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Data of next-generation sequencing (NGS) and their analysis have been facilitating

advances in our understanding of microbial ecosystems such as human gut microbiota.

However, inference of microbial interactions occurring within an ecosystem is still

a challenge mainly due to sequencing data (e.g., 16S rDNA sequences) providing

relative abundance of microbes instead of absolute cell count. In order to describe

growtth dynamics of microbial communities and estimate the involved microbial

interactions, we introduce a procedure by integrating generalized Lotka-Volterra

equations, forward stepwise regression and bootstrap aggregation. First, we successfully

identify experimentally confirmed microbial interactions based on relative abundance

data of a cheese microbial community. Then, we apply the procedure to time-series of

16S rDNA sequences of gut microbiomes of children who were progressing to Type 1

diabetes (T1D progressors), and compare their gut microbial interactions to a healthy

control group. Our results suggest that the number of inferred microbial interactions

increased over time during the first 3 years of life. More microbial interactions are found

in the gut flora of healthy children than that of T1D progressors. The inhibitory effects

from Actinobacteria and Bacilli to Bacteroidia, from Bacteroidia to Clostridia, and the

beneficial effect from Clostridia to Bacteroidia are shared between healthy children and

T1D progressors. An inhibition of Clostridia by Gammaproteobacteria is found in healthy

children that maintains through their first 3 years of life. This suppression appears in T1D

progressors during the first year of life, which transforms to a commensalism relationship

at the age of 3 years old. Gammaproteobacteria is found exerting an inhibition on

Bacteroidia in the T1D progressors, which is not identified in the healthy controls.

Keywords: microbial interactions, longitudinal taxonomic data, Lotka-Volterra equations, forward stepwise

regression, bootstrap aggregation

INTRODUCTION

The human gut microbiota, an ecosystem comprising a diverse collection of interactive microbial
species, plays a key role in nutrition, metabolism, physiology, and immune function in humans
(Sekirov et al., 2010). An interaction between two microbes can either be neutral (0), positive (+),
or negative (−) to the fitness of the interacting microbes. Based on the overall effects, an interaction
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can be classified into commensalism (0/+), amensalism (0/−),
mutualism (+/+), parasitism (+/−), competition (−/−), or
no interactions (0/0). Interactions among microbial species
characterize the composition and function of gut microbiota,
thereby influencing the host’s health (Rios-Covian et al., 2016).
The microbial interactions in the gastrointestinal tract are
complex, flexible, and capable of adapting to physiological
perturbations (Sun and Chang, 2014). The change of one species
may shift the relative abundances of other members in the
community and affect the community’s functional capacity.
A better understanding of ecological dynamics and microbial
interactions is essential to investigate the consequences of
taxonomic perturbations.

By using NGS technologies, such as 16S rRNA gene
profiling, it is now possible to follow the time-evolution of
a microbial population by measuring abundance of bacterial
species in a microbial community. However, analyzing the
microbial community dynamics from genomic survey data is
not straightforward, because sequencing data provide relative
abundances of microbial species based on a fixed total number
of sequences rather than absolute cell count. The high density of
genomic survey data and its compositional nature are the most
common challenges involved in inferring microbial interaction
networks. Hence, the power of computational approaches allows
to address this challenge. Mathematical and computational
approaches make it possible to analyse highly complex microbial
communities.

Correlation networks have proved useful for detecting
biological interactions. There are many different techniques
for computing correlation networks, for example Pearson
correlation coefficient (Pearson, 1909), Spearman correlation
coefficient (Spearman, 2010), Bray–Curtis distance (Roger Bray
and Curtis, 1957), Local Similarity Analysis (Ruan et al.,
2006; Beman et al., 2011; Steele et al., 2011; Xia et al.,
2013), Maximal Information Coefficient (Reshef et al., 2011),
SparCC (Friedman and Alm, 2012) based on Aitchison’s
log-ratio analysis (Anders and Huber, 2010) and CoNet
which combines information from several different standard
comparison metrics (Faust et al., 2012). Weiss et al. (2016)
benchmarked the performance of these techniques in dealing
with the relative abundance in simulated data specific to
microbiome studies. Despite the correlation networks are useful
in studying some overall biological relationships, they have
significant limits in deciphering non-linear interactions such
as between three or more species, and are unable to detect
relationships like amensalism and partial-obligate-syntrophy
(Morris et al., 2013; Weiss et al., 2016). Indeed, two species
may be correlated even if they do not directly interact with
each other.

