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Intracellular Staphylococcus aureus persisters
upon antibiotic exposure

Frédéric Peyrusson', Hugo Varet® 2, Tiep Khac Nguyen', Rachel Legendre® 2, Odile Sismeiro3,

Jean-Yves Coppée3, Christiane Wolz® 4, Tanel Tenson® & Francoise Van Bambeke =

Bacterial persister cells are phenotypic variants that exhibit a transient non-growing state and
antibiotic tolerance. Here, we provide in vitro evidence of Staphylococcus aureus persisters
within infected host cells. We show that the bacteria surviving antibiotic treatment within
host cells are persisters, displaying biphasic killing and reaching a uniformly non-responsive,
non-dividing state when followed at the single-cell level. This phenotype is stable but
reversible upon antibiotic removal. Intracellular S. aureus persisters remain metabolically
active but display an altered transcriptomic profile consistent with activation of stress
responses, including the stringent response as well as cell wall stress, SOS and heat shock
responses. These changes are associated with multidrug tolerance after exposure to a single
antibiotic. We hypothesize that intracellular S. aureus persisters may constitute a reservoir for
relapsing infection and could contribute to therapeutic failures.
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ersisters are subpopulations of cells in bacterial cultures that

adopt a transient phenotype characterized by a non-

growing state and a tolerance to lethal concentrations of
antibiotics!. As opposed to resistance, persistence is not geneti-
cally inherited. Experimentally, persisters are usually evidenced
by biphasic kill curves, when a bulk of susceptible bacteria is
rapidly killed by exposure to high antibiotic concentrations, while
a small proportion survives for longer time?3. Recent advances in
single-cell analyses have allowed characterizing persisters in more
details, and notably revealed their non-growing state. There is
now convincing and convergent experimental evidence of their
clinical relevance, as they contribute to the establishment of
chronic infections as well as to the emergence of antibiotic
resistance®.

The switch to persister phenotype has been largely related to
the activation of the stringent response, a global and widely dis-
tributed adaptation program that occurs in response to various
stresses and modulates many physiological activities. However, its
exact role in persistence regulation is still debated>®. Additionally,
tolerance is often considered as a passive consequence of growth
arrest’, which is now challenged by mounting evidence of active
responses in some species®. Similarly, whether or not dormancy is
sufficient to explain antibiotic tolerance is also questioned®.

Although persister cells have been identified in all major
pathogens!0-13, a switch to a persister phenotype has been pro-
posed to occur inside eukaryotic cells for only very few intra-
cellular bacterial®1> in response to the environmental stress
imposed by the host cell.

Intracellular survival of Staphylococcus aureus is widely
recognized as a major factor in the recurrence of infections!'® and
intracellular forms of S. aureus have been shown to become less
responsive to antibiotic action!”, suggesting a switch to a persister
phenotype.

In the present work, we provide evidence for the presence of S.
aureus intracellular persisters after antibiotic exposure and
characterize their dynamics using a fluorescence dilution-based
method to monitor bacterial division at the single cell level. We
show that intracellular bacterial populations are characterized by
a biphasic killing, accompanied by a rapid switch to a uniformly
non-dividing and non-responsive state, which is readily reversible
upon antibiotic removal. As a potential issue in therapeutic fail-
ures, we then aim to better understand the factors leading to
antibiotic persistence and tolerance. Using RNA-sequencing we
show that these persisters harbor a major transcriptomic repro-
gramming and remain metabolically active despite prolonged
persistence within the host cells. While neither ATP nor amino
acid limitation occur, we find that bacteria adjust their central
carbon metabolism and redirect transcription to the benefit of a
network of adaptive responses. Strikingly, after exposure to a
single antibiotic, these responses lead to tolerance to multiple
antibiotic classes that act on unrelated targets.

Results

S. aureus surviving to antibiotics in cells are persisters.
Concentration-response curves of typical antistaphylococcal
antibiotics targeting the cell wall (oxacillin), protein synthesis
(clarithromycin), and replication (moxifloxacin), revealed their
inability to clear bacteria from J774 macrophages: after 24 h of
infection with high antibiotic concentrations, an antibiotic-
tolerant pool of cultivable S. aureus persisted inside the macro-
phages (Fig. 1a). In parallel, time-kill curves performed in the
presence of high concentration of each of these antibiotics
revealed a biphasic killing: a bulk of the bacterial population was
susceptible and rapidly killed while a subpopulation with a slower
killing rate was persisting for a much longer period of time. A

similar profile was observed against planktonic cultures, but the
persisting subpopulation was considerably lower than intra-
cellularly (Fig. 1b). This profile is considered as a hallmark of
antibiotic persistence-.

Persisters are subpopulations that transiently adopt a non-
growing and a tolerant state. To confirm these observations and
further characterize this phenotype, we first set out to provide
evidence for non-growing phenotype of intracellular S. aureus by
setting up a fluorescence dilution-based method to monitor
bacterial division at the single cell level'®. We used S. aureus
SH1000 expressing GFP from a tetracycline-inducible promotor,
which allows one to follow cell division by monitoring the
decrease in GFP signal intensity per cell after removal of the
inducer. To validate this approach, bacteria in broth were induced
overnight for GFP production, washed from inducer, and diluted
to entry into exponential phase, after which their fluorescence
signals were analyzed by flow cytometry (Fig. 1c). A homo-
geneous replication within the bacterial population was observed
with unimodal distribution of the signal gradually declining over
time, as confirmed in microscopy (Fig. 1d). When comparing the
fluorescence dilution with the cfu counting, both methods
revealed similar growth curves for 5 generations and similar
doubling times (Fig. le), validating fluorescence dilution for
measurement of bacterial replication!®.

The same method was applied to characterize the dynamics of
intracellular S. aureus replication. Macrophages infected by GFP-
expressing inoculum revealed bacteria with apparent normal
morphology and distinct fluorescence status depending on the
antibiotic pressure (Fig. 1f).

This was examined by analyzing the flow cytometry profiles of
the replication of intraphagocytic bacteria challenged with
different antibiotic concentrations during 48h of infection
(Fig. 1g). Exposure to low antibiotic pressure resulted in an
equilibrium between killing and replication. Among the bulk of
growing bacteria, a subpopulation rapidly entered into a non-
growing state (Supplementary Fig. 1a, b). High antibiotic pressure
resulted in both killing of replicating bacteria and larger amounts
of non-growing bacteria, leaving a homogenous population of
non-growing persisters until the end of the experiment.

