut Pasteur. S1 (cat# REC31806) and S2 (cat# REC31807) were 

purchased from Native Antigen, Oxford, UK. Protein were coupled to magnetic beads as described elsewhere [23]. The 

protein concentrations were optimized to generate a log-linear standard curve with a positive serum pool prepared from 

RT-qPCR-confirmed SARS-CoV-2 patients. The multiplex immunoassay was validated by comparing its performance when 

running in evaluated in singleplex format.  

Recombinant SARS-CoV-2 trimeric Spike ectodomain (Stri) and its RBD were designed based on the viral genome sequence 

of the SARS-CoV-2 strain France/IDF0372/2020, obtained from the GISAID database (accession number EPI_ISL_406596). 

The synthetic genes, codon-optimized for protein expression in mammalian cells, were ordered from GenScript and cloned 

in pcDNA3.1(+) vector as follows: the RBD, residues 331-519, and the entire S ectodomain (residues 1-1208). The RBD 

construct included an exogenous signal peptide of a human kappa light chain (METDTLLLWVLLLWVPGSTG) to ensure 

efficient protein secretion into the media. The S ectodomain construct was engineered, as reported before to have the 

stabilizing double proline mutation (KV986-987 to PP986-987) and the foldon domain at the C-terminus that allows the S 

to trimerize (YIPEAPRDGQAYVRKDGEWVLLSTFL) resembling the native S state on the virion [24]. Both constructs 
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contained a Strep (WSHPQFEK), an octa-histidine, and an Avi tag (GLNDIFEAQKIEWHE) at the C-terminus for affinity 

purification. Protein expression was done by transient transfection of mammalian HEK293 free style cells, as already 

reported. Proteins were then purified from supernatants on a Streptactin column (IBA Biosciences) followed by size 

exclusion purification on Superdex 200 column using standard chromatography protocols. 

In a black, 96 well, non-binding microtiter plate (cat#655090; Greiner Bio-One, Germany) 50 uL of protein-conjugated 

magnetic beads (500/region/uL) and 50 uL of diluted serum were mixed using a pipette and incubated for 30 min at room 

temperature on a plate shaker. All dilutions were made in phosphate buffered saline containing 1% bovine serum albumin 

and 0.05% (v/v) Tween-20 (denoted as PBT), and all samples were run in singlicate. Following incubation, the magnetic 

beads were separated using magnetic plate separator (Luminex®) for 60 seconds and washed thrice with 100 μl PBT using 

a multichannel pipette. The washed magnetic beads were incubated for 15 minutes with detector secondary antibody at 

room temperature on a plate shaker. The magnetic beads were separated and washed thrice with 100 μl PBT and finally 

resuspended in 100 μL of PBT.  

For IgG measurements, samples were diluted at 1/100, and R-Phycoerythrin-(R-PE) conjugated Donkey Anti-Human IgM 

(Fc5μ ) F(ab’)2 (cat#709-116-073; JacksonImmunoResearch, UK) antibody was used as detector antibody at 1/120 dilution. 

For IgM measurements, samples were diluted at 1/200, and R-Phycoerythrin -(R-PE) Donkey Anti-Human IgG (Fcγ) F(ab’)2 

(cat#709-116-098; JacksonImmunoResearch, UK) antibody was used as detector antibody at 1/400 dilution. 

A positive control pool of serum at two-fold serial dilutions from 1:50 to 1:25,600 was included on each 96 well plate. 

Plates were read using a Luminex® MAGPIX® system which provides a reading of median fluorescence intensity (MFI). A 

5-parameter logistic curve was used to convert measurements from MFI to antibody dilution. 

 

Statistical evaluation of diagnostic performance 

For measured antibody responses to a single antigen, diagnostic sensitivity is defined to be the proportion of patients with 

RT-qPCR confirmed SARS-CoV-2 infection with measured antibody levels above a given sero-positivity cutoff. Diagnostic 

specificity is defined to be the proportion of negative controls (with no history of SARS-CoV-2 infection) with measured 

antibody levels below a given sero-positivity cutoff. Sensitivity and specificity can be traded off against each other by 

varying the sero-positivity cutoff. This trade off is formally evaluated using Receiver Operating Characteristic (ROC) 

analysis. Measured antibody responses to multiple antigens can be combined to identify individuals with previous SARS-

CoV-2 infection using classification algorithms. Here we use a random forests algorithm [17].  
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Mathematical model of antibody kinetics 

SARS-CoV-2 antibody kinetics are described using a previously published mathematical model of the immunological 

processes underlying the generation and waning of antibody responses following infection or infection [10]. The existing 

model is adapted to account for the frequent data available in the first weeks of infection. 

𝑑𝑀

𝑑𝑡
= −𝛿𝑀, 

𝑑𝐵𝑠
𝑑𝑡

= 𝜌𝑀 − 𝑐𝑠𝐵𝑠, 

𝑑𝐵𝑙
𝑑𝑡

= (1 − 𝜌)𝑀 − 𝑐𝑙𝐵𝑙 , 

𝑑𝐴

𝑑𝑡
= 𝑔𝐵𝑠 + 𝑔𝐵𝑙 − 𝑟𝐴 

where M denotes memory B cells, δ is the rate of differentiation of memory B cells into antibody secreting plasma cells 

(ASC), Bs denotes short-lived ASCs, Bl denotes long-lived ASCs, ρ is the proportion of ASCs that are short-lived, g is the rate 

of generation of antibodies (IgG or IgM) from ASCs, and r is the rate of decay of antibody molecules. Assuming M(0) = M0 

and Bs(0) = Bl(0) = A(0) = 0, these equations can be solved analytically to give: 

𝐴(𝑡) = 𝑔𝑀0 (
(𝜌𝑐𝑙 + (1 − 𝜌)𝑐𝑠 − 𝛿)𝑒−𝛿𝑡

(𝑐𝑠 − 𝛿)(𝑐𝑙 − 𝛿)(𝑟 − 𝛿)
+
(𝜌𝑐𝑙 + (1 − 𝜌)𝑐𝑠 − 𝑟)𝑒−𝑟𝑡

(𝑐𝑠 − 𝑟)(𝑐𝑙 − 𝑟)(𝛿 − 𝑟)
+

𝜌𝑒−𝑐𝑠𝑡

(𝑐𝑠 − 𝑟)(𝑐𝑠 − 𝛿)
+

(1 − 𝜌)𝑒−𝑐𝑙𝑡

(𝑐𝑙 − 𝑟)(𝑐𝑙 − 𝛿)
) 

Statistical inference was implemented within a mixed-effects framework which allowed for characterisation of the kinetics 

within each individual while also describing the population-level patterns. On the population level, both the mean and 

variation in antibody kinetics are accounted for. The models were fitted in a Bayesian framework using Markov chain 

Monte Carlo methods with informative priors. Posterior parameter estimates are presented as medians with 95% credible 

intervals (CrIs). 

 

Prior data 

The recent emergence of SARS-CoV-2 means that long-term data on the duration of antibody responses do not yet exist. 

Therefore, predictions of antibody levels beyond the period for which data has been collected will be heavily dependent 

on structural model assumptions and assumed prior information. The prior estimate of the half-life of IgG molecules is 21 

days. The prior estimate of the half-life of IgM molecules is 10 days. Prior estimates for the short-lived component of the 

antibody response (half-life = 3.5 days) are consistent with data from several sources [10-14]. The most notable 

uncertainty relates to estimates of the duration of the long-lived component of the SARS-CoV-2 antibody responses. We 

reviewed data from a number of sources on the long-term antibody kinetics following infection with other coronaviruses 

[25-30], summarized in Table S1. Based on the wide range of long-term antibody kinetics were observed, we assumed a 

prior estimate of the half-life of the long-lived component of the IgG antibody response to be 400 days, and that the 

proportion of the short-lived antibody secreting cells is 90%. This corresponds to a scenario where the IgG antibody 



8 
 

responses decreases by approximately 60% after one year. Additional sensitivity analyses were run assuming the half-life 

of the long-lived component of the IgG antibody response to be 200 days and 800 days.  

The model was first fitted to data from 23 patients with RT-qPCR confirmed SARS-CoV-2 infection in Hong Kong hospitals 

who were followed longitudinally for up to four weeks after initial onset of symptoms [1]. Posterior estimates from this 

model and data were used to provide prior estimates for the parameters describing the early stages of the antibody 

response (Table S2). 

 

Ethics 

Serum samples were obtained through the CORSER study (Etude séro-épidémiologique du virus SARS-CoV-2 en France : 

constitution d’une collection d’échantillons biologiques humains) directed by Institut Pasteur and approved by the Comité 

de Protection des Personnes Ile de France III, and the French COVID cohort (NCT04262921, sponsored by Inserm and 

approuved by the Comité de Protection des Personnes Ile de France VI). Use of the Peruvian negative controls was 

approved by the Institutional Ethics Committee from the Universidad Peruana Cayetano Heredia (UPCH) (SIDISI 100873). 
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Results 

Single biomarker classification 

IgG and IgM antibody responses to Stri, RBD, S1 and S2 were measured as median fluorescence intensity (MFI) and 

converted to antibody dilutions (Figure 1). For all eight biomarkers, measured responses were significantly higher in 

samples with RT-qPCR confirmed infection than in negative control samples (Figure 1A-H; P value < 1 x 10-7; 2 sided t test).  

The trade-off between sensitivity and specificity obtained by varying the cutoff for sero-positivity was investigated using 

a receiver operating characteristic (ROC) curve (Figure 1I). Depending on the characteristics of the desired diagnostic test, 

different targets for sensitivity and specificity can be considered. The results of three targets are summarized in Table 2. 

These are: (i) high sensitivity target where we enforce sensitivity > 99%; (ii) balanced sensitivity and specificity where both 

are approximately equal; and (iii) high specificity target where we enforce specificity >99%. Focusing on the high specificity 

target, using IgG to each of the four antigens we can obtain 99.1% specificity (95% CI: 97.4%, 99.7%) but with varying 

sensitivity: 90.3% (95% CI: 86.1%, 93.4%) for anti-Spike IgG; 76.4% (95% CI: 70.9%, 81.2%) for anti-RBD IgG; 49.4% (95% 

CI: 43.4%, 55.5%) for anti-S1 IgG; and 65.3% (95% CI: 59.3%, 70.8%) for anti-S2 IgG.  

 

 

Figure 1: Anti-SARS-CoV-2 antibody responses. (A-D) Measured IgG antibody dilutions to Stri, RBD, S1 and S2 in serum samples with 

previously confirmed RT-qPCR infection from patients in Hôpital Bichat (n = 34), health care workers in Nouvel Hôpital Civil & Hôpital 

de Haute Pierre, Strasbourg (n = 162), and Hôpital Cochin (n = 63). Negative control serum samples from Thailand (n = 68), Peru (n = 

90), and French donors (n – 177) were also tested. (E-H) Measured IgM antibody dilutions to Stri, RBD, S1 and S2 in serum samples. (I) 

Receiver Operating Characteristic (ROC) curve obtained by varying the cutoff for sero-positivity. IgG is shown with solid lines. IgM is 

shown with dashed lines. 
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A high-specificity target was not possible using IgM antibodies to single antigens, with the exception of the trivial case of 

100% specificity and 0% sensitivity. The poorer classification performance of IgM antibodies is a consequence of the 

smaller relative difference in measurements between positive and negative sample, compared to IgG antibodies. This may 

be due to the effects of heating during the viral inactivation protocol. Experiments are ongoing to assess this. 

 

Table 2: Sensitivity and specificity targets for single biomarkers. 95% binomial confidence intervals were calculated using Wilson’s 

method. 

biomarker high sensitivity target 
(sensitivity > 99%) 

balanced target 
(sensitivity ~ specificity) 

high specificity target 
(specificity > 99%) 

 sensitivity specificity sensitivity specificity sensitivity specificity 

anti-Stri IgG 99.2%  
(97.2%, 99.8%) 

92.5%  
(89.2%, 94.9%) 

96.9%  
(94.0%, 98.4%) 

97.0%  

(94.6%, 98.4%) 
90.3%  
(86.1%, 93.4%) 

99.1%  
(97.4%, 99.7%) 

anti-RBD IgG 100%  
(98.5%, 100%) 

0%  
(0%, 1.1%) 

90.0%  
(85.7%, 93.1%) 

89.9%  
(86.2%, 92.6%) 

76.4%  
(70.9%, 81.2%) 

99.1%  
(97.4%, 99.7%) 

anti-S1 IgG 99.2%  
(97.2%, 99.8%) 