The use of non-linear differential equations like Lotka-
Volterra model is an alternative approach to study microbial
interactions. The generalized Lotka-Volterra (gLV) equations are
able to describe the time-dependent population dynamics and
predict ecological relationships (i.e., mutualism, commensalism,
parasitism, and competition) between members of different
biological species. Several studies have attempted to use gLV
equations studying microbial communities that consist of

multiple bacterial species (Stein et al., 2013; Fisher and Mehta,
2014; Marino et al., 2014; Bucci et al., 2016; Shaw et al., 2016).
In particular, Mounier et al. used gLV equations describing the
population dynamics of a cheesemicrobial community consisting
of five microbial groups with experimental data of the absolute
cell numbers (Mounier et al., 2008). This model predicted
some microbial interactions that were confirmed by co-culture
experiments afterwards.

Fisher and Mehta (2014) have proposed an approach named
Learning Interactions from Microbial Time Series (LIMITS),
which implements forward stepwise regression with median
bootstrap aggregation for gLV equations inferring the species
interactions in the human gut microbiomes. By combining
forward stepwise regression with bootstrap aggregation,
LIMITS was able to overcome a statistical issue termed
“errors-in-variables” (accounting for measurement errors
in the independent variables) and infer species interactions
from time series relative abundances of species (Fuller, 1980).
However, these inferred interactions were not experimentally
confirmed.

Although these tools brought some insights to infer microbial
interactions, they have no proven ability to infer biologically
confirmed microbial interactions from relative abundance data.
Here, we propose a procedure by integrating gLV equations,
forward stepwise regression, bootstrap aggregation and one-
sample t-test. First, we test and validate this procedure
by correctly identifying microbial interactions from relative
abundances of a cheese microbial community (Mounier et al.,
2008). For application, we then apply our procedure to infer
microbial interactions within gut microbiota of healthy and
type 1 diabetes (T1D) progressing infants (seroconverters
for diabetes autoimmune) from a set of reported data
(Kostic et al., 2015).

RESULTS

Procedure Validation on Experimentally
Confirmed Data: Identification of
Significant Microbial Interactions Within a
Cheese Microbial Community
The procedure was tested through describing the dynamics of
relative abundances of five microbial groups and estimating
their interactions within a cheese microbial community. In the
original study, the microbial population growth was measured
in cell count, which was converted into relative abundances
as input of our procedure. For initial conditions, the intrinsic
growth rates and inter-species interaction coefficients were set
at 1 generation/day and 0, respectively. The carrying capacity
is 2e10 CFU/g according to coculture studies (Mounier et al.,
2008). A diagram of implementation of the procedure is given in
Figure 1.

The gLV modeling succeeded in describing the changes of
relative abundance of the microbial populations, and roughly
predicted the growth trends of each member of this community
(Figure 2). The inferred intrinsic growth rates of the microbes
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FIGURE 1 | Schematic diagram of the proposed procedure, consisting of forward stepwise regression, bootstrap aggregating, model selection, and network

construction.

and their significant interactions were shown in Figure 3. In

particular, some of the inferred interactions (Figure 3B) were

previously confirmed in the co-culture experiments, including
the promotion effects from G. candidum to the bacterial group

and Leucobacter sp., and the inhibitory effects of G. candidum on
D. hansenii (Mounier et al., 2008). The estimated intrinsic growth
rate of the bacterial group was low (Figure 3A), indicating that
their growth was highly influenced by other members in the
community. A benefit effect of G. candidum on the bacterial
group was inferred, suggesting that the growth of the bacterial
group partially relies on G. candidum. According to the co-

culture study (Mounier et al., 2008), the growth of some bacteria,
such as Brevibacterium aurantiacum, was actually relying on G.
candidum was identified.

The sensitivity of our procedure was assessed by varying the
number of bootstrapping samples and the size of training data
(ranging from 100 to 1,000 bootstraps). The performance of this

procedure was influenced by the number of bootstrap samples.
We observed that some significant interactions were detected

using a relatively low number of bootstrap samples. For instance,

the suppression of bacterial group by D. hansenii was identified

as low as 100 bootstraps while it took 700 bootstraps to identify
bacteria inhibiting G. candidum (Supplementary Table S1). The
frequency of these interactions may be an indicator of their
weight in shaping the community dynamics.

In summary, our procedure was able to identify ground-truth
microbe-microbe interactions within a microbial community
through relative abundance data.

Application on Time-Series 16S rRNA Gene
Sequence Data: Gut Microbial Interaction
Networks of Healthy Children vs. T1D
Progressors
Next, we used this approach to study the gut microbial dynamics
in healthy children and those who were progressing to T1D
during their first 3 years of life. Kostic et al. (2015) examined
the composition dynamics of gut microbiomes in 33 children
genetically predisposed to T1D from birth until 3 years of
age with monthly sampling. The authors observed a relative
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FIGURE 2 | Producing the growth dynamics of the cheese microbial community. An example of using gLV equations and forward stepwise regression describing the

growth dynamics of the cheese microbial community in (A) relative abundance and (B) cell count. Experimental data (Mounier et al., 2008) is indicated by dots and the

predicted population dynamics are indicated by curves. The fitting performance is measured in root-mean-square error (RMSE). A, Actinobacteria; Bi, Bacilli; Ba,

Bacteroidia; C, Clostridia; G, Gammaproteobacteria.

reduction in alpha-diversity in the gut of children who progress
to T1D compared to the seroconverters defined as positive
for at least two autoantibodies (no T1D developers occurred
during the follow-up) and in non-converters’ gut. We applied
the proposed procedure on the 16S rRNA sequencing data
reported in (Kostic et al., 2015). We investigated the class

level gut bacterial interactions in T1D-associated and healthy
infants at different age stages. The carrying capacity of intestinal
microbial community was assumed to be 1e11 cells/g of feces
[given the average bacteria number 3.4e10 ± 3e10 cells/g feces
(Savino et al., 2017)]. The resulting intrinsic growth rates and
interaction coefficients of the five bacterial classes were given
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FIGURE 3 | Inferring significant microbial interactions within a cheese microbial community. (A) The intrinsic growth rates of the microbes and (B) their significant

interactions were inferred from the longitudinal data of five microbes. 80% of the whole data set was randomly selected for training the gLV model, with 1,000

bootstrap samples. Resulted interactions were selected with one-sample t-test P(aij 6= 0) > 95%. The line thickness is proportional to the strength of the interaction.

Dh, D. Hansenii; Yl, Y. Lipolytica; Gc, G. Candidum; Ls, Leucobacter sp.; C, a bacterial group includes Arthrobacter arilaitensis, Hafnia alvei, Corynebacterium casei,

Brevibacterium aurantiacum, and Staphylococcus xylosus.

in Supplementary Table S3 for the two groups at different age
stages.

The gut microbial interaction network consisted of just a few
amensalism interactions for the first year of life, but became
more complex over time (Figure 4). There were more bacterial
interactions identified in healthy children than T1D progressors
after the age of 1 year old. Some interactions were shared between
healthy controls and T1D progressors, including the inhibitory
effects Gammaproteobacteria to Clostridia for 1 year of age,
the inhibitory effect from Actinobacteria to Bacteroidia and the
promotion effect from Clostridia to Bacteroidia.

Three interactions were identified uniquely in the healthy
controls: inhibitions of Actinobacteria by Bacteroidia and
Clostridia, and a promotion from Gammaproteobacteria to
Actinobacteria. An inhibitory effect from Gammaproteobacteria
to Clostridia was established within the first year of life which
maintained through the following 3 years (top row of Figure 4).
Intriguingly, the effect from Gammaproteobacteria to Clostridia
was identified as amensalism during the first year of life for
T1D progressors, which transformed to a benefit effect at their
age of three. An inhibitory effect from Gammaproteobacteria
to Bacteroidia was only observed in the T1D progression
group (bottom row of Figure 4). The relationship between
Bacilli and Clostridia was amensalism for healthy children,
but commensalism for T1D progression children at
age of three.

DISCUSSIONS

Investigating the gut microbial community composition and
their interaction patterns are crucial to understand the role
of gut microbiota in maintaining human health and causing
diseases. However, a systematic approach for accessing microbial
interactions has been lacking. Some methods have been
attempted to infer microbial interaction networks, such as
correlation networks and mathematical modeling. Although
these attempts have contributed in creating interaction networks,
none of their resulting microbial interactions have been
experimentally confirmed. In the present study, we showed that a
combination of gLV equations, forward stepwise regression, and
bootstrap aggregation was able to infer microbial interactions

from longitudinal relative abundance data. In order to test
the performance this procedure, we used the dataset of a
cheese microbial community with known microbial interactions
(Mounier et al., 2008). Our proposed procedure was able

to correctly infer some experimentally confirmed microbial
interactions, such as the promotions of G. candidum on
Leucobacter sp. and on a group of bacteria, and a suppression

of D. hansenii by G. candidum. In addition, the estimated
changes in cell counts by our procedure roughly recapitulated
the growth trends of each microbial group in the community.
To access the performance of this procedure, we tested the
cheese dataset on MetaMIS software (Shaw et al., 2016),
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FIGURE 4 | The intrinsic growth rates of five most abundant bacterial classes and their interactions within the gut microbiome community of healthy (top row, control)

and T1D progressors (bottom row, case) at 0–1 year (left column), 0–2 years (mid column), and 0–3 years (right column) of age. The line thickness is proportional to

the strength of the interaction. A, Actinobacteria; Bi, Bacilli; Ba, Bacteroidia; C, Clostridia; G, Gammaproteobacteria.

and obtained comparable results. Our procedure identified
15 significant interactions among the microbe groups, and
14 of them share the same directions with the inferred
interactions by MetaMIS (Supplementary Table S2). However,
our proposed procedure also provided bacterial growth rates as
they are important information to decipher microbial population
dynamics. Despite the potential of our proposed method in
dealing with compositional data, it could not explain all the

observations from the co-culture experiments. For example,
our procedure predicted an inhibitory effect of D. hansenii
on the bacterial group, which was inconsistent with the
experimental observation (Mounier et al., 2008). In addition,
the interaction coefficient may be not proportional to the
microbial abundances (e.g., variable a in Equation 1 does not
only depend on the abundance of the microbes). This level of
complexity was not considered in our current procedure, but
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it is an important mechanism needed to be addressed in the
future.

One goal of comparative metagenomics is to identify
meaningful changes in the microbiome’s taxonomic and
functional composition that are associated with health and
disease. Disruptions of the process of gut microbial colonization
during childhood have been shown to be associated with an
increased risk of adiposity and pathogenesis of autoimmune
disorders such as T1D (Huh et al., 2012; Blustein et al., 2013;
Murri et al., 2013; Kostic et al., 2015). To address how alterations
of the gut microbial community composition may contribute to
childhood disease, we must first investigate the normal dynamics
of the community in the growing infant. By comparing the
gut taxonomic trajectories of children who progress to T1D
compared to healthy controls, Kostic et al. (2015) have found
general changes in abundance of the gut microbial community
and the timing of these changes. They identified some microbes
strongly correlated which was consistent across most healthy
subjects (Kostic et al., 2015), such as a positive correlation
between Gammaproteobacteria and Actinobacteria or a negative
correlation betweenGammaproteobacteria andClostridia (Kostic
et al., 2015). These correlations can be explained by the inferred
interactions from our procedure, e.g., promotion effect from
Gammaproteobacteria to Actinobacteria and inhibition effect
from Gammaproteobacteria to Clostridia.

By applying our procedure to a longitudinal time-series
study of gut microbiota in children (Kostic et al., 2015), we
demonstrated that the gut bacterial interaction network (at class
level) was getting more complex along with age, with more
interactions inferred for the healthy children than the T1D
progressors. Some microbial interactions were shared between
healthy children and the T1D progressors, such as inhibitory
effects from Actinobacteria and Bacilli to Bacteroidia. Although
the composition of the microbiome community was changing
along with child development, some of the bacterial interactions,
in particular at higher phylogenetic levels such as class, remained
stable after establishment. For example, the inhibitory effect
from Gammaproteobacteria to Clostridia was established for
healthy children cohort in the first year of life and maintained
through the age of three. In T1D progressors, whereas the
amensalism relationship between Gammaproteobacteria and
Clostridia appeared during their first year of life, which
became commensalism (i.e., Gammaproteobacteria enhancing
the growth of Clostridia) at the age of three. The inhibition from
Gammaproteobacteria to Bacteroidia maintained during the first
3 years of life for T1D progressors, which was not detected in the
healthy controls.

It has been observed that the quantity of Clostridium (genus
level, belongs to the class Clostridia) correlated positively and
significantly with the plasma glucose level in diabetic children.
In newborn infants, Gammaproteobacteria have been shown
to cause a healthy level of inflammation in their intestines,
protecting them from excessive inflammatory, and autoimmune
disorders later in life (Mirpuri et al., 2014). From the data of
(Kostic et al., 2015), the proportion of Gammaproteobacteria
was indeed lower in the T1D progression children group than
healthy controls during the first months of life (e.g., about

11% vs. 16% for the two groups within 180 days after birth).
In addition, Bacilli was also found to promote the growth of
Clostridia in the gut community of T1D progression children,
whereas it contributed to inhibition of Clostridia for the healthy
controls. Thus, our results suggest that the inhibitory effects of
Gammaproteobacteria and Bacilli on Clostridiamight play a role
in regulating plasma glucose in early live and protect children
from developing to T1D. Further studies are necessary to test this
hypothesis.

CONCLUSIONS

Here we propose a procedure which was capable of inferring
experimentally confirmed microbial interactions out of
compositional data. By using our procedure, we identified
some similarities as well as differences in the gut bacterial
interaction networks between children toward T1D progression
and healthy controls in their first 3 years of life. The interaction
networks were getting more complex in the gut microbiome of
children after their first year of life. The number of interactions
was higher in healthy children than in T1D progressors. Some
bacterial interactions were exclusively found in each group,
which may be able to predict the T1D progression state. Our
results provide potential new insights into the relationship
between gut microbial interactions and infants’ T1D progression.
In the future, by incorporating microbiome’s functional shift
(Manor and Borenstein, 2017), the procedure presented above
might help to interpret disease-specific changes of microbial
interactions and accordingly help to predict disease progression.

METHODS

Generalized Lotka-Volterra Equation
We used gLV equations to describe an ecological community
consisting of n microbiome taxa. For taxon i, the population
dynamics is described as

dxi(t)

dt
= xi (t)

(

ri +
∑n

j= 1
aij

xj (t)

N(t)

) (

1−
N(t)

K

)

(1)

where xi(t) is the absolute abundance of taxon i at time t, N(t)
the community size at time t, n the number of species in the
ecosystem, and K the carrying capacity of the community (a
logistic growth component). ri represents the intrinsic growth
rate of taxon i, and aij the effect that taxon j has upon taxon
i, which is proportional to the relative abundance of species j

(i.e.,
xj(t)

N(t)
). We assumed the interactions between species i and

j is not necessarily bilateral, which can take one of six possible
forms based on the signs of aij/aji (i 6= j); +/− (parasitism),
−/− (competition), +/+ (mutualism), +/0 (commensalism),
−/0 (amensalism), and 0/0 (neutral). For simplicity, we did not
consider intra-species interactions, such as the competition for
resources between the members of a same species. However,
a carrying capacity of the environment was introduced. We
fitted relative abundance data to the gLV equations using the
Levenberg-Marquardt algorithm for non-linear least squares
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minimization, implemented by LMFIT (Newville et al., 2016)
which is a high-level interface to non-linear optimization and
curve fitting tool for Python.

Forward Stepwise Regression
We used a forward stepwise regression method for the gLV
model selecting interactions that explain most of the population
dynamics of microbial species. This method started with no
interaction coefficients in the model (i.e., only with growth
terms), testing the addition of each interaction coefficient using
a comparison criterion, adding the interaction if it improves the
model the most, and repeating this process until no improvement
of the model fitting. Stepwise regression is prone to overfitting
the data, which arises from searching a large space of possible
models. We use Bayesian information criterion (BIC) (Kass and
Wasserman, 1995) as a selection criterion in order to solve the
overfitting problem by introducing a penalty term for the number
of parameters in the model. BIC is calculated by

BIC = U·ln

(

RSS

U

)

+ ln (U)∗ V (2)

where U is the number of data points, and V the number of
variable parameters in the glV model. Residual sum of squares
(RSS) over the whole data set is given by

RSS =
∑T

t= 1

∑n

i= 1
(
xti
Nt

−
xti
ˆ

N t̂
)2 (3)

where xi
N and

x̂i
Nˆ are the actual observed and predicted relative

abundance, respectively. T is the total number of time points, and
n is the number of species in the ecosystem.

Therefore, a lower BIC implies either a better fit, fewer
explanatory variables, or both.

Bootstrap Aggregating (Bagging)
In order to attenuate the instability problem of forward stepwise
regression, we introduced bootstrap aggregating strategy for
noise-reduction (Breiman, 1996) by randomly partitioning the
data into two sets: training set and test set. A typical way to test for
accuracy in models created by stepwise regression is to evaluate
the models against a test set that was not used for model creation.
Accuracy is then calculated as errors between the values predicted
by the model and data in the test set. In order to assess both
the descriptive and predictive power, we fitted the models to the
training set but evaluate the models to the whole data set. The
procedure is performed in the following steps:

1. At each iteration, partitioning the data into a training set and
a test set.

2. The gLV model fitting on the training set and BIC calculated
for the best parameters starting with only growth terms, and
all interaction coefficients are assigned to a parameter set
TEST {aji}.

3. Each single and pairwise interaction coefficient in the TEST
{aji} is separately added to current model, then a BIC is
calculated over the whole data set. After scanning over all
coefficients in the TEST {aji}, the one (or pairwise) that

generated the lowest BIC is transferred to a parameter set
SELECT. If multiple models have similar BIC values that are
close to the lowest BIC (1BIC < 2), one of them is randomly
selected. The new model then consists of all coefficients in
SELECT {aji}.

4. Repeating step 3 for the new model to evaluate the model
fitting after addition of (remaining) coefficients in the TEST
{aji} and update the lowest BIC accordingly.

5. Iteration stops when additional coefficients no longer reduce
the lowest BIC. The resulted coefficients in the SELECT {aji}
comprise an estimate of the interaction network.

This forward stepwise regression process was repeated many
times (up to 1,000 bootstraps in this study), each resulting in a set
of interaction coefficients that compose a specific gLVmodel. The
python code we used for generating candidate models is provided
in Supplementary Code S1. These models were then aggregated.
Next, we removedmodels that violated biological constrains (e.g.,
based on a minimum population size and/or a minimum number
for each species in the community). After filtering, we selected
models with minimum BIC values (the minimum BIC + 10%
allowance), and their parameters (growth rates and interaction
coefficients) were compiled. Finally, the significant interactions
were determined through one-sample t-test with the value of
P(aij 6= 0) > 95%.

