E. F. Bi and J. Lutkenhaus, FtsZ ring structure associated with division in Escherichia coli, Nature, vol.354, pp.161-164, 1991.

S. Du and J. Lutkenhaus, At the Heart of Bacterial Cytokinesis: the Z Ring, Trends Microbiol, vol.27, pp.1-11, 2019.

P. A. Levin, I. G. Kurtser, and A. D. Grossman, Identification and characterization of a negative regulator of FtsZ ring formation in Bacillus subtilis, Proc. Natl Acad. Sci. USA, vol.96, pp.9642-9647, 1999.

F. J. Gueiros-filho and R. Losick, A widely conserved bacterial cell division protein that promotes assembly of the tubulin-like protein FtsZ, Genes Dev, vol.16, pp.2544-2556, 2002.

G. Ebersbach, E. Galli, J. Møller-jensen, J. Löwe, and K. Gerdes, Novel coiledcoil cell division factor ZapB stimulates Z ring assembly and cell division, Mol. Microbiol, vol.68, pp.720-735, 2008.

J. M. Durand-heredia, H. H. Yu, S. De-carlo, C. F. Lesser, and A. Janakiraman, Identification and characterization of ZapC, a stabilizer of the FtsZ ring in Escherichia coli, J. Bacteriol, vol.193, pp.1405-1413, 2011.

J. Durand-heredia, E. Rivkin, G. Fan, J. Morales, and A. Janakiraman, Identification of ZapD as a cell division factor that promotes the assembly of FtsZ in Escherichia coli, J. Bacteriol, vol.194, pp.3189-3198, 2012.

S. Pichoff and J. Lutkenhaus, Tethering the Z ring to the membrane through a conserved membrane targeting sequence in FtsA, Mol. Microbiol, vol.55, pp.1722-1734, 2005.

C. A. Hale and P. A. De-boer, Direct binding of FtsZ to ZipA, an essential component of the septal ring structure that mediates cell division in E. coli, Cell, vol.88, pp.175-185, 1997.

M. Loose and T. J. Mitchison, The bacterial cell division proteins FtsA and FtsZ self-organize into dynamic cytoskeletal patterns, Nat. Cell Biol, vol.16, pp.38-46, 2014.

R. Duman, Structural and genetic analyses reveal the protein SepF as a new membrane anchor for the Z ring, Proc. Natl Acad. Sci. USA, vol.110, pp.4601-4610, 2013.

T. G. Bernhardt and P. A. De-boer, SlmA, a nucleoid-associated, FtsZ binding protein required for blocking septal ring assembly over chromosomes in E. coli, Mol. Cell, vol.18, pp.555-564, 2005.

L. J. Wu and J. Errington, Coordination of cell division and chromosome segregation by a nucleoid occlusion protein in Bacillus subtilis, Cell, vol.117, pp.915-925, 2004.

B. Shen and J. Lutkenhaus, The conserved C-terminal tail of FtsZ is required for the septal localization and division inhibitory activity of MinC(C)/MinD, Mol. Microbiol, vol.72, pp.410-424, 2009.

X. Ma and W. Margolin, Genetic and functional analyses of the conserved Cterminal core domain of Escherichia coli FtsZ, J. Bacteriol, vol.181, pp.7531-7544, 1999.

C. Donovan and M. Bramkamp, Cell division in Corynebacterineae. Front. Microbiol, vol.5, p.132, 2014.

M. Letek, Cell growth and cell division in the rod-shaped actinomycete Corynebacterium glutamicum, Antonie Van. Leeuwenhoek, vol.94, pp.99-109, 2008.

S. Ishikawa, Y. Kawai, K. Hiramatsu, M. Kuwano, and N. Ogasawara, A new FtsZinteracting protein, YlmF, complements the activity of FtsA during progression of cell division in Bacillus subtilis, Mol. Microbiol, vol.60, pp.1364-1380, 2006.

L. W. Hamoen, J. Meile, W. De-jong, P. Noirot, and J. Errington, SepF, a novel FtsZ-interacting protein required for a late step in cell division, Mol. Microbiol, vol.59, pp.989-999, 2006.