75.8%  
(71.0%, 80.1%) 

91.5%  
(87.5%, 94.3%) 

91.6%  
(88.2%, 94.2%) 

49.4%  
(43.4%, 55.5%) 

99.1%  
(97.4%, 99.7%) 

anti-S2 IgG 99.2%  
(97.2%, 99.8%) 

22.7%  
(18.5%, 27.5%) 

90.7%  
(86.6%, 93.7%) 

90.7%  
(87.2%, 93.4%) 

65.3%  
(59.3%, 70.8%) 

99.1%  
(97.4%, 99.7%) 

anti- Stri IgM 100%  
(98.5%, 100%) 

7.0%  
(3.9%, 12.0%)  

73.7%  
(68.1%, 78.7%) 

74.1%  
(66.7%, 80.3%) 

0%  
(0%, 1.5%) 

100%  
(97.6%, 100%) 

anti-RBD IgM 99.2%  
(97.2%, 99.8%) 

12.7%  
(8.3%, 18.7%) 

69.9%  
(64.0%, 75.1%) 

69.6%  
(62.1%, 76.3%) 

0%  
(0%, 1.5%) 

100%  
(97.6%, 100%) 

anti-S1 IgM 99.6%  
(97.8%, 99.9%) 

1.3%  
(0.3%, 4.5%) 

65.3%  
(59.3%, 70.8%) 

65.2%  
(57.5%, 72.2%) 

0%  
(0%, 1.5%) 

100%  
(97.6%, 100%) 

anti-S2 IgM 99.2%  
(97.2%, 99.8%) 

0.6%  
(0.1%, 3.5%) 

63.7%  
(57.7%, 69.3%) 

63.9%  
(56.2%, 71.0%) 

0%  
(0%, 1.5%) 

100%  
(97.6%, 100%) 

 

Serological signatures and multiple biomarker classification 

With eight biomarkers, there are 28 possible pairwise comparisons. Figure 2A-D provides an overview of four of these 

pairwise comparisons of antibody responses. The data are noisy, highly correlated and high dimensional (although only 

two dimensions are depicted here). We refer to the pattern of multiple antibody responses in multiple dimensions as the 

serological signature. Notably, there are two distinct clusters across all plots: antibody responses from negative control 

serum in blue cluster in the bottom left, and antibody responses from serum samples from individuals with RT-qPCR 

confirmed SARS-CoV-2 infection cluster in the centre and top right.  

A random forests algorithm was used to formally classify these samples as positive or negative. The classification 

performance based on IgG antibody responses to the four antigens is shown with the ROC curves in Figure 2E. Using data 

from multiple biomarkers can lead to significant improvements in classification performance (Table 3). For example, for 

the high specificity target, with a single biomarker (anti-Stri IgG) we can achieve 99.1% specificity (95% CI: 97.4%, 99.1%) 

and 90.3% sensitivity (95% CI: 86.1%, 93.4%). However, by combining four biomarkers we can achieve 99.1% specificity 

(95% CI: 97.4%, 99.1%) and 96.1% sensitivity (95% CI: 93.0%, 97.9%).  
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Figure 2: Multiplex serological classification. Anti-Stri IgG antibody dilution compared with (A) anti-RBD IgG antibody dilution; (B) anti-

S1 IgG antibody dilution; (C) anti-S2 IgG antibody dilution; and (D) anti-Stri IgM antibody dilution. Each point denotes a measured 

antibody response from a sample from Hôpital Bichat (n = 34), Nouvel Hôpital Civil & Hôpital de Haute Pierre in Strasbourg (n = 162), 

and Hôpital Cochin (n = 63). Negative control serum samples are included from Thailand (n = 68), Peru (n = 90) and French blood 

donors (n =177). (E) ROC curve obtained by random forests multiple classification algorithm. Note that the axes have been rescaled to 

allow better visualization of the high sensitivity and high specificity region in the top left of the plot. 

 

Table 3: Sensitivity and specificity targets for multiple biomarkers. Estimates of sensitivity and specificity are from a random forests 

classification algorithm. 95% binomial confidence intervals were calculated using Wilson’s method. 

antigen combination high sensitivity target 
(sensitivity > 99%) 

balanced target 
(sensitivity ~ specificity) 

high specificity target 
(specificity > 99%) 

 sensitivity specificity sensitivity specificity sensitivity specificity 
anti-Stri IgG 99.2%  

(97.2%, 99.8%) 
92.5%  
(89.2%, 94.9%) 

96.9%  
(94.0%, 98.4%) 

97.0%  

(94.6%, 98.4%) 
90.3%  
(86.1%, 93.4%) 

99.1%  
(97.4%, 99.7%) 

anti- Stri IgG + anti-RBD IgG 99.2%  
(97.2%, 99.8%) 

85.7%  
(81.5%, 89.0%) 

96.5%  
(93.5%, 98.2%) 

96.7%  
(94.2%, 98.2%) 

93.8%  
(90.2%, 96.2%) 

99.1%  
(97.4%, 99.7%) 

anti- Stri IgG + anti-RBD IgG  + 
anti-S1 IgG 

99.2%  
(97.2%, 99.8%) 

91.0%  
(87.5%, 93.7%) 

97.7%  
(95.0%, 98.9%) 

97.6%  
(95.4%, 98.8%) 

95.4%  
(92.1%, 97.3%) 

99.1%  
(97.4%, 99.7%) 

anti- Stri IgG + anti-RBD IgG  + 
anti-S1 IgG + anti-S2 IgG 

99.2%  
(97.2%, 99.8%) 

89.6%  
(85.8%, 92.4%) 

97.7%  
(95.0%, 98.9%) 

97.6%  
(95.4%, 98.8%) 

96.1%  
(93.0%, 97.9%) 

99.1%  
(97.4%, 99.7%) 
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SARS-CoV-2 antibody kinetics 

A mathematical model of antibody kinetics was fit to the serological data. Figure 3 shows the data from patients from 

Hôpital Bichat with frequent longitudinal sampling. The predicted antibody kinetics are informed by prior data from 22 

patients in Hong Kong hospitals [1]. The data and model indicate that the antibody response is in a rising phase between 

5 and 15 days after symptom onset. 

 

Figure 3: Model fit to longitudinal data on IgG antibody kinetics. Measured IgG antibody responses, shown as points, from four 

patients in Hôpital Bichat followed longitudinally for up to 24 days after symptom onset. Posterior median model predictions are 

shown as black lines, with 95% credible intervals in grey. The black horizontal dashed lines represent the upper and lower limits of the 

assay.  

 

Sensitivity of serological assays over time 

Mathematical models of antibody kinetics were fitted to data on anti-SARS-CoV-2 antibody responses during the first 

month following symptom onset and informed by prior information on the long-term kinetics of antibody responses to 

other human coronaviruses. We predicted the anti-SARS-CoV-2 antibody response during the first year following symptom 

onset, with quantification of uncertainty. For each individual with RT-qPCR SARS-CoV-2 infection, Figure 4A-D shows the 

model predicted IgG antibody response to four antigens. For all four antigens, we predict a bi-phasic pattern of waning 
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with a first rapid phase between one and three months after symptom onset, followed by a slower rate of waning. The 

percentage reduction in antibody level after one year was mostly determined by prior information and estimated to be 

55% (95% CrI: 35%, 74%) for anti-Stri IgG antibodies, 56% (95% CrI: 33%, 78%) for anti-RBD IgG antibodies, 58% (95% CrI: 

38%, 73%) for anti-S1 IgG antibodies, and 56% (95% CrI: 35%, 77%) for anti-Stri IgG antibodies. 

Sensitivity was assessed using the sero-positivity cutoff based on the high specificity target in Table 2. For all antigens 

considered, we predict that there will be a reduction in sensitivity over time, although there is a large degree of 

uncertainty. In particular, we predict that the sensitivity based on anti-Stri IgG antibody responses after six months will be 

97% (95% CrI: 79%, 100%); that sensitivity based on anti-RBD IgG antibody responses after six months will be 81% (95% 

CrI: 56%, 99%); that sensitivity based on anti-S1 IgG antibody responses after six months will be 56% (95% CrI: 40%, 80%); 

and that sensitivity based on anti-S2 IgG antibody responses after six months will be 80% (95% CrI: 60%, 95%). 

 

 

Figure 4: Anti-SARS-CoV-2 antibody kinetics and sensitivity. (A-D) Measured antibody levels in individuals with confirmed SARS-CoV-

2 infection are depicted as points. Measured antibody levels in negative controls are depicted as crosses. Grey lines show posterior 

median model predictions from the scenario with prior information on long-term kinetics from other coronaviruses. The horizontal 

dashed line represents the high specificity target (99%) sero-positivity cutoff. (E-F) Estimated sensitivity over time for the high 

specificity target sero-positivity cutoff. The solid line represents the posterior model prediction. The dashed and dotted lines represent 

the posterior model predictions for the sensitivity analyses assuming prior information for a longer or shorter duration of the long-

lived component of the antibody responses. Grey shaded regions denote the 95% credible intervals.  
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Modelling the long-term serological signature 

The evolution of the serological signature over time can be predicted using mathematical models of antibody kinetics 

(Figure 5). Notably, in the absence of long-term longitudinal data there is too much uncertainty to make confident 

predictions. Nonetheless, modelling allows us to anticipate a number of likely qualitative behaviours. For samples taken 

in the first few weeks after symptom onset, the serological signature will be noisy as many individuals may still be in the 

phase where antibody levels are still rising (Figure 5A). Once the rising phase of antibody responses has completed in all 

individuals, we predict a clear serological signature as shown in Figure 5B. Once antibody levels have peaked, we predict 

that waning antibody levels over time will cause the cluster of positive responses to move closer to the cluster of negative 

antibody responses (Figure 5C,D). Notably, there is substantial uncertainty, both in terms of each individual’s antibody 

response, and in terms of the behaviour of antibody kinetics across the entire population. 

 

 

Figure 5: Evolution of serological signature over time. (A) Measured anti-Stri and anti-RBD IgG antibody responses. Model predicted 

anti- Stri and anti-RBD IgG antibody responses at: (B) 3 months after symptom onset; (C) 6 months after symptom onset; and (D) 12 

months after symptom onset. Predictions were made using a mathematical model of antibody kinetics with prior information on long-

term kinetics based on SARS-CoV. For one randomly selected data point, the model uncertainty is depicted via the black cross. 
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Discussion 

Infection with SARS-CoV-2 induces antibodies of multiple isotypes (IgG, IgM, IgA) targeting multiple epitopes on spike 

proteins exposed on the virus surface, and nucleoprotein. Each of these biomarkers may exhibit distinct kinetics leading 

to variation in their potential diagnostic performance. There is also substantial between-individual variation in the 

antibody response generated following SARS-CoV-2 infection. By measuring multiple biomarkers in large numbers of 

individuals, it is possible to create a serological signature of previous infection [17-19]. Although necessarily more complex 

than a single measured antibody response, such an approach has the potential of providing more accurate classification 

and being more stable over time.  

The long-term kinetics of the antibody response to SARS-CoV-2 won’t be definitively quantified until infected individuals 

are followed longitudinally for months and even years after RT-qPCR confirmed infection. As of May 2020, the longest 

possible follow-up time after symptoms is four to five months. As we wait for this data to be collected, mathematical 

models can provide important insights into how SARS-CoV-2 antibody levels may change over time. Modelling beyond the 

timeframe for which we have data has its limitations, however our approach benefits from robust quantification of 

uncertainty accounting for a wide range of future scenarios. Furthermore, this modelling approach provides falsifiable 

predictions which will allow models to be updated as our team and others generate new data. For the purpose of 

evaluation of antibody kinetics, measured antibody responses from samples collected from individuals followed 

longitudinally after confirmed SARS-CoV-2 infection will be especially valuable.  

The simulations presented here predict that following SARS-CoV-2 infection, antibody responses will increase rapidly 1-2 

weeks after symptom onset, with antibody responses peaking within 2-4 weeks. After this peak, antibody responses are 

predicted to decline according to a bi-phasic pattern, with rapid decay in the first three to six months followed by a slower 

rate of decay. Model predictions of the rise and peak of antibody response are informed by, and are consistent with, many 

sources of data [10-14,31]. Model predictions of the decay of antibody responses are strongly determined by prior 

information on longitudinal follow-up of individuals infected with other coronaviruses [25-30]. Under the scenario that 

the decay of SARS-CoV-2 antibody responses is similar to that of SARS-CoV, we would expect substantial reductions in 

antibody levels within the first year after infection. For the sero-positivity cutoffs highlighted here, this could cause 

approximately 50% of individuals to test sero-negative after one year, depending on the exact choice of biomarker and 

sero-positivity cut-off. 

This presents a potential problem for SARS-CoV-2 serological diagnostics. Most commercially available diagnostic tests 

compare antibody responses to a fixed sero-positivity cutoff. Where these cutoffs have been validated, it is typically by 

comparison of serum from negative control samples collected pre-epidemic with serum from hospitalized patients in the 

first weeks of infection (i.e. when antibody responses are likely to be at their highest) [32,33]. If we fail to account for 

antibody kinetics, we risk incorrectly classifying individuals with old infections (e.g. >6 months) as sero-negative. This is 

particularly important for commercially available point-of-care rapid serological tests with fixed cutoffs, limited dynamic 
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range and visual evaluation. If inappropriate tests are used in sero-prevalence surveys, there is a risk of substantial under-

estimation of the proportion of infected individuals.  

It is often impossible to have both high sensitivity and high specificity, and we must select an appropriate trade-off. For 

sero-surveillance of pathogens with low prevalence (<20%), we recommend prioritizing specificity. For example, if the true 

sero-prevalence of SARS-CoV-2 in a population is 8%; a test with 100% sensitivity and 90% specificity would return an 

estimate of 1x8% + 0.1x92% = 17.2%, a substantial over-estimate. Due to the potential problem of false positives, we 

recommend aiming for a high specificity target of >99%. However, accurate validation of high sensitivity and high 

specificity serological diagnostic tests requires large number of samples. Many tests are validated on fewer than 100 

samples [5], and this is not sufficient. Indeed, the 594 samples used in this analysis is also arguably not sufficient. Ideally, 

we would aim to validate on ~1,000 positive and ~1,000 negative samples. Furthermore, it is important to avoid testing 

on homogenous panels of samples. Obtaining samples from multiple panels with different epidemiological backgrounds 

will contribute to more robust validation.  

There are a large number of immunological assays capable of measuring the antibody response to SARS-CoV-2 including 

neutrilization assays, ELISA, Luminex, Luciferase Immunoprecipitation System (LIPS), peptide microarrays and more [34]. 

From the perspective of quantifying protective immunity and vaccine development, functional approaches such as 

neutrilization assays are clearly preferable. However, from a surveillance and diagnostics perspective, assays should be 

assessed in terms of their performance at classifying individuals with a previous RT-qPCR confirmed infection. Put simply, 

if your wish is to diagnose someone, you don’t care what a biomarker does, only that it can be reliably detected in 

previously infected individuals and not in uninfected individuals. 

Beyond diagnostics, assessment of antibody kinetics may contribute to better understanding of the immune responses 

generated by SARS-CoV-2 vaccines. Statistical models can be used to identify immunological correlates of protection, at 

least according to conditions such as the Prentice criterion [35,36]. An estimated correlate of protection may take the 

form of a dose-response relationship, with higher antibody levels associated with greater vaccine efficacy. Under the 

assumption that a correlate of protection can be identified, models of antibody kinetics can be used to provide preliminary 

estimates of the duration of protection following vaccination or natural infection [13,37]. 

The analysis presented here is based on limited data, and the predictions may subsequently be contradicted as more data 

become available. However, the concepts outlined here of serological signatures of SARS-CoV-2 infection generated by 

multiplex assays, and mathematical models of antibody kinetics, allow us to plan in advance for some of the future 

challenges that we may face in SARS-CoV-2 serological surveillance. 
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Supplementary Appendix: Mathematical modelling of the duration of the anti-

SARS-CoV-2 antibody response 

Overview 

There are limited available longitudinal data on SARS-CoV-2 antibody kinetics, and no data from long-term follow-up (as 

of May 2020). However, there are a number of published studies on the long-term antibody kinetics to other 

coronaviruses, most notably Severe Acute Respiratory Syndrome coronavirus (SARS-CoV). Here we review some of the 

available published data, and describe how this can be used to provide prior information for modelling SARS-CoV-2 

antibody kinetics.  

 

Prior longitudinal data on long-term antibody responses to coronaviruses 

Table S1 summarises some of the published data on the long-term antibody kinetics to a number of coronaviruses: SARS-

CoV, human seasonal coronavirus 229E, and Middle East Respiratory Syndrome coronavirus (MERS-CoV). From the 

extracted time series, we estimated two summary statistics characterizing the long-term antibody response: the half-life 

of the long-lived component of the antibody response, and the percentage reduction in antibody response after one year. 

The half-life of the long-lived component of the antibody response was estimated by fitting a linear regression model to 

measurements of (log) antibody response taken greater than six months after symptom onset. The percentage reduction 

in antibody response after one year was estimated based on the reduction from the peak measured antibody response to 

the estimated antibody level at one year. Although a wide range of assays from ELISA to micro-neutrilisation were used in 

the reviewed studies, in this simple and approximate analysis we did not attempt to account for assay dependent effects, 

except to subtract background antibody levels where necessary. 

Based on the estimated summary statistics, we assume that the long-term IgG antibody kinetics can be characterized as 

having a half-life of dl = 400 days with a 60% reduction after one year. In terms of the parameters of the mathematical 

model of antibody kinetics, this corresponds to prior estimates of cl = log(2)/dl = 0.0017 and ρ ~ 0.9. For sensitivity 

analyses, we also considered scenarios where dl = 200 days and dl = 800 days. 

For IgM antibody kinetics, we assumed dl = 100 days and ρ ~ 0.9. For sensitivity analyses, we also considered scenarios 

where dl = 50 days and dl = 200 days. 
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Table S1: Prior data on the duration of antibody responses to coronaviruses. Data from longitudinal studies on measured antibody 

levels to SARS coronavirus, seasonal coronavirus 229E, and MERS coronavirus. For each study, the time series describing the antibody 

kinetics was extracted. The half-life of the long-lived component of the antibody response was estimated using measurements of 

antibody response measured after 6 months from symptom onset – the subset of the data used for this calculation is indicated in bold 

below. The percentage reduction in antibodies after one year is estimated based on the reduction from the peak measured response 

to the estimate antibody level at year.    

study half-life (days) 1 year 
reduction 

SARS-CoV; Wu et al. Emerg Inf Dis. 2007; 13(10)   

time (days) 180 365 730 1095          
IgG 0.96 0.638 0.516 0.249        510  

SARS-CoV; Mo et al. Respirology. 2006; 11: 49-53   

time (days) 7 15 30 60 90 180 270 360 450 540 720   
IgG 0.01 1.86 2.36 2.83 2.81 2.73 2.38 1.91 1.42 1.00 0.80 181 60% 
IgM 0.01 1.13 1.80 1.30 0.69 0.06 0.01      100% 
Nab 0.01 1.99 2.74 2.51 2.26 2.06 1.83 1.56 1.24 0.96 0.78 277 69% 

SARS-CoV; Cao et al. NEJM. 2007; 357(11)   

time (days) 30 120 210 300 480 720 900 1080      
IgG 196 244 114 112 64 36 33 28    394 61% 
Nab 1034 1254 836 773 960 99 32 32    154 33% 

SARS-CoV; Liu et al. J Inf Dis. 2006. 193   

time (days) 30 120 210 300 480 720        
IgG 185 201 115 125 65 32      254 49% 

SARS-CoV; Tang et al. J Immunol. 2011; 186:7264-7268   

time (days) 24 120 210 300 480 720 900 1080 1600 2160    
IgG 305 252 128 170 66 31 36 33 6.9 6.0  400 57% 

seasonal coronavirus 229E; Callow et al. Epid. Inf. 1990; 105: 435-446   

time (days) 0 21 84 364          
IgG 2.45 3.18 2.62 2.51        191 91% 
IgA 2.61 3.04 2.80 2.66        150 87% 
Nab 1.43 9.84 5.46 2.19        116 91% 

MERS CoV; Choe et al. Emerg Inf Dis. 2017; 23(7)   

time (days) 15 90 200 300 400         
IgG (S1) 1.39 2.53 1.63 1.56 1.47       915 50% 

 

Case study of early-stage SARS-Cov-2 antibody kinetics: hospitalized patients in Hong Kong 

We performed a secondary analysis of data from patients admitted to Princess Margaret Hospital and Queen Mary 

Hospital in Hong Kong, following the primary analysis by To, Tsang et al [1]. 23 patients with RT-qPCR confirmed SARS-

CoV-2 infection were followed longitudinally for up to four weeks after initial onset of symptoms. Ten patients had severe 

COVID-19, all of whom required oxygen supplementation, and 13 patients had mild disease.  

The Hong Kong based team expressed and purified recombinant proteins for receptor-binding domain (RBD) and 

nucleoprotein (NP). Genes encoding the spike RBD (amino acid residues 306 to 543 of the spike protein) and full length 

NP of SARS-CoV-2 were codon-optimized, synthesized and cloned. IgG and IgM antibody responses were quantified via 
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the optical density (OD) from an enzyme immunoassay (EIA). Serial dilutions from 1:100 to 1:16,000 of a positive control 

serum were assayed for IgG responses. This allowed conversion of IgG antibody responses measured by EIA OD to 

dilutions. To determine the sero-positivity cutoff, the mean value of 93 anonymous archived serum specimens from 2018 

plus 3 standard deviations was used. The cutoff values were: anti-NP IgG = 0.523 OD; anti-RBD IgG = 0.108 OD; anti-NP 

IgM = 0.177 OD; and anti-RBD IgM = 0.085. After conversion of the EIA OD values to dilutions, the sero-positivity cutoffs 

for IgG antibody responses were anti-NP IgG = 0.00682; and anti-RBD IgG = 0.002665.  

 

Results 

Estimated model parameters are presented in Table S2. Figure S1 provides an overview of the fitted antibody kinetics to 

all participants. Detailed individual-level fits to the data, with quantification of uncertainty are shown in Figures S2-S5. 

Comparing the early kinetics of the IgG and IgM response, we estimate that the time to anti-NP IgG sero-conversion was 

11.0 days (inter-quartile range (IQR): 8.1, 11.6), and the time to anti-NP IgM sero-conversion was 11.9 days (IQR: 8.4, 15.8). 

The time to anti-RBD IgG sero-conversion was 8.6 days (IQR: 5.3, 10.4), and the time to anti-NP IgM sero-conversion was 

11.6 days (IQR: 9.2, 28.6). Although time to sero-conversion is dependent on the selection of sero-positivity cutoff, this 

suggests that IgM responses are not induced before IgG responses, and that both are generated at approximately the 

same time.  
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Figure S1: SARS-CoV-2 antibody kinetics in Hong Kong patients. Anti-nucleoprotein (NP) and anti-receptor-binding domain (RBD) 
antibody responses in 22 patients with PCR confirmed SARS-CoV-2 infection admitted to hospitals in Hong Kong. Measured antibody 
levels in patients are depicted as points. Measured antibody levels in negative controls are depicted as crosses. Grey lines show 
posterior median model prediction. The uncertainty of the model predictions is presented via 95% credible intervals in Figures S2-5. 
The horizontal dashed line represents the cutoff for sero-positivity. 
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Figure S2: Model fit to short-term data on anti-NP IgG antibody responses. Measured antibody responses are shown as 
red points. Posterior median model predictions are shown as black lines, with 95% credible intervals in grey. The horizontal 
dashed line represents the cutoff for sero-positivity. Note that as there is no data on the long-term antibody response to 
SARS-CoV-2, three different sources of prior information were utilized. The half-life of the long-lived component of the 
antibody responses was assumed to be 200 days (short prior), 400 days (medium prior), or 800 days (long prior). Note that 
each of the three assumptions give near identical fits for the short-term kinetics displayed here. 
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Figure S3: Model fit to short-term data on anti-RBD IgG antibody responses. Measured antibody responses are shown 
as red points. Posterior median model predictions are shown as black lines, with 95% credible intervals in grey. The 
horizontal dashed line represents the cutoff for sero-positivity. Note that as there is no data on the long-term antibody 
response to SARS-CoV-2, three different sources of prior information were utilized. The half-life of the long-lived 
component of the antibody responses was assumed to be 200 days (short prior), 400 days (medium prior), or 800 days 
(long prior). Note that each of the three assumptions give near identical fits for the short-term kinetics displayed here. 
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Figure S4: Model fit to short-term data on anti-NP IgM antibody responses. Measured antibody responses are shown as 
red points. Posterior median model predictions are shown as black lines, with 95% credible intervals in grey. The horizontal 
dashed line represents the cutoff for sero-positivity. Note that as there is no data on the long-term antibody response to 
SARS-CoV-2, three different sources of prior information were utilized. The half-life of the long-lived component of the 
antibody responses was assumed to be 50 days (short prior), 100 days (medium prior), or 200 days (long prior). Note that 
each of the three assumptions give near identical fits for the short-term kinetics displayed here. 
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Figure S5: Model fit to short-term data on anti-RBD IgM antibody responses. Measured antibody responses are shown 
as red points. Posterior median model predictions are shown as black lines, with 95% credible intervals in grey. The 
horizontal dashed line represents the cutoff for sero-positivity. Note that as there is no data on the long-term antibody 
response to SARS-CoV-2, three different sources of prior information were utilized. The half-life of the long-lived 
component of the antibody responses was assumed to be 50 days (short prior), 100 days (medium prior), or 200 days (long 
prior). Note that each of the three assumptions give near identical fits for the short-term kinetics displayed here. 
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Table S2: Parameter estimates for antibody kinetics model fitted to Hong Kong data. Parameters of the antibody 
kinetics model are presented as posterior medians with 95% credible intervals.  The model is fitted in a mixed-effects 
framework, so for every parameter we estimate the distribution within the entire population rather than a fixed value.  
We present the mean and standard deviation as summary statistics for the estimated distributions 

description parameter prior NP IgG RBD IgG NP IgM RBD IgM 

mean of population-level distribution  

background IgG level Abg 0.001  
(1.1x10-6, 1.1) 

0.00011  
(2.6x10-5, 0.0003) 

0.0015  
(0.0013, 0.0017) 

– – 

background IgM level Abg 0.03  
(0.001, 1.0) 

– – 0.049  
(0.043, 0.054) 

0.036  
(0.032, 0.04) 

ASC boost in mild cases (IgG) βmild 0.01  
(0.0001, 1.2) 

0.014  
(0.006, 0.051) 

0.0028 
(0.0015, 0.0053) 

– – 

ASC boost in mild cases (IgM) βmild 0.11  
(0.01, 1.2) 

– – 0.085  
(0.048, 0.17) 

0.08  
(0.04, 0.16) 

ASC boost in severe cases 
(IgG) 

βsev 0.01  
(0.0001, 1.2) 

0.028  
(0.01, 0.207) 

0.0056  
(0.0034, 0.0099) 

– – 

ASC boost in severe cases 
(IgM) 

βsev 0.11  
(0.01, 1.2) 

– – 0.67  
(0.29, 2.8) 

0.14  
(0.07, 0.46) 

delay in generation of 
antibody response (days) 

τ 5.4  
(2.5, 15.1) 

9.6  
(7.7, 11.9) 

7.8  
(5.6, 11.7) 

7.9  
(6.4, 9.8) 

8.7  
(7.0, 10.7) 

half-life of memory cells 
(days) 

dm 2.1  
(1.5, 4.0) 

2.0  
(1.3, 7.8) 

1.8  
(1.3, 2.8) 

2.0  
(1.3, 5.7) 

2.2  
(1.5, 4.9) 

half-life of short-lived ASCs 
(days) 

ds 3.2  
(1.9, 9.2) 

2.5  
(1.8, 4.1) 

2.4  
(1.8, 3.7) 

2.4  
(1.7, 3.8) 

2.8  
(2.0, 4.7) 

half-life of long-lived ASCs 
(days) (IgG) 

dl 400  
(302, 567) 

408  
(227, 727) 

417  
(230, 771) 

– – 

half-life of long-lived ASCs 
(days) (IgM) 

dl 100  
(76, 142) 

– – 104 
(68, 163) 

103  
(66, 167) 

half-life of IgG molecules 
(days) 

da 21  
(18·7, 24·1) 

43·5  
(25·7, 243·6) 

21·3  
(18·4, 28·7) 

– – 

half-life of IgM molecules 
(days) 

da 10 
(9.1, 11.5) 

– – 10.8  
(9.3, 164.2) 

10.2  
(9.2, 13.2) 

proportion of short-lived 
ASCs  

ρ 90%  
(65%, 95%) 

90%  
(79%, 94%) 

80%  
(57%, 94%) 

93%  
(65%, 97%) 

89%  
(62%, 98%) 

standard deviation of population-level distribution  

background IgG level Abg 0.0006  
(6x10-7, 0.8) 

5.7x10-5  
(1.0x10-5, 0.00013) 

0.0004  
(0.0003, 0.0005) 

– – 

background IgM level Abg 0.01  
(0.0003, 0.5) 

– – 0.01  
(0.007, 0.015) 

0.008  
(0.006, 0.011) 

ASC boost in mild cases (IgG) βmild 0.006  
(5.4x10-5, 0.9) 

0.020  
(0.006, 0.23) 

0.0017  
(0.0007, 0.005) 

– – 

ASC boost in mild cases (IgM) βmild 0.06  
(0.004, 1.1) 

– – 0.045  
(0.020, 0.17) 

0.06  
(0.03, 0.21) 

ASC boost in severe cases 
(IgG) 

βsev 0.006  
(5.4x10-5, 0.9) 

0.048  
(0.01, 2.0) 

0.0030  
(0.0015, 0.008) 

– – 

ASC boost in severe cases 
(IgM) 

βsev 0.06  
(0.004, 1.1) 

– – 0.55  
(0.19, 4.9) 

0.17  
(0.06, 1.4) 

delay in generation of 
antibody response (days) 

τ 3.5  
(1.2, 34.6) 

4.2  
(2.8, 6.9) 

6.5  
(3.8, 17.5) 

3.5  
(2.3, 5.9) 

3.8  
(2.6, 6.4) 

half-life of memory cells 
(days) 

dm 1.1  
(0.5, 7.2) 

1.8  
(0.6, 35.3) 

1.0  
(0.5, 3.5) 

1.8  
(0.6, 18.5) 

1.8  
(0.7, 11.87) 

half-life of short-lived ASCs 
(days) 

ds 2.3  
(0.9, 29.2) 

1.3  
(0.6, 3.5) 

1.2  
(0.6, 2.8) 

1.2  
(0.6, 3.1) 

1.6  
(0.7, 4.6) 

half-life of long-lived ASCs 
(days) (IgG) 

dl 109  
(56, 349) 