Data
Mounier et al. (2008) investigated interactions between
yeast and bacteria within a cheese microbial community
composed of three yeasts (Debaryomyces hansenii 1L25,
Geotrichum candidum 3E17, and Yarrowia lipolytica 1E07) and
six bacteria (Arthrobacter arilaitensis 3M03, Brevibacterium
aurantiacum 2M23, Corynebacterium casei2M01, Hafnia alvei
2E12, Leucobacter sp. strain 1L36, and Staphylococcus xylosus
1L18). Two experiments were conducted to measure the
microbial dynamics during the development of the ecosystem.
In the first one, the dynamic of the full ecosystem was studied.
Cheeses were sampled in duplicate every day for 21 days for
microbial enumeration together with measurements of lactose,
lactate content, and pH. The second experiment aimed to
investigate the effect of the absence of one, two or three yeasts
(all combination were tested) in the ecosystem development.
To test our procedure, we studied the development dynamics of
this cheese microbiome community [data were obtained from
(Mounier et al., 2008)].

Kostic et al. studied the impact of the gutmicrobiome dynamic
on type 1 diabetes (T1D). They recruited between September
2008 and August 2010 in Finland and Estonia 33 newborns
with positive cord blood testing for HLA DR-DQ, which are
alleles conferring risk of T1D. The infants were followed-up until
the age of 3 years with monthly stool samples. Data regarding
infections, drugs consumption (in particular antibiotics), diet
were collected. Serum samples were collected at 0 (cord blood),
3, 6, 12, 18, 24, and 36 months to test for 4 diabetes-
associated autoantibodies. 16S rRNA sequencing were performed
for accessing the fecal microbiota composition. Eleven children
had at least two positive autoantibodies seroconversion during
their follow-up but did not develop T1D (i.e., seroconverters).
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Four children progressed to T1D by the end of the study.
The 11 seroconverters were matched with the 22 healthy
controls for gender, HLA genotype and country. We applied
our procedure on a set of 16S rDNA sequences (in OTUs)
of the gut microbiota of 11 T1D progression children (seven
seroconverters and four who progressed to T1D) and 22
healthy controls between the age of 0–3 years old [data were
obtained from Supplementary Table S2 published in Kostic et al.
(2015)]. In specific, we used the relative abundance of five
bacterial classes: Actinobacteria; Bacteroidia, Bacilli, Clostridia,
and Gammaproteobacteria.
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1,000 bootstraps with one-sample t-test P(aij 6= 0) > 95%. Fifty to ninety percent

of the whole data set was randomly selected for training the gLV model.

Supplementary Table S2 | Comparisons of microbial interactions inferred from

our proposed procedure and those resulted from MetaMIS.

Supplementary Table S3 | The strengths of significant gut microbial

interactions (class level) for the health children and the T1D progressors (Kostic

et al., 2015), resulted from 1,000 bootstraps with one-sample t-test P(aij 6= 0)

> 95%. Eighty percent of the whole data set was randomly selected for

training the gLV model.

Supplementary Code S1 | Python code for the procedure generating candidate

models and an example of implementation with the cheese dataset

(Supplementary Data 1). https://bitbucket.org/RyanGao/supplementary_code_

1/get/0a0cea8846c0.zip

Supplementary Data 1 | Cell counts of the cheese microbial community

(Mounier et al., 2008). Abbreviations in the table: D, D. Hansenii; Y, Y. Lipolytica;

G, G. Candidum; L, Leucobacter sp.; C, sum of Arthrobacter arilaitensis, Hafnia

alvei, Corynebacterium casei, Brevibacterium aurantiacum, and Staphylococcus

xylosus.
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