Persisters revert to a normal phenotype once antibiotic
pressure is removed. We therefore determined the reversibility
of the phenotype after antibiotic removal. To this effect, we tested
growth resumption and susceptibility towards antibiotics within a
non-replicating population collected by cell sorting from infected
macrophages after reinoculation in broth (Fig. 1h). A full
reversion of the phenotype was observed, in terms of both
resulting growth at 24 h and antibiotic susceptibility. Addition-
ally, a biphasic killing profile was also observed for bacteria
harvested from macrophages (Fig. 1i). This transient bidirectional
switch demonstrates that these intracellular non-dividing sub-
populations are persisters. Reversion was also confirmed
intracellularly, where persisters started dividing spontaneously
within the cell after removal of the antibiotic pressure (Fig. 1j and
Supplementary Fig. 1c, d).

This intracellular persistence, together with the ability to
resume intracellular replication, are considered as two key
determinants for relapsing infections and likely contribute to
the clinical observation of rapid recolonization soon after the end
of therapy?’. Intracellular replication is largely described in
nonprofessional phagocytes, while intracellular persistence has
been reported, although not systematically, in professional
phagocytes?!, and referred to as cell induced-persistence?2. Yet,
intrinsic cell defense mechanisms are critical to trigger either
persistence or replication. Illustrating this duality, we observed
active bacterial replication in untreated J774 macrophages but not
in primary human macrophages (Fig. 1k, 1 and Supplementary
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Fig. le, f), which can host a viable persister pool, albeit less
abundant than the one induced by antibiotic pressure in ]J774
macrophages.

Thus, we propose here a model in which antibiotic pressure
could represent a major trigger factor for intracellular persistence
in more permissive cell types. Similar experiments were
performed in a series of human cells (epithelial cells, monocytes,

GFP intensity

osteoblasts, keratinocytes) and confirm the general character of
these observations (Supplementary Fig. 2). Because these
antibiotic-induced persisters readily reverse upon drug removal,
they could constitute a viable reservoir that acts as a major source
of dissemination and relapsing infections.

To better understand the factors underlying persistence, we
undertook an in-depth RNA-sequencing analysis of these
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Fig. 1 Evidence and dynamics of intracellular persisters of S. aureus. a Antibiotic activity against S. aureus infecting J774 macrophages exposed to
increasing concentrations of antibiotics for 24 h (data expressed as log;o cfu reduction from postphagocytosis inoculum). b Time-kill curves against S.
aureus infecting J774 macrophages (solid lines) or in exponential phase culture (dotted lines) exposed to 50x MIC of antibiotics for the indicated periods.
¢ Fluorescence dilution (FD) experiment with S. aureus expressing inducible GFP. Bacteria washed from inducer at the entry of exponential phase were
grown in fresh broth. The graph shows flow cytometric profiles of the frequency of events as a function of GFP intensity over time. d Corresponding images
in epifluorescence microscopy. e Corresponding bacterial replication curves determined by FD and ODe¢z0nm (OD), which displayed similar doubling times
(e.g., 27 min and 28.7 min between 1h and 2 h, respectively; N [number of generations]). f Confocal microscopy of infected J774 macrophages exposed to
50x MIC moxifloxacin or under control conditions (2x MIC gentamicin) for 24 h. Arrows: bacteria with diluted signal (bar: 10 um). g Flow cytometric
profiles of bacteria recovered from macrophages exposed to 2x(left) or 50x MIC (right) of each antibiotic for the indicated periods. h, i Activity of oxacillin
(h, concentration-effect at 24 h; i, time-kill curve with 50x MIC oxacillin) in broth, against an exponential phase culture (open symbols) or bacteria
recovered from macrophages exposed to 50x MIC oxacillin for 24 h (closed symbols). j Flow cytometric profiles of bacteria recovered from macrophages
exposed to 50x MIC oxacillin for 24 h (blue), then washed from oxacillin and reincubated in control conditions (2x MIC gentamicin) for an additional
period of 24 h (red). k Flow cytometric profiles of bacteria recovered from control (2x MIC gentamicin) J774 and human macrophages for the indicated
periods. I Intracellular inoculum in infected J774 and human macrophages incubated for 24 h with 50x MIC oxacillin or in control conditions (2x

MIC gentamicin). Statistical significance was determined by two-tailed Student's t-test. Data are means £ SEM (a, b, h, i, I) or representatives results
(¢, d, e, f, g j, k) of three independent experiments. a, b, e, h, i, I, Source data are provided as a Source Data file.

intracellular persisters induced by prolonged antibiotic exposure
within eukaryotic cells, as a model for environmental stresses that
bacteria face in a clinical context.

Persisters exhibit an altered transcriptomic profile. Macro-
phages were infected by GFP-expressing bacteria and challenged
by oxacillin for 24h to induce homogeneous populations of
persisters. Cell sorting was used to isolate the subset of GFP-
expressing bacteria (GFP+) that display a propidium iodide
negative signal (PI—) (Fig. 2a). The vast majority of GFP+/PI—
events were able to form colonies, confirming that they were
viable.

The transcriptomic profile of sorted persisters was assessed by
RNA-sequencing and reads of each sample were mapped on 2967
protein-coding genes from the reference genome?>. Differential
expression analysis identified 1477 differentially expressed genes
(DEG) between the intracellular persisters and control bacteria
(Fig. 2b). Hierarchical clustering of this sample set revealed both
major divergences between these conditions and high within-
group reproducibility. Of the 1477 DEGs, 710 were upregulated
and 767 downregulated in persisters (Supplementary Fig. 3).

Over-representation analysis of DEGs revealed that the vast
majority of significantly enriched functions corresponds to
enrichments in downregulated genes (Fig. 2c). A large group of
those belongs to metabolism processes, indicating an overall
decrease in metabolic activities, some of them being typically
associated with proliferation processes (e.g., nucleotide metabo-
lism and oxidative phosphorylation). Of interest, proliferation-
related genes are described to be repressed to the benefit of genes
required for stress-defense mechanisms in persisters?4, Down-
regulated gene-sets also unveil an important enrichment in
metabolism of amino acids (e.g., valine, leucine, isoleucine and
lysine biosynthesis), as well as in aminoacyl-tRNA synthetases.
Conversely, regarding enrichment in upregulated functions,
galactose metabolism was the most significantly enriched
function, which may point to deep metabolic network alterations.

