J. O'neill, Tackling drug-resistant infections globally: final report and recommendations: review on antimicrobial resistance, 2016.

K. M. Papp-wallace, A. Endimiani, M. A. Taracila, and R. A. Bonomo, Carbapenems: past, present, and future, Antimicrob Agents Chemother, vol.55, pp.4943-60, 2011.

P. Nordmann, L. Dortet, and L. Poirel, Carbapenem resistance in Enterobacteriaceae: here is the storm!, Trends Mol Med, vol.18, pp.263-72, 2012.

L. K. Logan and R. A. Weinstein, The epidemiology of carbapenem-resistant Enterobacteriaceae: the impact and evolution of a global menace, J Infect Dis, vol.215, pp.28-36, 2017.

K. Bush and G. A. Jacoby, Updated functional classification of beta-lactamases, Antimicrob Agents Chemother, vol.54, pp.969-76, 2010.

R. Canton and T. M. Coque, The CTX-M beta-lactamase pandemic, Curr Opin Microbiol, vol.9, pp.466-75, 2006.

A. M. Kelly, B. Mathema, and E. L. Larson, Carbapenem-resistant Enterobacteriaceae in the community: a scoping review, Int J Antimicrob Agents, vol.50, pp.127-161, 2017.

L. Gauthier, L. Dortet, G. Cotellon, E. Creton, G. Cuzon et al., Diversity of carbapenemase-producing Escherichia coli isolates, Antimicrob Agents Chemother, vol.62, pp.266-284, 2012.

J. F. Turton, M. Doumith, K. L. Hopkins, C. Perry, D. Meunier et al., Clonal expansion of Escherichia coli ST38 carrying a chromosomally integrated OXA-48 carbapenemase gene, J Med Microbiol, vol.65, pp.538-584, 2016.

Z. Zong, S. Fenn, C. Connor, Y. Feng, and A. Mcnally, Complete genomic characterization of two Escherichia coli lineages responsible for a cluster of carbapenem-resistant infections in a Chinese hospital, J Antimicrob Chemother, vol.73, pp.2340-2346, 2018.

G. Peirano, P. A. Bradford, K. M. Kazmierczak, R. E. Badal, M. Hackel et al., Global incidence of carbapenemase-producing Escherichia coli ST131, Emerg Infect Dis, vol.20, pp.1928-1959, 2014.

G. C. Cerqueira, A. M. Earl, C. M. Ernst, Y. H. Grad, J. P. Dekker et al., Multi-institute analysis of carbapenem resistance reveals remarkable diversity, unexplained mechanisms, and limited clonal outbreaks, Proc Natl Acad Sci, vol.114, pp.1135-1175, 2017.

L. Roer, S. Overballe-petersen, F. Hansen, K. Schonning, M. Wang et al., Escherichia coli sequence type 410 is causing new international high-risk clones, mSphere, vol.3, pp.337-355, 2018.

R. Zhang, L. Liu, H. Zhou, E. W. Chan, J. Li et al., Nationwide surveillance of clinical carbapenem-resistant Enterobacteriaceae (CRE) strains in China, EBioMedicine, vol.19, pp.98-106, 2017.

S. Dam, J. M. Pages, and M. Masi, Dual regulation of the small RNA MicC and the quiescent porin OmpN in response to antibiotic stress in Escherichia coli, Antibiotics (Basel), vol.6, p.33, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01831722

, Performance Standards for Antimicrobial Susceptibility Testing, Twenty-Seventh Informational Supplement, M100-S25 edition

K. Sprouffske and A. Wagner, Growthcurver: an R package for obtaining interpretable metrics from microbial growth curves, BMC Bioinformatics, vol.17, p.172, 2016.

W. Huang, L. Li, J. R. Myers, and G. T. Marth, ART: a next-generation sequencing read simulator, Bioinformatics, vol.28, pp.593-597, 2012.

C. S. Chin, D. H. Alexander, P. Marks, A. A. Klammer, J. Drake et al., Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data, Nat Methods, vol.10, pp.563-572, 2013.