S. Gola, T. Munder, S. Casonato, R. Manganelli, and M. Vicente, The essential role of SepF in mycobacterial division, Mol. Microbiol, vol.97, pp.560-576, 2015.

M. Marbouty, C. Saguez, C. Cassier-chauvat, and F. Chauvat, Characterization of the FtsZ-interacting septal proteins SepF and Ftn6 in the spherical-celled cyanobacterium Synechocystis strain PCC 6803, J. Bacteriol, vol.191, pp.6178-6185, 2009.

M. E. Gündo?du, Large ring polymers align FtsZ polymers for normal septum formation, EMBO J, vol.30, pp.617-626, 2011.

M. Krupka, Role of the FtsA C terminus as a switch for polymerization and membrane association, 2014.

M. Krupka, Escherichia coli FtsA forms lipid-bound minirings that antagonize lateral interactions between FtsZ protofilaments, Nat. Commun, vol.8, pp.1-12, 2017.

J. Conti, M. G. Viola, and J. L. Camberg, FtsA reshapes membrane architecture and remodels the Z-ring in Escherichia coli, Mol. Microbiol, vol.107, pp.558-576, 2018.

M. P. Honrubia, A. Ramos, and J. A. Gil, The cell division genes ftsQ and ftsZ, but not the three downstream open reading frames YFIH, ORF5 and ORF6, are essential for growth and viability in Brevibacterium lactofermentum ATCC 13869, Mol. Genet. Genomics, vol.265, pp.1022-1030, 2001.

M. Baumgart, IpsA, a novel LacI-type regulator, is required for inositolderived lipid formation in Corynebacteria and Mycobacteria, BMC Biol, vol.11, p.122, 2013.

K. Pfeifer-sancar, A. Mentz, C. Rückert, and J. Kalinowski, Comprehensive analysis of the Corynebacterium glutamicum transcriptome using an improved RNAseq technique, BMC Genomics, vol.14, p.888, 2013.

C. Baranowski, E. H. Rego, and E. J. Rubin, The dream of a Mycobacterium, Microbiol. Spectr, vol.7, pp.1-14, 2019.

T. Nilsen, A. S. Ghosh, M. B. Goldberg, and K. D. Young, Branching sites and morphological abnormalities behave as ectopic poles in shape-defective Escherichia coli, Mol. Microbiol, vol.52, pp.1045-1054, 2004.

V. L. Wells and W. Margolin, A new slant to the Z ring and bacterial cell branch formation, Mol. Microbiol, vol.84, pp.199-202, 2012.

E. Kuru, S. Tekkam, E. Hall, Y. V. Brun, and M. S. Van-nieuwenhze, Synthesis of fluorescent D-amino acids and their use for probing peptidoglycan synthesis and bacterial growth in situ, Nat. Protoc, vol.10, pp.33-52, 2014.

J. Frunzke, V. Engels, S. Hasenbein, C. Gätgens, and M. Bott, Coordinated regulation of gluconate catabolism and glucose uptake in Corynebacterium glutamicum by two functionally equivalent transcriptional regulators, GntR1 and GntR2, Mol. Microbiol, vol.67, pp.305-322, 2007.

J. K. Singh, R. D. Makde, V. Kumar, and D. Panda, SepF increases the assembly and bundling of FtsZ polymers and stabilizes FtsZ protofilaments by binding along its length, J. Biol. Chem, vol.283, pp.31116-31124, 2008.

L. Mosyak, The bacterial cell-division protein ZipA and its interaction with an FtsZ fragment revealed by X-ray crystallography, EMBO J, vol.19, pp.3179-3191, 2000.

P. Szwedziak, Q. Wang, S. M. Freund, and J. Löwe, FtsA forms actin-like protofilaments, EMBO J, vol.31, pp.2249-2260, 2012.

M. A. Schumacher, K. Huang, W. Zeng, and A. Janakiraman, Structure of the Z ring-associated protein, ZapD, bound to the C-terminal domain of the tubulin-like protein, FtsZ, suggests mechanism of Z ring stabilization through FtsZ cross-linking, J. Biol. Chem, vol.292, pp.3740-3750, 2017.

K. Huang, J. Durand-heredia, and A. Janakiraman, FtsZ ring stability: of bundles, tubules, crosslinks, and curves, J. Bacteriol, vol.195, pp.1859-1868, 2013.

M. A. Schumacher and W. Zeng, Structures of the nucleoid occlusion protein SlmA bound to DNA and the C-terminal domain of the cytoskeletal protein FtsZ, Proc. Natl Acad. Sci. USA, vol.113, pp.4988-4993, 2016.

S. G. Addinall and J. Lutkenhaus, FtsA is localized to the septum in an FtsZdependent manner, J. Bacteriol, vol.178, pp.7167-7172, 1996.

A. W. Bisson-filho, Treadmilling by FtsZ filaments drives peptidoglycan synthesis and bacterial cell division, Science, vol.355, pp.739-743, 2017.

X. Yang, GTPase activity-coupled treadmilling of the bacterial tubulin FtsZ organizes septal cell wall synthesis, Science, vol.355, pp.744-747, 2017.

S. Manuse, A. Fleurie, L. Zucchini, C. Lesterlin, and C. Grangeasse, Role of eukaryotic-like serine/threonine kinases in bacterial cell division and morphogenesis, FEMS Microbiol. Rev, vol.40, pp.41-56, 2016.

T. Mitchison and M. Kirschner, Dynamic instability of microtubule growth, Nature, vol.312, pp.237-242, 1984.

M. Osawa, D. E. Anderson, and H. P. Erickson, Reconstitution of contractile FtsZ rings in liposomes, Science, vol.320, pp.792-794, 2008.

D. A. Ramirez-diaz, Treadmilling analysis reveals new insights into dynamic FtsZ ring architecture, PLoS Biol, vol.16, pp.2004845-2004865, 2018.

D. A. Ramirez-diaz, A. Merino-salomon, M. Heymann, and P. Schwille, Bidirectional FtsZ filament treadmilling promotes membrane constriction via torsional stress, 2019.

M. Krupka, M. Sobrinos-sanguino, M. Jiménez, G. Rivas, and W. Margolin, Escherichia coli ZipA organizes FtsZ polymers into dynamic ring-like protofilament structures, 2018.

P. Caldas, Cooperative ordering of treadmilling filaments in cytoskeletal networks of FtsZ and its crosslinker ZapA, Nat. Commun, vol.10, p.5744, 2019.

G. Rivas and A. P. Minton, Macromolecular crowding in vitro, in vivo, and in between, Trends Biochem. Sci, vol.41, pp.970-981, 2016.

J. Van-den-berg, A. J. Boersma, and B. Poolman, Microorganisms maintain crowding homeostasis, Nat. Rev. Microbiol, vol.15, pp.309-318, 2017.

J. Xiao and E. D. Goley, Redefining the roles of the FtsZ-ring in bacterial cytokinesis, Curr. Opin. Microbiol, vol.34, pp.90-96, 2016.

C. Keilhauer, L. Eggeling, and H. Sahm, Isoleucine synthesis in Corynebacterium glutamicum: molecular analysis of the ilvB-ilvN-ilvC operon, J. Bacteriol, vol.175, pp.5595-5603, 1993.

P. Ravasi, S. Peiru, H. Gramajo, and H. G. Menzella, Design and testing of a synthetic biology framework for genetic engineering of Corynebacterium glutamicum, Microb. Cell Fact, vol.11, pp.1-1, 2012.

F. Lausberg, A. R. Chattopadhyay, A. Heyer, L. Eggeling, and R. Freudl, A tetracycline inducible expression vector for Corynebacterium glutamicum allowing tightly regulable gene expression, Plasmid, vol.68, pp.142-147, 2012.

D. S. Bindels, mScarlet: a bright monomeric red fluorescent protein for cellular imaging, Nat. Methods, vol.14, pp.53-56, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01494322

N. C. Shaner, A bright monomeric green fluorescent protein derived from Branchiostoma lanceolatum, Nat. Methods, vol.10, pp.407-409, 2013.

M. Baumgart, K. Schubert, M. Bramkamp, and J. Frunzke, Impact of LytR-CpsA-Psr proteins on cell wall biosynthesis in Corynebacterium glutamicum, J. Bacteriol, vol.198, pp.3045-3059, 2016.

F. W. Studier, Protein production by auto-induction in high density shaking cultures, Protein Expr. Purif, vol.41, pp.207-234, 2005.

W. X. Kabsch, Acta Crystallogr, vol.66, pp.125-132, 2010.

M. D. Winn, Overview of the CCP4 suite and current developments, Acta Crystallogr, vol.67, pp.235-242, 2011.

A. J. Mccoy, Phaser crystallographic software, J. Appl. Crystallogr, vol.40, pp.658-674, 2007.

T. R. Schneider and G. M. Sheldrick, Substructure solution with SHELXD, Acta Crystallogr, vol.58, pp.1772-1779, 2002.

K. Cowtan, The Buccaneer software for automated model building. 1. Tracing protein chains, Acta Crystallogr, vol.62, pp.1002-1011, 2006.

P. Emsley and K. Cowtan, Coot: model-building tools for molecular graphics, Acta Crystallogr, vol.60, pp.2126-2132, 2004.

G. Bricogne, Buster version 2.10.3. (Global Phasing Ltd, 2017.

E. F. Pettersen, UCSF Chimera: a visualization system for exploratory research and analysis, J. Comput. Chem, vol.25, pp.1605-1612, 2004.

A. Voegele, O. Subrini, N. Sapay, D. Ladant, and A. Chenal, Membrane-active properties of an amphitropic peptide from the CyaA toxin translocation region, Toxins, vol.9, p.369, 2017.

J. Jomain, Structural and thermodynamic bases for the design of pure prolactin receptor antagonists: X-ray structure of Del1-9-G129R-hPRL, J. Biol. Chem, vol.282, pp.33118-33131, 2007.

J. Schindelin, Fiji: an open-source platform for biological-image analysis, Nat. Methods, vol.9, pp.676-682, 2012.

A. Ducret, E. M. Quardokus, and Y. V. Brun, MicrobeJ, a tool for high throughput bacterial cell detection and quantitative analysis, Nat. Microbiol, vol.1, pp.1-7, 2016.

P. C. Carvalho, Integrated analysis of shotgun proteomic data with PatternLab for proteomics 4.0, Nat. Protoc, vol.11, pp.102-117, 2015.

A. Micsonai, Accurate secondary structure prediction and fold recognition for circular dichroism spectroscopy, Proc. Natl Acad. Sci. USA, vol.112, pp.3095-3103, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01485547

S. R. Eddy, Profile hidden Markov models, Bioinformatics, vol.14, pp.755-763, 1998.

W. Li and A. Godzik, Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences, Bioinformatics, vol.22, pp.1658-1659, 2006.

M. Steinegger and J. Söding, MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets, Nat. Biotechnol, vol.35, pp.1026-1028, 2017.

K. Katoh and D. M. Standley, MAFFT: iterative refinement and additional methods, Methods Mol. Biol, vol.1079, pp.131-146, 2013.

S. Capella-gutierrez, J. M. Silla-martinez, and T. Gabaldon, TrimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses, Bioinformatics, vol.25, pp.1972-1973, 2009.

S. Guindon, New algorithms and methods to estimate maximumlikelihood phylogenies: assessing the performance of PhyML 3.0, Syst. Biol, vol.59, pp.307-321, 2010.
URL : https://hal.archives-ouvertes.fr/lirmm-00511784

V. Lefort, J. Longueville, and O. Gascuel, SMS: smart model selection in PhyML, Mol. Biol. Evol, vol.34, pp.2422-2424, 2017.
URL : https://hal.archives-ouvertes.fr/lirmm-01794206

A. C. , A. S. , A. H. , A. M. , and P. M. , carried out binding studies of lipid membrane-protein interactions. A.M.W. and R.D. carried out MS and proteomic experiments