Stringent response contributes to the persistence switch. The
persister phenotype has been largely related to the activation of
the stringent response (SR)?>. In response to diverse stresses
(including starvation signals and antibiotics), SR is mediated by
the rapid synthesis of the alarmones (p)ppGpp, leading to deep
transcriptomic reprogramming, especially the repression of
proliferation-related genes and the activation of stress resistance-
and starvation survival-related genes and a halt of bacterial

division?. However, recent reports challenge its exact role as a
central regulator of persistence26:27,

In most firmicutes, (p)ppGpp is synthesized from the GDP/
GTP pool via three enzymes: the bifunctional enzyme Rsh that
possesses synthase and hydrolase domains, and RelP and RelQ,
which only have a synthase domain?%. The molecular responses
initiated by (p)ppGpp seem to differ among species. In some
firmicutes, (p)ppGpp has been proposed to affect transcription
indirectly through a reduction in the intracellular pool of
nucleotides following (p)ppGpp synthesis?8. Interestingly, the
expression of regulators differs depending on the nature of the
stress: while Rsh is mainly induced under amino acid limitation2?,
RelP and RelQ have been shown to be mostly induced by cell
wall-targeting antimicrobials®. In S. aureus, CodY regulon is also
an integral part of SR: under amino acid starvation, silenced genes
are mainly downregulated through the inhibitory effect of (p)
ppGpp whereas the majority of activated genes are indirectly
regulated via de-repression of CodY. Yet, the implication of SR in
intracellular persistence has not yet been conclusively clarified.

Because SR is a highly dynamic process, we investigated the
expression of its regulatory network during infection. Quantita-
tive RT-PCR indicated a rapid and transitory boost of these
regulators soon after uptake of S. aureus by macrophages (Fig. 3a):
relQ reached its maximal transcription level 30 min after
phagocytosis, and relP, codY, and, to a lesser extent rsh, after 2
h. Limited expression of rsh is compatible with its pivotal role in
the SR: due to its dual hydrolase/synthase activity, Rsh finely
balances the basal levels of (p)ppGpp and prevents its toxic
accumulation!.

Conversely, at later time points, our transcriptomic approach
indicates that the vast majority (73%) of genes within the SR
stimulon display a divergent expression signature (repression or
non-statistically significant changes; Supplementary Fig. 4),
further supporting that the activation of SR is transitory.

To delineate the contribution of SR to the observed phenotype,
macrophages were infected with mutants defective in the rsh
synthase domain and/or codY (HGOO01 strain and isogenic
mutants; see Supplementary Table 1) and exposed to high
antibiotic pressure (Fig. 3b). Interestingly, with all antibiotics
tested, the load of persisters was lower in the rsh-negative
background than in the parental strain, the difference being less
marked with oxacillin. Double mutation in SR regulators led
to an additional decrease in the residual load of persisters
with oxacillin, and reached maximal effect upon moxifloxacin
exposure.

These results strongly suggest that SR is transiently implicated
during the initiation of intracellular persistence through (p)
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Fig. 2 Intracellular antibiotic-induced persisters exhibit a profoundly altered transcriptomic profile. a Experimental procedure for sorting and RNA-
sequencing of S. aureus persisters of SH1000. Cells infected by GFP-expressing bacteria were exposed to 50x MIC oxacillin to allow for the induction of a
homogeneous population of persisters. The subset of intact persisters and control samples were collected and sorted by fluorescence-activated cell sorting
(FACS) by gating GFP positive (GFP+) and propidium iodide negative signals (PI—), and processed for RNA sequencing (three replicates per condition).
89% and 92% of sorted bacteria from samples and control were able to form colonies, respectively. Differentially expressed genes (DEG) were then
analyzed by hierarchical clustering and over-representation analysis. b Heatmap displaying hierarchical clustering of DEGs between intracellular persisters
and control samples from three biological replicates (color code is function of a Variance Stabilizing Transformation [VST]). ¢ Over-representation analysis
of DEGs. The graph displays over-represented up- and downregulated KEGG gene-sets (EnrichmentBrowser R package), using the Fisher's Exact Test and
evaluated through Odds-Ratio. Only gene-sets with a false discovery rate (FDR) lower than 0.05 were considered significantly enriched. Numbers in

brackets represent the number of genes in the gene-set.

ppGpp regulations, in a variable manner depending on the drug
exposure. This supports the hypothesis that the central regulation
is not entirely dependent on SR and that multiple pathways
contribute to the persister phenotype.

Persisters display dysregulated but active protein synthesis.
Originally, persisters were described as being in a strictly dormant
state, in which SR shuts down energy-consuming processes by
turning translation off, thereby leading to antibiotic tolerance32.

In our study, the transcriptomic profile of translation-related
genes reveals a dysregulated pattern (Fig. 3c). Indeed, typical
members of the protein synthesis machinery were found

activated, and displayed a similar trend throughout the whole
duration of infection (Supplementary Fig. 5). In line with
enrichment analysis, aminoacyl-tRNA synthetase encoding genes
were, by contrast, deeply silenced, as is typically encountered
under stringent conditions. Additionally, the observed activation
of ribosome recycling factor (frr) has been described during
abortive initiation mechanism (peptidyl drop-off), leading to
ribosome reuse33.

This trend points to a deep reorientation in protein synthesis
rather than a general shutdown, and likely explains the dual
expression pattern observed here, in which a part of the translation
remains active while another seems to undergo a massive arrest.
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Fig. 3 A transitory boost of stringent response contributes to initiate the switch to intracellular persistence. a Quantitative real-time PCR of transcripts
of stringent response regulators in intracellular persisters exposed to 50x MIC oxacillin for the indicated times. Data, expressed in fold change vs control
samples (extracellular bacteria mixed with J774 cells lysate), are means + SEM of three independent experiments. b Cfus recovered from macrophages
infected by HGOO1 (WT) and its isogenic mutants and exposed to 50x MIC oxacillin, clarithromycin or moxifloxacin for 24 h. Data (expressed as reduction
from the original inoculum) are means = SEM of four independent experiments. The dotted line indicates the limit of detection. Statistical significance was
determined by one-way ANOVA with Dunnett's post-test. Oxacillin [OXA], clarithromycin [CLR], moxifloxacin [MXF]. ¢ MA-plot of genes related to
translation’8. The graph displays the log, Fold Change expression as a function of log, Base Mean (mean expression signal across all samples). Typical
members of the function are pointed and aminoacyl-tRNA synthetases are shown in black. The dotted line indicates the basal expression level in control
samples. Statistical significance is based on adjusted P-value. d Rate of GFP synthesis in intracellular S. aureus. Macrophages were infected by non-induced
bacteria for 24 h, with (persisters) or without (control) 50x MIC oxacillin, and then induced for GFP expression for the indicated periods. Data are means £
SEM of GFP signal from flow cytometric profiles from three independent experiments. a, b, d, Source data are provided as a Source Data file.

To check for the functionality of protein synthesis, we
measured the neo-synthesis of GFP as an indication of the
translation rate. Intracellular persisters selected by oxacillin
responded to induction by producing GFP, indicating that
persisters display reduced, but active translation (Fig. 3d). These
results led us to conclude that persisters are still metabolically
active and that inhibition of translation is not sufficient to explain
the antibiotic tolerance of intracellular S. aureus.

Persistence is not triggered by ATP or amino acid limitation.
Persistence has been extensively studied in nutrient-poor models,

mostly amino acid deprivation, in which bacteria tend to inhibit
protein synthesis and promote amino acid biosynthesis. In sta-
tionary planktonic cultures, where bacteria are usually observed
as dormant, ATP limitation has also been proposed to induce
persistence3%. Recently, stimulation of production of reactive
oxygen species by macrophages has been shown to reduce ATP
levels and to increase antibiotic tolerance.

We therefore measured ATP content in intracellular persisters
released from macrophages, and found no significant difference
from control samples (Fig. 4a), in line with a study showing
that ATP content is not decisive for persister formation in S.
aureus stationary cultures3®. These data suggest that intracellular
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Fig. 4 Intracellular persister formation is not triggered by amino acid limitation nor ATP depletion. a Intrabacterial ATP concentration in intracellular
persisters (exposed to 50x MIC oxacillin for 24 h) and control samples (extracellular bacteria mixed with J774 cells lysate). Appropriate controls were
performed to ensure the absence of contamination by eukaryotic ATP. Data are means + SEM of three independent experiments. Statistical significance
was determined by two-tailed Student's t-test. ns non-statistically significant. b Schematic pathway of genes related to central carbon metabolism,
annotated according to KEGG orthology’8 and Genbank database?3 and their log, Fold Change expression levels. € MA-plot of genes related to amino acid
metabolism within the stringent response stimulon (Supplementary Fig. 4; see reference®®). The graph displays the log, Fold Change expression as a
function of log, Base Mean (mean expression signal across all samples). Genes prominently activated after amino acid depletion24 are pointed. The dotted
line indicates the basal expression level in control samples. Statistical significance is based on adjusted P-value. d Quantitative real-time PCR of transcripts
of genes related to amino acid synthesis in intracellular persisters exposed to 50x MIC oxacillin for the indicated periods. Data are means + SEM of three
independent experiments. a, d Source data are provided as a Source Data file.

persisters are metabolically active and have adapted their
metabolism for ATP maintenance.

The expression pattern of the central metabolic flux (Fig. 4b)
reveals metabolic network alterations: we found altered tran-
scripts levels for glycolysis-related enzymes and evidence of an
important carbon source shift between glucose and lactose,
described as a trigger factor for persistence®’. This result is in
agreement with those of Traxler et al.38 who showed that E. coli
persisters could be formed through a glucose-lactose diauxie in

nutrient-rich conditions. Intracellular persisters also drastically
adapt their respiration status, with an expression program
resembling that observed in anaerobiosis. As revealed by
enrichment analysis, genes related to oxidative phosphorylation
(Supplementary Fig. 6) were mostly repressed3”, to the benefit
of massive D-lactate fermentation. As the expression levels of
TCA cycle genes were rather maintained under these conditions,
they could contribute to the redox balance for sustained
fermentation.
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The transcription signature of the genes related to amino acid
metabolism within the SR stimulon (Fig. 4c) revealed that the vast
majority were silent after 24 h, and also at earlier infection stages
(Fig. 4d), when the transcription of SR regulators is already taking
place. We conclude that amino acid limitation is not a trigger
factor for intracellular persistence. Because these persisters
sustain protein synthesis, we may suppose bacteria rely on other
resource pools available in host cell, thereby ruling out the
vacuolar nutrient-poor model40:41,

Although coherent with studies in Gram-negative pathogens*?,
these conclusions are still under debate for S. aureus, for which
only amino acid limitation has been proposed as a trigger factor
for intracellular persistence24.

Redundant adaptive responses lead to multidrug tolerance. It
was previously hypothesized that a central growth arrest would
lead to the inactivation of antibiotic targets and to tolerance. Such
corrupted targets would prevent fluoroquinolones from generat-
ing DNA breaks, aminoglycosides from causing protein mis-
translation, or pB-lactams from impairing peptidoglycan
reticulation*2. Yet, our model denies pure dormancy of persisters
but rather argues for a switch, partly initiated by SR, to a state
where active processes ensure functional bacterial maintenance.

To better understand factors that underlie tolerance, we first
examined how persisters induced by one drug would reply to
another one. To this effect, intracellular persisters induced by
oxacillin for 24h were then exposed to fluoroquinolones,
macrolides or aminoglycosides for an additional 24 h period in
the continuing presence of oxacillin (Fig. 5a). When combined
with oxacillin, all three antibiotics led to higher reductions in
persister counts than oxacillin during the entire duration of the
experiment and the kinetics of killing remained biphasic
(Supplementary Fig. 7). Strikingly, no additional decrease was
observed when the second drug was added after exposure to
oxacillin. This indicates that oxacillin was able to induce a
phenotype conferring a general tolerance to the four antibiotic
classes, irrespective of their mechanism of action.

This observation strongly suggests that persister and tolerant
phenotype occurs through multiple protective mechanisms
intracellularly.

The gene expression of peptidoglycan biosynthesis is signifi-
cantly reprogrammed within intracellular persisters (Fig. 5b),
matching with an activation of the cell wall stress stimulon
(CWSS), a protective response to cell wall defects and cell wall-
active antibiotics*>. These changes include the induction of genes
within the core of the CWSS: the two-component system vraS/
vraR, and genes involved in the late steps of peptidoglycan
synthesis (i.e., pbp2, the transglycosylase sgtB, and fimtA encoding
a penicillin binding protein with low affinity to -lactams). CWSS
induction provides a certain level of tolerance to most VraS/R-
inducing agents*>. Thus, intracellular persisters exhibit active
responses for cell wall maintenance that likely mediate the
observed tolerance to oxacillin.

Intracellular persisters also elicit an extensive program for
preserving genome integrity through the SOS response. This
network is a highly conserved DNA damage repair system which
has been shown to induce tolerance to fluoroquinolones** and
confer protection against the bactericidal effects of B-lactams in E.
coli*>. In this pathway, RecA both facilitates recombinational
repair and stimulates auto-cleavage of the repressor LexA,
resulting in de-repression of genes involved in DNA repair or
recombination“®.

Within intracellular persisters, typical effectors of the SOS
network, such as the excision repair systems or mismatch and
repair systems, were largely transcribed (Fig. 5¢, d) together with

genes encoding fluoroquinolone targets, which may cooperatively
contribute to the observed fluoroquinolone tolerance.

S. aureus persisters also undergo a massive transcription of
the heat shock stimulon (Fig. 5e), a central response in stress
tolerance. Under our conditions, dnaK, groESL, and grpE
transcripts belong to the 98t percentile of the fold change
distribution in the transcriptome, thus indicating a drastic
activation of this response. The DnaK and GroESL chaperone/
chaperonin sequentially function as a crucial bacterial protein
folding machinery and participate in the degradation of defective
proteins?’. In the context of multiple stresses and dysregulated
translation, its implication in bacterial tolerance is wide.
By dealing with damaged proteins, this system is known to
participate in tolerance to both B-lactams*® and aminoglyco-
sides®® and possibly influences the action of macrolides>C.
Macrolides target protein synthesis and cause early peptidyl-
tRNA drop-off’l. Although the mechanisms of macrolide
tolerance are largely unknown, a role of this stimulon is
conceivable since GroESL has been shown to positively affect the
peptidyl-tRNA processing by peptidyl-tRNA hydrolase (Pth)33.
Additionally, because the uptake of aminoglycosides requires
proton motive force’2, the deeply impaired transcription of the
electron transport chain may favorably contribute to the
tolerance to aminoglycosides, together with the decrease in
translation rate, which has been proposed as a factor leading to
tolerance towards protein synthesis inhibitors>3 (Supplementary
Table 2 for summary). Interestingly, this set of adaptive
responses redundantly occurs in all permissive host cells tested
(Supplementary Fig. 8).

To help clarify how this network of signaling pathways is
taking place, and especially their relationship with SR, we studied
the effect of rsh-codY mutation (HGOO1 strain and its isogenic
mutant) on key determinants of CWSS, SOS and heat shock
responses after 2h of infection, i.e., a time point where SR was
active (Fig. 5f). We found that SR positively modulated the
expression pattern of SOS response, and, to a lesser extent, of
CWSS through VraS. Alternatively, the expression of relP/relQ
synthetases has been shown to be impacted by the VraS/R
system30. These mutations, nevertheless, did not annihilate the
expression of these genes, and had no effect on heat shock
chaperones, leading us to conclude that the SOS response and
CWSS are positively modulated but not dependent on SR.

These findings are consistent with overlaps observed in
transcription signatures between SR and CWSS or SOS stimulons.
Indeed, relP has also been described as a core member of CWSS$>*
and conversely, fmtA and sgtB, as members of SR stimulon,
corroborating the entanglements in these responses. Similarly,
lexA regulator belongs to SR stimulon®.

Additionally, in the absence of antibiotic pressure, intracellular
bacteria displayed similar inductions of most of the determinants
of SOS and heat shock responses, and a basal induction of CWSS,
which becomes markedly induced upon antibiotic exposure
(Supplementary Fig. 9), suggesting that stresses imposed by the
intracellular environment also contribute to the changes observed
in these signaling networks.

Discussion

This work clearly demonstrates the presence of intracellular
persisters of S. aureus during antibiotic exposure, especially by
monitoring bacterial division at a single cell level. We show that
antibiotic pressure allows for the induction of homogenous living
and non-dividing populations of persisters and that this pheno-
type is stable but highly reversible upon drug removal. Our model
thus indicates a very dynamic bidirectional switch to intracellular
persistence. The intracellular environment, by allowing both
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Fig. 5 A mosaic of redundant adaptive responses leads to multidrug tolerance. a Activity of antibiotic combinations added simultaneously or in
succession against intracellular persisters. Intracellular persisters were challenged to 50x MIC of antibiotics alone or in combination, and recovered from
macrophages and proceeded for cfu counting after 48 h, following the experimental procedure described above. For combinations, antibiotics were added
either at the same time as oxacillin or 24 h after oxacillin. Data (expressed as cfu reduction from the original inoculum) are means + SEM of three
independent experiments. Statistical significance was determined by one-way ANOVA with Dunnett's post-test. Oxacillin [OXA], moxifloxacin [MXF],
clarithromycin [CLR], gentamicin [GEN]. b, ¢ MA-plots of genes related to peptidoglycan biosynthesis’8 (extended to vraS/R and cell-envelope biogenesis
genes from the cell wall stress stimulon)80 and SOS response stimulon655, respectively. The graphs display the log, Fold Change expression as a function
of log, Base Mean (mean expression signal across all samples). Typical members of the stimulons are pointed. The dotted lines indicate the basal
expression level in control samples. Statistical significance is based on adjusted P-value. d Number of up- or downregulated DEGs related to DNA repair’8.
e MA-plot of genes related to heat shock stimulon®°. f Quantitative real-time PCR of transcripts of determinants of CWSS, SOS response, and heat shock
stimulon, from left to right, in HGOO1 (WT) or HGOOT rsh-codY double mutants (Arsh-AcodY) exposed to 50x MIC oxacillin for 2 h of infection. Data are
means + SEM of three independent experiments. Statistical significance was determined by two-tailed Student's t-test. a, f Source data are provided as a
Source Data file.

persistence and replication, could then represent both a privileged led us to propose a model of factors leading to persistence and

reservoir for the pathogen and a major source of relapses after tolerance (Fig. 6).

antibiotic removal. A transitory boost of SR contributes to initiate the switch to
Our RNA-sequencing analysis offers a comprehensive overview  intracellular persistence in response to a complex set of envir-

of the transcriptomic profile of the living population of S. aureus onmental stresses. Interestingly, no ATP or amino acid limita-

persisters. The transcriptomic patterns highlighted in this study tions occur intracellularly. Noteworthy, neither oxacillin in
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Fig. 6 Overview of intracellular persistence regulation of S. aureus. In vacuolar nutrient-rich compartments, persisters are metabolically active cells
shielding cell wall, DNA and translation products. Under pressure of the environmental factors from the host cell, including a carbon source shift and
antibiotic pressure, persisters promote a network of stress or adaptive responses displaying multiple entries. Stringent response does not show signs of
activity for prolonged periods but rather contributes partly to initiate the switch to a persister phenotype through (i) post-translational modifications,
contributing to an almost immediate blockade of bacterial division, and (ii) transcriptional regulation, silencing energy-consuming processes. Regulation
circuits also include the cell wall stress stimulon, the SOS response, and the heat shock response. These active responses, together with a decrease in
oxidative phosphorylation and in translation levels, lead to multidrug tolerance upon exposure to a single antibiotic. This stable phenotype allows bacteria
to maximize the chances of long-term survival. Finally, depending on the level of stress, this state could either revert to replicative forms, or promote the
evolution to resistant forms, through increased probability of mutations and horizontal gene transfer.

planktonic cultures nor permissive cells alone could trigger
marked S. aureus persistence under our conditions, thus indi-
cating that stresses of different nature can collectively initiate
persistence when reaching a certain threshold. During infection,
bacteria are typically internalized in vacuolar compartments and
experience numerous stresses from the host cell and antibiotic
pressure. Besides the direct effect of the antibiotic, these stresses
include a carbon source transition and a contribution of acidic
pH'4, which may work in concert with cell- and antibiotic-
induced oxidative stresses>°.

SR redirects many physiological activities at the expense of
those required for growth and proliferation through transcrip-
tional regulation circuits and post-translational modifications that
represent a second control point “freezing” the system, conferring
extreme plasticity towards external stresses.

We did not find evidence of expression of SR regulators for
prolonged periods. Our data rather supports the hypothesis that
the mechanism of persistence is not solely dependent on SR but

that multiple pathways contribute to persister generation and
maintenance. The redundant character of this signaling network
might thus result from the continuous and multiple stresses
bacteria are facing, rather than a unique regulator.

Our work also questions the concept of tolerance occurring as a
passive phenomenon through target inactivity. We showed that
intracellular persisters are metabolically active cells, which exhibit
a mosaic of adaptive responses that lead to a phenotype of
multiple tolerance. These responses seem to redundantly occur,
and involve the activation of the CWSS, the SOS and heat shock
responses, as well as the induction of several antibiotic targets.
This study also demonstrates that exposure to a single drug can
trigger a phenotype of multiple tolerance to several antibiotic
classes intracellularly. The clinical meaning of these observations
remains to be established.

Our model for persistence integrates apparent contradictory
observations (e.g., dormancy status or levels of tolerance) often
interpreted as physiological diversity>’->8 (Supplementary Fig. 10).
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We propose that persistence is highly plastic through essentially
redundant regulations, which differentially adapt levels of dor-
mancy as a function of sensed level of stress. In that sense, the
proposed heterogeneity should essentially result from differences
of degree rather than of nature.

Once intracellular persistence is established, we hypothesize
this could constitute a state at the crossroads, either reverting to
replicative forms if the level of stress is released, or promoting the
evolution to resistant forms if the pressure is maintained®®. In the
latter case, our data indicate that this evolution could be pro-
moted mainly at two distinct levels, through potentiation of
higher mutation rates®® and extensive horizontal gene transfer®!,
as a consequence of drastic activations of low-fidelity polymerases
and competence genes, respectively (Supplementary Fig. 11 and
Supplementary Table 3 for summary).

Thus, the present work demonstrates that bacteria surviving to
antibiotics intracellularly are persisters which harbor a pro-
foundly reshaped transcriptome. They activate a series of stress
responses for long-term survival. Our results therefore highlight
persistence as a potential critical trigger for therapeutic failures.

Methods

Bacterial strains and cells. Strains used in this study are listed in Supplementary
Table 1. S. aureus strains were routinely grown at 37 °C in cation-adjusted Mueller-
Hinton broth (MHB-CA; Sigma) under shaking at 300 rpm. The fully susceptible
strain SH1000 (ref. ©2) was used to harbor the pALC2084 plasmid, which encodes a
reporter gfp gene cloned downstream of a xyl/tetO promoter and allows a dose-
dependent tetracycline induction in vivo and in vitro®3. GFP production was
induced by a sub-inhibitory concentration (125 ng mL~!) of tetracycline. Over-
night cultures were supplemented with 10 mg L~ chloramphenicol. All experi-
ments were performed on SH1000, unless stated otherwise.

Murine J774A.1 macrophages® (Sandoz Forschung Laboratories) were cultured
in RPMI 1640 medium (Thermo Fisher Scientific) supplemented with 10% fetal
bovine serum (FBS; Thermo Fisher Scientific) at 37 °C in a 5% CO, atmosphere.
When indicated, cells were washed in sterile PBS (filtered on 0.22 um pore size
membrane when used for flow cytometry analysis). Cells were seeded in 12-well
plates (Greiner bio-one), in Labtek 2-well Chamber Slide (Nunc) for confocal
microscopy, or in 145 mm cell culture dishes (Greiner bio-one) for cell sorting.

Human macrophages were obtained by isolation and differentiation of
monocytes from peripheral blood according to the protocol from Menck et al.®>.
Briefly, buffy coats from healthy blood donors were subjected to a double Ficoll and
Percoll density gradient centrifugation for isolation of monocytes from peripheral
blood. For differentiation to macrophages, monocytes were resuspended in RPMI
1640 with 2% human serum (Biowest), 1% penicillin/streptomycin (Thermo Fisher
Scientific) and 2.5 ng mL~! M-CSF (Miltenyl Biotec) and seeded in 12-well plates
for 7 days at 37 °C in a 5% CO, atmosphere. Cells were then collected and seeded
in 12-well plates in RPMI 1640 with 10% FBS for infection. Human THP-1
monocytes (ATCC TIB-202) were cultured in RPMI 1640 medium with 10% FBS
as previously described®®. Human MG63 osteoblastic cells (LGC Standards) were
cultured in Dulbecco’s modified Eagle’s medium (DMEM) with 10% FBS®7.
Human A549 (ATCC CCL-185) and MCF7 (ATCC HTB-22) epithelial cells were
cultured in DMEM with 10% FBS and DMEM with 10% FBS and 0.01 mg mL~!
insulin (Gibco). Human adult primary keratinocytes were cultured in
supplemented EpiLife medium (EpiLife with S7; Thermo Fisher Scientific) in
collagen coated plates as previously described®.

Experiments in broth. For Fluorescence dilution experiments, overnight S. aureus
cultures in MHB-CA supplemented with 125 ng mL~! tetracycline were cen-
trifuged at 5000 g for 5 min, washed out in PBS to remove tetracycline, and diluted
in fresh medium to reach a starting ODg;0 nm Of 0.05. Cultures were incubated at
37°C and aliquots were collected over time, centrifuged, washed in PBS, resus-
pended in filtered PBS and analyzed by flow cytometry or epifluorescence
microscopy (Carl Zeiss Axioskop 40) as described below (see also Supplementary
Fig. 12 for gating methods). For time-kill curves, S. aureus was grown overnight in
MHB-CA, diluted in fresh medium to reach a starting ODg5¢ nm Of 0.05 and grown
to the mid-exponential phase. Cultures were diluted to a starting inoculum of 1 x
106 cfu mL~! and exposed to oxacillin (Sigma), clarithromycin (SMB-Galephar), or
moxifloxacin (Sigma) at 50x their respective MIC, for the indicated times. For cfu
counting, samples were diluted in PBS before plating on Tryptic Soy agar. Data are
expressed as log,o cfumL~! after the incubation period compared to the starting
inoculum.

Infection of macrophages and other cell types. Infection was performed fol-
lowing a protocol adapted from Seral et al.%” and Barcia-Macay et al.%. S. aureus
was grown overnight in MHB-CA supplemented with 125 ng mL~! tetracycline.

Bacteria were then centrifuged at 5000 g for 5 min and resuspended in RPMI
1640 supplemented with 125 ngmL~! tetracycline and 10% human serum to allow
opsonization for 30 min at 37 °C. Bacteria were centrifuged, resuspended in fresh
RPMI 1640 with 10% FBS and 125 ngmL~! tetracycline, and incubated with cells
during 30 min at 37 °C at a multiplicity of infection of 10:1 to allow phagocytosis.
The multiplicity of infection (MOI) was adapted to 100:1 for RNA-seq in order to
obtain a sufficient amount of bacterial material (see Supplementary Fig. 13 for
evaluation of the absence of effect of MOI on the dynamics of replication) and 1:1
for confocal microscopy. Cells were then washed with PBS, and non-phagocytized
bacteria were eliminated by a 40 min incubation at 37 °C in RPMI 1640 supple-
mented with 50 mgL~! gentamicin (Sigma). Gentamicin was eliminated by
washing in PBS, after which cells were reincubated at 37 °C in RPMI 1640 with 10%
FBS in the presence either of 2x MIC of gentamicin (to prevent extracellular
growth; control conditions)®?, or of oxacillin, clarithromycin, or moxifloxacin at 2
or 50x their respective MIC, for the indicated times. Cells were then washed with
PBS, scrapped and lysed with PBS containing 0.1% (w/v) Triton X-100 (Sigma) to
release intracellular bacteria. Lysates were centrifuged at 300 g for 5 min to discard
cellular debris. Bacteria were collected by centrifugation at 5000 g for 5 min, washed
in PBS, and resuspended in filtered PBS. For cfu counting, samples were diluted in
PBS before plating on Tryptic Soy agar. Data are expressed as log;o cfu per mg cell
protein after the incubation period compared to the post-phagocytosis inoculum.
The same protocol was applied for infection of primary human macrophages and
THP-1 monocytes, except that THP-1 cells were growing in suspension, so that
washing procedures involved cell pelleting by centrifugation (7 min, 300 g). For
other cell types (A549, MCF7, MG63 and primary keratinocytes), the same pro-
tocol was applied as for macrophages, except that bacteria were incubated with cells
during 2 h at a multiplicity of infection of 50:1. This allowed to reach typical
inocula of 2 x 10° bacteria mg~! of cell protein for macrophages and monocytes,
0.4 x 10° bacteria per mg of cell protein for A549, MCF7 and MG63, and 0.2 x 106
bacteria per mg of cell protein for keratinocytes. All experiments were performed
on SH1000 induced for GFP expression, with the exception of experiments on the
rate of GFP synthesis (see hereafter).

Rate of GFP synthesis in intracellular persisters. Macrophages were infected
by non-induced bacteria following the same procedure and incubated with or
without 50x MIC oxacillin for 24 h, after which induction were performed with
125 ng mL~! tetracycline for the indicated periods.

Confocal microscopy. Infected macrophages seeded in Labtek chambers were
incubated with gentamicin or moxifloxacin in RPMI 1640 without phenol red.
Prior to microscopy, chambers were removed and slides covered with cover glasses.
Infected cells were observed with a Cell Observer SD (Carl Zeiss) and analyzed with
Zen v1.1.2.0 software (Carl Zeiss).

Flow cytometry. S. aureus isolated from broth cultures or from macrophages were
resuspended in filtered PBS, stained with 10 ugmL~! propidium iodide, and
analyzed using a FACSVerse cytometer (BD Biosciences) for GFP signal intensities
(FITC channel, medium flow rate). Forward-scatter width (FCS-W) versus
forward-scatter area (FSC-A), and side-scatter width (SSC-W) versus side-scatter
area (SSC-A) were used to gate out damaged or multiplet cells. Of those, propidium
iodide-positive bacteria were gated out. Data were analyzed with Flow]Jo

10.5.2 software (TreeStar Inc.). The level of replication of the population (F, fold
replication) is calculated by the ratio Meo/Me, with Me being the median GFP
intensity of the bacterial population at a given time. The number of generations, N,
is deduced from F=2N (ref. 19).

Samples preparation for RNA-seq. For differential expression analysis, bacterial
reference samples (hereafter named “control samples” in RNA-seq experiments)
were collected from an overnight culture (MHB-CA supplemented with

125 ng mL~! tetracycline) by centrifugation at 5000 g for 5 min, resuspended in
RPMI 1640 and incubated for 30 min at 37 °C. This bacterial suspension was then
mixed with a cell lysate obtained from non-infected macrophages incubated

in RPMI 1640 with 10% FBS for 24 h, in order to mimic the matrix effect of
macrophages in the persister condition. The relative amount of bacteria and cells
was adjusted to that obtained in 24 h-infected cells. Intracellular persisters were
collected from macrophages as described for flow cytometry. Both control and
persisters conditions were proceeded for the same sorting procedure. Bacteria
were immediately proceeded for sorting on the basis of their propidium iodide
profile and GFP expression level using the gating methods described above, in a
FACSAria III cytometer operated by the BD FACSDiva 8.0.1 software (BD
Biosciences), under continuous cooling to 4 °C (including the input tube holder
and the collection tube) at high flow rate. Samples were then immediately pro-
cessed for RNA extraction.

RNA extraction. S. aureus recovered from infected macrophages or from control
samples were centrifuged at 5000 g for 5 min and lysed using the following pro-

cedure: pellets were resuspended in Tris-EDTA buffer containing freshly prepared
13 mg mL~! lysozyme (Sigma) and 130 pg mL~! lysostaphin (Sigma) for 30 min at
room temperature. Resulting suspensions were processed for total RNA extraction
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with RNA extraction InviTrap Spin Universal RNA Mini Kit (Stratec) following the
manufacturer’s instructions. Traces of contaminating genomic DNA were removed
from samples by treatment with TURBO DNase (Ambion) for 30 min at 37 °C
according to the manufacturer’s instructions. RNA purity was checked using a
NanoDrop spectrophotometer (Thermo Fisher Scientific).

RNA sequencing. Total RNA from three independent replicates were checked on
the Bioanalyser system (Agilent) for its quality and integrity. Ribosomal RNA
depletion was performed using the Bacteria RiboZero kit (Illumina). From rRNA-
depleted RNA, directional libraries were prepared using the TruSeq Stranded
mRNA Sample preparation kit following the manufacturer’s instructions (Illu-
mina). Libraries were checked for quality on Bioanalyser DNA chips Bioanalyser
(Agilent). Quantification was performed with the fluorescent-based quantitation
Qubit dsDNA HS Assay Kit (Thermo Fisher Scientific). Sequencing was performed
as an SRM run (SR: Single Read, PE: Paired-end Reads, M: multiplexed samples)
for 65 bp sequences on HiSeq 2500 Illumina sequencer (65 cycles). The multi-
plexing level was 6 samples per lane. Bioinformatics analysis were performed using
the RNA-seq pipeline from Sequana’®. Reads were cleaned of adapter sequences
and low-quality sequences using cutadapt version 1.11 (ref. 71). Only sequences at
least 25 nt length were considered for further analysis. Bowtie version 0.12.7

(ref. 72) with default parameters, was used for alignment on the reference genome
(CP000253.1, NCBI). Genes were counted using featureCounts version 1.4.6-p3
(ref. 73) from Subreads package (parameters: -t gene -g ID -s 1). Count data were
analyzed using R version 3.4.1 (ref. 74) and the Bioconductor package DESeq2
version 1.16 (ref. 7%). The normalization and dispersion estimation were performed
with DESeq2 using the default parameters and statistical tests for differential
expression were performed applying the independent filtering algorithm. A gen-
eralized linear model was set in order to test for the differential expression between
the intracellular persisters and control conditions. Raw P values were adjusted for
multiple testing according to the Benjamini and Hochberg (BH) procedure’® and
genes with an adjusted p value lower than 0.05 were considered differentially
expressed. For over-representation analysis, S. aureus KEGG gene-sets were
downloaded thanks to the EnrichmentBrowser R package version 2.14.3 (organism
code sao). All the 106 KEGG sets were then tested for the over-representation in
differentially expressed genes using the Fisher statistical test. Only gene-sets with a
FDR lower than 0.05 were considered significantly enriched.

Quantitative real-time PCR. Total bacterial RNA from infected macrophages or
from control samples at different time points was isolated as described for RNA-
seq analyses. RNA was reverse transcribed using transcription first strand cDNA
synthesis kit (Roche Applied Science) according to the manufacturer’s instructions.
Amplification reactions were performed with Sybr green IQ Supermix (Bio-Rad
Laboratories) using an iCycler iQ single-color real-time PCR detection system (Bio-
Rad Laboratories). Fold changes in expression versus control condition were
determined using the 2(—2ACY method”” with gmk as a housekeeping gene. Primers
sequences are listed in Supplementary Table 4.

ATP measurements. Bacteria were released from macrophages as described above,
washed in 50 mM Tris-HCI, centrifuged at 5000 g for 5 min and processed for lysis
following the same procedure as for RNA extraction. Control samples (as described
for RNA-seq experiments) were used for comparison purposes. Bacterial lysates
were incubated 2 min at 100 °C, centrifuged at 9600 g for 2 min and assayed for
ATP measurements, using the ATP determination kit (Thermo Fisher Scientific)
according to the manufacturer’s instructions. Bioluminescence was measured using
a SpectraMax M3 548 Microplate Reader (Molecular Devices).

Ethics statement. Experiments on blood material were performed in strict
accordance with governmental and European legislation relative to blood, cell and
tissues-related activities, and were approved by the ethical committee Comité
d’Ethique Hospitalo-Facultaire Saint-Luc (CEHF Saint-Luc; permit no.
B403201730810). Human blood was collected in Croix-Rouge de Belgique centers,
from healthy volunteers who gave written informed consent, in accordance with
procedures of Service Francophone du Sang de la Croix-Rouge de Belgique.

Statistical analysis and curve fitting. For RNA-seq analyses, differential
expressions of transcripts were based on adjusted P-values with a threshold of
statistical significance set to 0.05. Genes descriptions were indicated as described in
GenBank database?? and classified according to KEGG orthology’® and KEGG
pathway’? databases (organism code CP000253.1 and sao respectively). Curve
fitting and statistical analyses were performed with GraphPad Prism versions 4.03
or 8.3.1, GraphPad InStat v3.10 (GraphPad Software), and JMP Pro version 13.1.0.
Statistical differences were determined using unpaired two-tailed Student’s t-tests
or one-way ANOVA with Dunnett’s post-tests for multiple comparisons. P-values
strictly inferior to 0.05 were used to show statistical significance and are indicated
in Figures. Non-statistically significant differences are indicated as “ns”.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability

The source data underlying Figs. 1a, b, e, h, 1,1, 3a, b, d, 4a, d, 5a and f are provided as a
Source Data file. RNA-seq data reported in this study have been deposited at Gene
Expression Omnibus under accession number GSE139659 [https://www.ncbi.nlm.nih.
gov/geo/query/acc.cgi?acc=GSE139659]. All other relevant data are available from the
corresponding author on request.
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