S. Koren, B. P. Walenz, K. Berlin, J. R. Miller, N. H. Bergman et al., Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation, Genome Res, vol.27, pp.722-758, 2017.

D. E. Deatherage and J. E. Barrick, Identification of mutations in laboratory-evolved microbes from next-generation sequencing data using breseq, Methods Mol Biol, vol.1151, pp.165-88, 2014.

A. Bankevich, S. Nurk, D. Antipov, A. A. Gurevich, M. Dvorkin et al., SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing, J Comput Biol, vol.19, pp.455-77, 2012.

A. Gurevich, V. Saveliev, N. Vyahhi, and G. Tesler, QUAST: quality assessment tool for genome assemblies, Bioinformatics, vol.29, pp.1072-1077, 2013.

T. Seemann, Prokka: rapid prokaryotic genome annotation, Bioinformatics, vol.30, pp.2068-2077, 2014.

E. Zankari, H. Hasman, S. Cosentino, M. Vestergaard, S. Rasmussen et al., Identification of acquired antimicrobial resistance genes, J Antimicrob Chemother, vol.67, pp.2640-2644, 2012.

A. Carattoli, E. Zankari, A. Garcia-fernandez, V. Larsen, M. Lund et al., In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing, Antimicrob Agents Chemother, vol.58, pp.3895-903, 2014.

L. Guy, J. R. Kultima, and S. G. Andersson, genoPlotR: comparative gene and genome visualization in R, Bioinformatics, vol.26, pp.2334-2339, 2010.

A. J. Page, C. A. Cummins, M. Hunt, V. K. Wong, S. Reuter et al., Roary: rapid large-scale prokaryote pan genome analysis, Bioinformatics, vol.31, pp.3691-3694, 2015.

W. Li and A. Godzik, Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences, Bioinformatics, vol.22, pp.1658-1667, 2006.

K. Katoh and D. M. Standley, MAFFT multiple sequence alignment software version 7: improvements in performance and usability, Mol Biol Evol, vol.30, pp.772-80, 2013.

H. Li and R. Durbin, Fast and accurate short read alignment with Burrows-Wheeler transform, Bioinformatics, vol.25, pp.1754-60, 2009.

A. C. Darling, B. Mau, F. R. Blattner, and N. T. Perna, Mauve: multiple alignment of conserved genomic sequence with rearrangements, Genome Res, vol.14, pp.1394-403, 2004.

A. Mckenna, M. Hanna, E. Banks, A. Sivachenko, K. Cibulskis et al., The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data, Genome Res, vol.20, pp.1297-303, 2010.

P. Danecek, A. Auton, G. Abecasis, C. A. Albers, E. Banks et al., The variant call format and VCFtools, Bioinformatics, vol.27, pp.2156-2164, 2011.

P. Cingolani, A. Platts, L. Le-wang, M. Coon, T. Nguyen et al., A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118, vol.6, pp.80-92

P. Kumar, S. Henikoff, and P. C. Ng, Predicting the effects of coding nonsynonymous variants on protein function using the SIFT algorithm, Nat Protoc, vol.4, pp.1073-81, 2009.

H. Li, B. Handsaker, A. Wysoker, T. Fennell, J. Ruan et al., The sequence alignment/map format and SAMtools, Bioinformatics, vol.25, pp.2078-2087, 2009.

N. J. Croucher, A. J. Page, T. R. Connor, A. J. Delaney, J. A. Keane et al., Rapid phylogenetic analysis of large samples of recombinant bacterial whole genome sequences using Gubbins, Nucleic Acids Res, vol.43, p.15, 2015.

A. Stamatakis, RAxML version 8: a tool for phylogenetic analysis and postanalysis of large phylogenies, Bioinformatics, vol.30, pp.1312-1315, 2014.

G. Talavera and J. Castresana, Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments, Syst Biol, vol.56, pp.564-77, 2007.

D. Darriba, G. L. Taboada, R. Doallo, and D. Posada, ProtTest 3: fast selection of bestfit models of protein evolution, Bioinformatics, vol.27, pp.1164-1169, 2011.