111  
(47, 384) 

114  
(47, 404) 

– – 
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half-life of long-lived ASCs 
(days) (IgM) 

dl 22  
(10, 69) 

– – 22  
(11, 67) 

23  
(11, 73) 

       
half-life of IgG molecules 
(days) 

da 3·2  
(1·8, 8.6) 

84·0  
(22, 2808) 

5·4  
(2·0, 27) 

– – 

half-life of IgM molecules 
(days) 

da 2.2  
(1.2, 6.2) 

– – 4.4  
(1.5, 2770) 

2.6  
(1.3, 12) 

proportion of short-lived 
ASCs  

ρ 0.07  
(0.02, 0.40) 

0.06  
(0.02, 0.26) 

0.25  
(0.04, 0.45) 

0.08  
(0.02, 0.42) 

0.18  
(0.02, 0.44) 

observational variance 

standard deviation for ELISA 
measurements (IgG) 

σobs 0·004 
(0·0002, 0·1) 

0·0026 
(0·0023, 0·0030) 

0·0011 
(0·0009, 0·0013) 

– – 

standard deviation for ELISA 
measurements (IgM) 

σobs 0·04 
(0·002, 1) 

– – 0·031 
(0·025, 0.037) 

0·022 
(0·019, 0.025) 
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Table S3: Parameter estimates for antibody kinetics model fitted to France data. Parameters of the antibody kinetics 
model are presented as posterior medians with 95% credible intervals.  The model is fitted in a mixed-effects 
framework, so for every parameter we estimate the distribution within the entire population rather than a fixed value.  
We present the mean and standard deviation as summary statistics for the estimated distributions 

description parameter prior Stri
 RBD S1 S2 

mean of population-level distribution  

background IgG level Abg 0.001  
(1.1x10-6, 1.1) 

7.8x10-6  
(6.5x10-6, 9.6x10-6) 

1.1x10-5  
(8.5x10-6, 1.6x10-5) 

2.1x10-5  
(1.4x10-5, 
3.1x10-5) 

1.3x10-5  
(9.4x10-6, 
1.9x10-5) 

ASC boost  Β 0.01  
(0.0001, 1.2) 

0.00023  
(0.00016, 0.00035) 

0.00014  
(9.0x10-5, 0.0002) 

0.00032  
(0.0002, 
0.0006) 

0.0004  
(0.0003, 
0.0006) 

delay in generation of 
antibody response (days) 

τ 5.4  
(2.5, 15.1) 

4.8  
(3.3, 6.0) 

4.4  
(2.8, 5.8) 

4.6  
(2.4, 6.1) 

5.7  
(4.3, 6.8) 

half-life of memory cells 
(days) 

dm 2.1  
(1.5, 4.0) 

1.9  
(1.5, 2.6) 

1.8  
(1.5, 2.5) 

2.0  
(1.5, 3.1) 

1.9  
(1.5, 2.8) 

half-life of short-lived ASCs 
(days) 

ds 3.2  
(1.9, 9.2) 

3.0  
(2.2, 4.4) 

3.0  
(2.2, 4.2) 

3.0  
(2.2, 4.3) 

3.0  
(2.3, 4.3) 

half-life of long-lived ASCs 
(days)  

dl 400  
(302, 567) 

404  
(239, 777) 

407  
(227, 740) 

418  
(231, 750) 

403  
(234, 762) 

half-life of IgG molecules 
(days) 

da 21  
(18·7, 24·1) 

21·1  
(18·7, 23·9) 

21·2  
(18·8, 23·4) 

21·2  
(18·7, 23·9) 

21·1  
(18·8, 23·9) 

proportion of short-lived 
ASCs  

ρ 90%  
(65%, 95%) 

81%  
(57%, 95%) 

81%  
(58%, 93%) 

84%  
(0%, 95%) 

76%  
(57%, 94%) 

standard deviation of population-level distribution  

background IgG level Abg 0.0006  
(6x10-7, 0.8) 

4.5x10-6  
(3.3x10-6, 6.3x10-6) 

8.0x10-6  
(5.1x10-6, 1.3x10-5) 

1.9x10-5  
(1.0x10-5, 
3.4x10-5) 

1.0x10-5  
(6.0x10-6, 
1.8x10-5) 

ASC boost  β 0.006  
(5.4x10-5, 0.9) 

0.0002  
(0.0001, 0.0004) 

0.00011  
(6.7x10-5, 0.0002) 

0.00048  
(0.00022, 
0.0012) 

0.0004  
(0.0002, 
0.0008) 

delay in generation of 
antibody response (days) 

τ 3.5  
(1.2, 34.6) 

1.4  
(1.0, 1.8) 

1.3  
(0.9, 1.9) 

1.4  
(0.8, 2.0) 

1.9  
(1.4, 2.7) 

half-life of memory cells 
(days) 

dm 1.1  
(0.5, 7.2) 

1.3  
(0.7, 3.1) 

1.2  
(0.7, 2.7) 

1.7  
(0.8, 5.4) 

1.4  
(0.7, 3.9) 

half-life of short-lived ASCs 
(days) 

ds 2.3  
(0.9, 29.2) 

1.1  
(0.6, 2.1) 

1.1  
(0.6, 2.1) 

1.1  
(0.6, 2.1) 

1.1  
(0.6, 2.1) 

half-life of long-lived ASCs 
(days)  

dl 109  
(56, 349) 

110  
(48, 378) 

112  
(47, 408) 

113  
(46, 403) 

112  
(48, 372) 

half-life of IgG molecules 
(days) 

da 3·2  
(1·8, 8.6) 

3·2  
(1.8, 7) 

3·3  
(1·8, 7) 

3·3  
(1.8, 7.2) 

3·3  
(1·8, 7.3) 

proportion of short-lived 
ASCs  

ρ 0.07  
(0.02, 0.40) 

0.19  
(0.008, 0.45) 

0.19  
(0.008, 0.45) 

0.0076  
(1.0x10-11, 
0.44) 

0.28  
(0.02, 0.45) 

observational variance 

log scale standard deviation 
for Luminex measurements  

σobs 0·71 
(0·18, 2.75) 

0·92 
(0·84, 1.0) 

1·40 
(1·26, 1.54) 

1·08 
(0·92, 1.25) 

1·15 
(0·99, 1.29) 

 

 

 

 