A. Behdenna, J. Pothier, S. S. Abby, A. Lambert, and G. Achaz, Testing for independence between evolutionary processes, Syst Biol, vol.65, pp.812-835, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01490961

A. C. Chang and S. N. Cohen, Construction and characterization of amplifiable multicopy DNA cloning vehicles derived from the P15A cryptic miniplasmid, J Bacteriol, vol.134, pp.1141-56, 1978.

J. Sambrook, E. F. Fritsch, and T. Maniatis, Molecular cloning, a laboratory manual, 1989.

A. Potron, E. Rondinaud, L. Poirel, O. Belmonte, S. Boyer et al., Genetic and biochemical characterisation of OXA-232, a carbapenem-hydrolysing class D beta-lactamase from Enterobacteriaceae, Int J Antimicrob Agents, vol.41, pp.325-334, 2013.

R. M. Lennen, N. Wallin, A. I. Pedersen, M. Bonde, M. Luo et al., Transient overexpression of DNA adenine methylase enables efficient and mobile genome engineering with reduced off-target effects, Nucleic Acids Res, vol.44, p.36, 2016.

A. Moura, A. Criscuolo, H. Pouseele, M. M. Maury, A. Leclercq et al., Whole genome-based population biology and epidemiological surveillance of Listeria monocytogenes, Nat Microbiol, vol.2, p.16185, 2016.
URL : https://hal.archives-ouvertes.fr/pasteur-01415883

O. Kocaoglu and E. E. Carlson, Profiling of beta-lactam selectivity for penicillinbinding proteins in Escherichia coli strain DC2, Antimicrob Agents Chemother, vol.59, pp.2785-90, 2015.

R. A. Alm, M. R. Johnstone, and S. D. Lahiri, Characterization of Escherichia coli NDM isolates with decreased susceptibility to aztreonam/avibactam: role of a novel insertion in PBP3, J Antimicrob Chemother, vol.70, pp.1420-1428, 2015.

J. M. Pages, C. E. James, and M. Winterhalter, The porin and the permeating antibiotic: a selective diffusion barrier in Gram-negative bacteria, Nat Rev Microbiol, vol.6, pp.893-903, 2008.

A. Basle, G. Rummel, P. Storici, J. P. Rosenbusch, and T. Schirmer, Crystal structure of osmoporin OmpC from E. coli at 2.0 A, J Mol Biol, vol.362, pp.933-975, 2006.

K. J. Huang and M. M. Igo, Identification of the bases in the ompF regulatory region, which interact with the transcription factor OmpR, J Mol Biol, vol.262, pp.615-643, 1996.

Y. Zhang, A. Kashikar, C. A. Brown, G. Denys, and K. Bush, Unusual Escherichia coli PBP 3 insertion sequence identified from a collection of Carbapenemresistant Enterobacteriaceae tested in vitro with a combination of ceftazidime-, ceftaroline-, or aztreonam-avibactam, Antimicrob Agents Chemother, vol.61, pp.389-406, 2017.

T. Ferenci and K. Phan, How porin heterogeneity and trade-offs affect the antibiotic susceptibility of Gram-negative bacteria, Genes (Basel), vol.6, pp.1113-1137, 2015.

J. Kohler, K. L. Dorso, K. Young, G. G. Hammond, H. Rosen et al., In vitro activities of the potent, broad-spectrum carbapenem MK-0826 (L-749,345) against broad-spectrum beta-lactamase-and extended-spectrum beta-lactamase-producing Klebsiella pneumoniae and Escherichia coli clinical isolates, Antimicrob Agents Chemother, vol.43, pp.1170-1176, 1999.

A. Jaffe, Y. A. Chabbert, and O. Semonin, Role of porin proteins OmpF and OmpC in the permeation of beta-lactams, Antimicrob Agents Chemother, vol.22, pp.942-950, 1982.

D. Hughes and D. I. Andersson, Evolutionary trajectories to antibiotic resistance, Annu Rev Microbiol, vol.71, pp.579-96, 2017.

P. Collignon, J. J. Beggs, T. R. Walsh, S. Gandra, and R. Laxminarayan, Anthropological and socioeconomic factors contributing to global antimicrobial resistance: a univariate and multivariable analysis, Lancet Planet Health, vol.2, pp.398-405, 2018.

A. M. Queenan and K. Bush, Carbapenemases: the versatile beta-lactamases, Clin Microbiol Rev, vol.20, pp.440-58, 2007.

A. Fajardo-lubian, B. Zakour, N. L. Agyekum, A. Qi, Q. Iredell et al., Host adaptation and convergent evolution increases antibiotic resistance without loss of virulence in a major human pathogen, PLoS Pathog, vol.15, p.1007218, 2019.

X. Didelot, G. Meric, D. Falush, and A. E. Darling, Impact of homologous and nonhomologous recombination in the genomic evolution of Escherichia coli, BMC Genomics, vol.13, p.256, 2012.

A. Jensen, O. Valdorsson, N. Frimodt-moller, S. Hollingshead, and M. Kilian, Commensal streptococci serve as a reservoir for beta-lactam resistance genes in Streptococcus pneumoniae, Antimicrob Agents Chemother, vol.59, pp.3529-3569, 2015.

A. Zapun, C. Morlot, and M. K. Taha, Resistance to beta-lactams in Neisseria ssp due to chromosomally encoded penicillin-binding proteins, Antibiotics (Basel), vol.5, p.35, 2016.

M. W. Pletz, M. Rau, J. Bulitta, D. Roux, A. Burkhardt et al., Ertapenem pharmacokinetics and impact on intestinal microflora, in comparison to those of ceftriaxone, after multiple dosing in male and female volunteers, Antimicrob Agents Chemother, vol.48, pp.3765-72, 2004.

M. Adler, M. Anjum, D. I. Andersson, and L. Sandegren, Combinations of mutations in envZ, ftsI, mrdA, acrB and acrR can cause high-level carbapenem resistance in Escherichia coli, J Antimicrob Chemother, vol.71, pp.1188-98, 2016.

C. R. Dean, D. T. Barkan, A. Bermingham, J. Blais, F. Casey et al., Mode of action of the monobactam LYS228 and mechanisms decreasing in vitro susceptibility in Escherichia coli and Klebsiella pneumoniae, Antimicrob Agents Chemother, vol.62, pp.1200-1218, 2018.

M. Adler, M. Anjum, D. I. Andersson, and L. Sandegren, Influence of acquired betalactamases on the evolution of spontaneous carbapenem resistance in Escherichia coli, J Antimicrob Chemother, vol.68, pp.51-60, 2013.

B. Stecher, R. Denzler, L. Maier, F. Bernet, M. J. Sanders et al., Gut inflammation can boost horizontal gene transfer between pathogenic and commensal Enterobacteriaceae, Proc Natl Acad Sci U S A, vol.109, pp.1269-74, 2012.

T. Kallonen, H. J. Brodrick, S. R. Harris, J. Corander, N. M. Brown et al., Systematic longitudinal survey of invasive Escherichia coli in England demonstrates a stable population structure only transiently disturbed by the emergence of ST131, Genome Res, vol.27, pp.1437-1486, 2017.

A. Ortega, D. Saez, V. Bautista, S. Fernandez-romero, N. Lara et al., Carbapenemase-producing Escherichia coli is becoming more prevalent in Spain mainly because of the polyclonal dissemination of OXA-48, J Antimicrob Chemother, vol.71, pp.2131-2139, 2016.

F. Zhang, D. Zhu, L. Xie, X. Guo, Y. Ni et al., Molecular epidemiology of carbapenemase-producing Escherichia coli and the prevalence of ST131 subclone H30 in Shanghai, China, Eur J Clin Microbiol Infect Dis, vol.34, pp.1263-1272, 2015.

P. Bioproject,

P. Bioproject,

, Custom made scripts developed for this project, QRDR and pseudochr

N. E. Coli, Genome Assembly and Annotation report

E. Enterobase and . Coli-database,

, Publisher's Note

, Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations