Suppleme	entary Tabl	e 1: Bacterial Strains and Plasmids L	Jsed in This Stud	у
Name		Relevant Features	Sou	irce/Reference
Bacterial s	trains:			
<u>Escherichi</u>	a coli			
DH5α	F [−] endA φ80d/ad	A1 glnV44 thi-1 recA1 relA1 gyrA96 deoR nu cZΔM15 Δ(lacZYA-argF)U169, hsdR17(r _K -n	upG purB20 n _κ ⁺), λ⁻	Laboratory collection
MG1655				
Top10	F- <i>mcrA</i> araD13	Δ(<i>mrr-hsd</i> RMS- <i>mcr</i> BC) Φ80/acZΔM15 Δ 39 Δ(<i>ara-leu</i>)7697 galU galK rpsL (StrR) end	lacX74 recA1 dA1 nupG	ThermoFisher
RFP	Top10	(pTOPO::rfp), strain 8186		Laboratory collection
XL2blue	<i>endA1</i> g F'[::Tn1	g <i>yrA96</i> (nal ^R) <i>thi</i> -1 <i>recA1 relA1</i> lac gInV44 0 proAB⁺ lacl ^q Δ(lacZ)M15 Amy Cm ^R] hsdF	R17(r _K ⁻ m _K ⁺)	Stratagene
SXT	HW220	(CAG18439 pfrC::SXT)		V. Burrus
β3914	β2163 [(F ⁻) RP4-2-Tc::Mu <i>∆dapA</i> ::(erm- <i>pir</i> 116)] gyı	rA462 zei-298::Tn10	(1)
Π1	DH5a Z	hthyA::(erm- pir116)		(2)
Vibrio chol	lerae			
Vibrio chole	erae O1	Vibrio cholerae serotype O1 biotype El Tor	strain N19691	(3)
		(contains a frame shift into <i>lacZ</i> gene)		
∆lacZ		Vibrio cholerae O1- ∆lacZ		(4)
∆toxRS		Vibrio cholerae O1- ΔtoxRS		This study
O1-GFP		Vibrio cholerae O1- constitutive expression	n of <i>gfp</i> Labora	tory collection
O139		MO10 toxigenic 1992 clinical isolate from Ir Su ^R Tm ^R Cm ^R Sm ^R	ndia, SXT ^{MO10+} ,	(5)
Other strai	<u>ns</u>			
Vibrio vulni l	ficus	WT	Labora	tory collection
Vibrio mimio Salmonella Citrobacter	cus typhimuriun rodentium	WT WT WT	Labora	tory collection J.M. Ghigo J.M. Ghigo
<u>Plasmids:</u>				
pBAD43		ori pSC101, Sp ^R		(6)
pBAD30		ori pACYC184, Carb ^R		(6)
pBAD24		ori pBR322, Carb ^R		(6)
pSU38		ori p15A, Kan ^R		(7)
pSW7848		suicide plasmid for allele exchange		(4)
		− oriV _{R6K} , oriT _{RP4} araC-P _{BAD} -ccdB		
pRFP		<i>rfp</i> gene cloned in pTOPO	Laboratory coll	ection

Supplementary Table 1: (continuation)

7	Supplementa	ary Table 1: (continuation)	
	Name	Relevant Features So	urce/Reference
8	рТох	pBAD43-ccdB (between EcoRI-Xbal)	This study
9	pToxInt	pBAD43-ccdB/intein operon (between EcoRI-Xbal)	This study
0	pN	pBAD43-ccdB/intein N-terminal fusion (between EcoRI-Xbal)	This study
1	pCcdB-Int C	pSU38-ccdB/intein C-terminal fusion (between EcoRI-Xbal)	This study
2	pParE2-Int N	pBAD43-parE2/intein N-terminal fusion (between EcoRI-Xbal)	This study
3	pParE2-Int C	pSU38-parE2/intein C-terminal fusion (between EcoRI-Xbal)	This study
4	pHigB2-Int N	pBAD43-higB2/intein N-terminal fusion (between EcoRI-XbaI)	This study
5	pHigB2-Int C	pSU38-higB2/intein C-terminal fusion (between EcoRI-XbaI)	This study
6	pRelE4-Int N-1	pBAD43-relE4/intein N-terminal-1 fusion (between EcoRI-Xbal)	This study
7	pRelE4-Int C-1	pSU38-relE4/intein C-terminal-1 fusion (between EcoRI-XbaI)	This study
8	pRelE4-Int N-2	pBAD43-relE4/intein N-terminal-2 fusion (between EcoRI-Xbal)	This study
9	pReIE4-Int C-2	pSU38-RelE4/intein C-terminal-2 fusion (between EcoRI-Xbal)	This study
0	pCcdB-Int n*	pN with a mutation that blocks intein splicing	This study
1	pParE2-Int n*	pParE2-Int N with a mutation that blocks intein splicing	This study
2	pHigB2-Int n*	pHigB2-Int N with a mutation that blocks intein splicing	This study
3	pReIE4-Int n*-1	pRelE4-Int N-1 with a mutation that blocks intein splicing	This study
4	pReIE4-Int n*-2	pRelE4-Int N-2 with a mutation that blocks intein splicing	This study
5 6	pU-BAD	pBAD43-ccdB/int N-fusion (<i>ompU-1</i> promoter), C-fusion under P _{BAD}	This study
7 8	pRS	<i>toxRS</i> operon from <i>V. cholerae</i> cloned into pBAD30 (SacI-XbaI) keeping natural RBS sequence of <i>toxR</i>	This study
9	pN _{ctrl}	ori pSC101, Sp ^R , ccdB-Int N-terminal fusion (P_{ompU}), $oriT_{RP4}$	This study
)	ptox _{ctrl}	ori pSC101, Sp ^R , ccdB-Int N- and C-fusion (operon- $P_{\text{BAD}})$, $\textit{oriT}_{\text{RP4}}$	This study
1 2	pPW	ori pSC101, Sp ^R , ccdB-Int N- and C-fusion (operon- <i>ompU</i> -1 prom $oriT_{RP4}$	oter) This study
3	ptoxRS-UP-DC	0W pSW7848-500bp upstream and downstream of <i>toxRS</i> operon	This study
1	p <i>ccdA</i>	ori pBR322, Carb ^R , ccdA antitoxin (P _{BAD})	This study
5 5 7	pPW(RBS)	pPW with canonical RBS sequence	This study
8	pPLA	pCcdBInt, ccdA (PL promoter)	This study
))	pABRW	pCcdBInt, <i>ccdA</i> (PL promoter), <i>oriT</i> _{RP4}	This study
L 2	pFW	pFW1, canonical RBS in ompU-1 promoter, extra operator O1-sequence into PL promoter	This study
3	pPW-R6K	pPW with an R6K replication origin	This study
1	pN _{ctrl} -R6K	pN _{ctrl} with an R6K replication origin	This study
5	pFW-R6K	pDW with an R6K replication origin	This study

88 **Supplementary Table 2.** Conjugation efficiency in the different conditions and strains used.

- 89 Conjugation efficiency is calculated as the number of transconjugants divided by the total
- 90 bacteria and multiplied by 100 to obtain the percentage (%). We have also analyzed the
- 91 conjugation of the pFW plasmid in MG1655 bacteria using a donor:recipient ratio of 1:1 and
- 92 obtaining more than 70% of conjugation efficiency.

Dener	Paginiant	Figuro	Donor::recipient,	Total	Transconjugants	Efficiency
Donor	Recipient	rigure	conditions	CFU/ml	(CFU/ml)	(%)
β 3914-pN _{control}	V. cholerae O139	-	1:1, without DAP	3.4 · 10 ⁸	2.4 · 10 ⁷	7 %
β 3914-pN _{control}	V. cholerae O139	-	1:1, with DAP	2.9 · 10 ⁸	2.7 · 10 ⁷	9.3 %
β 3914-pN _{control}	V. cholerae O139	-	10:1, water	1.8 · 10 ⁶	5.6 · 10 ²	0.03 %
β 3914-pN _{control}	V. cholerae O1	-	1:1	1.3 · 10 ⁸	8.2 · 10 ⁶	6.3 %
β 3914-pN _{control}	V. cholerae O1	-	2:1	1.3 · 10 ⁸	5.4 · 10 ⁶	4.2 %
β 3914-pN _{control}	V. cholerae O1	-	3:1	1.2 · 10 ⁸	3.8 · 10 ⁶	3.16 %
β 3914-pN _{control}	V. cholerae O139	-	1:1	1.8 · 10 ⁸	7.8 · 10 ⁶	4.3 %
β 3914-pN _{control}	V. cholerae O139	-	2:1	1.3 · 10 ⁸	8.1 · 10 ⁶	6.2 %
β 3914-pN _{control}	V. cholerae O139	-	(3:1)	0.9 · 10 ⁸	8.5 · 10 ⁶	9.4%
β 3914-pN _{control}	V. cholerae O139	Fig. 4a	1000:1, zebrafish	8 · 10⁵	57.5	0.0071 %
β 3914-pN _{control}	V. cholerae O139+O1	Fig. 4a	10:1, zebrafish	7 · 10 ⁵	200	0.025 %
β 3914-pN _{control}	V. cholerae O139	Fig. 4b	1:1, Artemia	16.5 · 10 ⁶	2170	0.013 %
β 3914-pN _{control}	V. cholerae	Fig. 4b	1:1. Artemia	16.7 ·	3465	0.020 %
	0139+01		,	10 ⁶		
β 3914-pFW	MG1655	-	1:1	20 · 10 [⊳]	14.7 · 10 [°]	72.26 %
β 3914-pABRW	MG1655	-	10:1	3.2 · 10 ⁶	2.8 · 10 ⁶	89.58 %

93

94

95

96

Supplementary Table 3. Escape mutants obtained after the conjugation of the genetic weapon plasmids in this study. We performed conjugation with the weapon plasmids in the targeted bacteria. After conjugation, bacteria were spread in the presence of spectinomycin in order to detect transconjugants that are able to survive after the acquisition of the plasmid weapon. Numbers on the table indicate the CFU/ml of transconjugants that are named: escape mutants, for each weapon plasmid/strain in comparison with the total bacteria after conjugation.

		Weapons	Plasmids	
Strains	pPW	$pPW_{(RBS)}$	pABRW	pFW
V. cholerae O1	6-log ₁₀ (n=4)	7-8-log ₁₀ (n=6)	-	-
V. cholerae O139	6-log ₁₀ (n=4)	7-8-log ₁₀ (n=6)	6-log ₁₀ (n=5)	6-log ₁₀ (n=7)
E. coli - SXT	-	-	5-log ₁₀ (n=7)	-

107

98

Supplementary Table 4. Escape mutants analyzed in this study. We analyzed by PCR the V. cholerae escape mutants that survived plasmid acquisition through conjugation. Plasmids used are indicated in parentheses and numbers indicate the number of analyzed clones. The inactivating insertion sequence identified by sequencing as V. cholerae DNA 116-17a plasmid seq. ID: LN831185. PCR products which size corresponds with the control fragment (toxin-intein amplification) were sent for sequencing and point mutations avoiding the correct translation of the toxin were detected for pPW clones. However for pFW clones, no mutations were detected after sequencing. We then transformed V. cholerae serogroups O1 and O139 with these plasmids that looks as pFW. The result showed that transformants were only obtained in O1 serogroup. Then these plasmids are still toxic for V. cholerae O139 and fully able to be transferred in O1 serogroup. In order to know why these V. cholerae O139 clones are able to tolerate the conjugation of pFW we performed PCR to analyze the presence of toxRS and setR. After this analysis toxRS was correctly amplified but not setR. Then we demonstrated that they have lost the SXT element (see suppl. Table 4).

Clanas	V. cholerae O1	V. cholerae O139	V. cholerae O139	Frequency	
Ciones	(pPW)	(pPW)	(pFW)	(%)	
Correct toxin	5	6	11	47.8 %	
amplification	5 0			77.0 /0	
Vibrio's Insertion	6	10	5	46 67 %	
Sequence	0	10	5	40.07 /0	
No amplification	3	0	0	6.67 %	
Total	14	16	16	100 %	

Supplementary Table 5. Escape mutants that lost SXT element. Number indicated clones

analyzed in MH media containing trimethoprim, which is one of the antibiotic resistant, genes

encoded into SXT element.

Clanas	<i>E. coli –</i> SXT	Frequency	V. choerae O139	Frequency
Ciones	(pABRW)	(%)	(pFW)	(%)
Containing SXT	8	37 %	4	10 %
Lost of SXT	15	63 %	36	90 %
Total	23	100 %	40	100 %

Supplementary Table 6: Primers used in this study

Tital	ne	Sequence (3 - 3)
E-Co	dB-EcoPI	
E Int	/dB	
	/uB //nt	
	Vhal	
	-Audi FeeDl	GU <u>TUTAGA</u> TUAATTUGGUAAATTATUAAUU
		G <u>GAATTC</u> GTAAGGAGGTAACATATGATCAAAATAGCCACACGTAAA
R-Int		C'I'I'GGTGCATI'I'GAAACAATTAGAAGC'I'A'I'GA
	ab-c/int 2	TTTTCAATGCACCAAGTCACCTTTTGTCCTAC
F-Pa	rE2-ECORI	G <u>GAATTC</u> AATGAAACCATTTAATCTTACCGTCGC
R-Pa	rE2-Xbal	GC <u>TCTAGA</u> TTATGCGCCGAATATTGGGTTCACATC
F-Pa	rE2/Int-1	TTTCAATATTGGTAAATCATGCGATGAAATCCGAG
R-Pa	arE2/Int-1	CTTAAACAGTCGGGATTTTCCGCTAAAAGCCA
F-Int	/ParE2-1	ATCCCGACTGTTTAAGCTATGAAACGGAAATA
R-Int	/ParE2-1	TTACCAATATTGAAACAATTAGAAGCTATGAAGC
F-Hi	gB2-EcoRI	G <u>GAATTC</u> GATGAAAAGTGTATTTGTCGAATCAAC
R-Hi	gB2/Int-1	CTTAAACACTTTTCATCGAGAAAGTAATAG
F-Hig	gB2/Int-1	TTTCAATAGGCGTTTCTATTTGCTAACC
R-Hi	gB2-Xbal	GC <u>TCTAGA</u> TATCACGATTGCTCATTGCGCCACGCCTCC
F-Int	/HigB2-1	GATGAAAAGTGTTTAAGCTATGAAACGGAAATA
R-Int	/HigB2-1	GAAACGCCTATTGAAACAATTAGAAGCTATGAAGC
F-Re	IE4-EcoRI	G <u>GAATTC</u> GATGATTTTCTGGGAAGAAGCATCTCTCAATG
R-Re	elE4/Int-1	CTTAAACAATCACGCTGAACACCGATTAG
F-Re	IE4/Int-1	TTTCAATGGCATTAGAGGCAGATTGC
R-Re	elE4-Xbal	GCTCTAGATCAGTCGTTTGGAAATTTTTGTTTCTGATGTAG
F-Int	/RelE4-1	CAGCGTGATTGTTTAAGCTATGAAACGGAAATA
R-Int	/RelE4-1	CTAATGCCATTGAAACAATTAGAAGCTATGAAGC
R-Re	elE4/Int-2	CTTAAACAATCAACCCAATACGAAACAATC
F-Re	IF4/Int-2	ТТТСААТССТТСТААААТТССААТААТСССТС
F-Int	/RelF4-2	GGGTTGATTGATTAAGCTATGAAAACGGAAATA
R-Int	/RelF4-2	
R-Int	/dB N mut	CCTTTCCCATTTCTTATCAAGTAGTTCGATTGG
F-Int	/dB N mut	TAAGAAATGGGAAAGGTATGAAACGGAAATA
F-Int	/F4-1 N mut	GCGTGATTGGGAAAGGTATGAAACGGAAATA
F-Int	/F4-2 N mut	GGGTTGATTGGGAAAGGTATGAAACGGAAATA
R-Int	/F4-1 N mut	ССТТТТСССАТСАССССТСАТСАССССАТТАС
R-Int	/F4-2 N mut	ССТТТСССИЛПОЛСССТОПЛЕНССОЛТТИС
F-Int	/B2 N mut	GATGAAAAGTGGGAAAGGTATGAAAACGCAAAATA
F-Int	/F2 N mut	AATCCCCACTCCCAAAACCTATCAAAACCCCCAAAAA
R-Int	/B2 N mut	
R-Int	/E2 N mut	CCTTTCCCAGTCGGGATTTTCCGCTAAAAGCC
R-BA	AD43-BAD18	CGCCACAGGCAAGGCGATTAAGTTGGGTAACGCCAGG
F-BA	D43-BAD18	CAACTATGGATTCGATAAGCAGCATCGCCTGTTTC
R-BA	D18-BAD43	ATCGAATCCATAGTTGCCTGACTCCCCGTCGTGTAG
F-BA	D18-BAD43	ATCGCCTTGCCTGTGGCGCCGGTGATGCCGGCCACG
4216	i	TATCAGGGACTGGAAAATCAGAGGGCAGGAACTGCTG
4217		TCCAGTCCCTGATATAGGCGCCAGCAACCGCACC
R-Int	-N/Int-C	ϪϹϹͲϹϹͲͲϪͲϹϪϪͲͲϹϾϲϲϪϪϪͲͲϪͲϲϪϪϲϹϹϲϲϘϫͲϲ
F-Int	-C/Int-N	CCGAATTGATAACGACGTAACATATCATCAAAAATACCCACAC
m.		CCORTINAIANUNGUTACAIAIGAICAAAIAUCCACAC

211 Supplementary Table 6: (continuation)

	Name	Sequence $(5' \rightarrow 3')$
212	E toyP Soci	
$213 \\ 214$	D toys Yhal	
215	N-lux3-xbai	GC <u>ICIAGA</u> CCIIAAGAAIIACIGAACAGIACGGIAGAACCAIGAC
216	R-BAD-PU1	GATTTAGGTTGGTAACGAATCAGACAATTGACGGC
217	F-PompU-1	TACCAACCTAAATCGGGTCGGGTTAGGGTTGAACCATTT
218	R-PompU-dB	TTGAGACATAAATTTGATTTTTGTGCGACGTAAGCC
219 220	F-dB-PompU	CAAATTTATGTCTCAATTTACGCTATATAAAAAC
221	F-ccdA-EcoRI	GGAATTCACCATGAGAAATCAATATAATACACAAGCGGTAAAGAAAG
222 223	R-ccdA-Xbal	GC <u>TCTAGA</u> TTAAAATACTCGGTATGAATCAGAAAAAAGACCGTG
224	F-toxRup-p7	CTGCGAGGCTGGCCGGCGTCCGTTATCCGAAATGGTCAACGTATTTTTGTC
225	R-toxRups	CTCAGTCAGGCGATATCTCTTTTGAGTTGTGTCCTAATCC
226	F-toxSdow	GAGATATCGCCTGACTGAGCGTAGAATAGGACATAAC
227 228	R-toxSdow-p7	CAAGCTTATCGATACCGTCGAGTATGCCGCGAGCTATGGCGTGCTGGAAGGCGATAC
229	F-BAD-pSW	GGTACCCCGCCGGTGATGCCGGCCACGATG
230	F-pSW23-BAD	ACCGGCGGGGTACCAGCGCTTTTCCGCTGC
231	R-BAD43-oriT	CTGGCCGGCGGCTCACTGCCCGCTTTCCAGTCGGG
232 233	R-OriT-BAD43	CAGTGAGCCGGCCAGCCTCGCAGAGCA
234	R-PL-ccdA	GATTTCTCATACCGTCTCCTGTTACAATAATAACTGTTAC
235	F-PL-plasmid	CTGTTTCAAGCCCGTATTCTACAAATAAAACTGTAGCC
236	F-ccdA-PL	GACGGTATGAGAAATCAATATAATACACAAGCGGTAAAG
237	R-ccdA-plasmid	CAGCCTTTAAAATACTCGGTATGAATCAGAAAAAAGACCGTG
238	F-plasmid-dA	qtattttaaAGGCTGTCTATGTGTGACTGTTGAGC
239 240	R-plasmid-PL	gggcttGAAACAGGCGATGCTGCTTATCGAATC
241	F-ccdB-SD-OK	CACAAAGGAGGTATTCCATGTCTCAATTTACGCTATATAAAAAC
242	R-PU-SD-OK	CATGGAATACCTCCTTTGTGCGACGTAAGCCACGTCAATCG
243	F-PL-O1-B	GCTACAGTTTAAACTGTAACAGGAGACGGTATGAGAAATCAATATAATACAC
244	R-PL-01	CTCCTGTTACAGTTTAAACtqtAGcaaqattqaatqttacaqtttaaacTG
245	F-PL-SD-T	CAGTTATTATTGTAACAqTaqacqqtatqAGAAATCAATATAATACAC
246 247	R-PL-SD-T	GATTTCTCATACCGTCTACTGTTACAATAATAACtgttacaag
248	F-R6K-weapon	CAAGAGCCATCAATTCCCATGTCAGCCGTTAAGTG
249	R-R6K-weapon	GTAATACTGCGGCGTAGAGGATCTGAAGATCAGCAGTTC
250	F-weapon-R6K	GATCCTCTACGCCGCAGTATTACAAAAGGATGTCGCAAACGCTG
251	R-weapon-R6K	GGGAATTGATGGCTCTTGTATCTATCAGTGAAGCATC
252		

REFERENCES

253	1.	Le Roux F, Binesse J, Saulnier D, Mazel D (2007) Construction of a Vibrio splendidus
254		mutant lacking the metalloprotease gene vsm by use of a novel counterselectable
255		suicide vector. Appl Environ Microbiol 73(3):777–784.
256	2.	Demarre G, et al. (2005) A new family of mobilizable suicide plasmids based on broad
257		host range R388 plasmid (IncW) and RP4 plasmid (IncPα) conjugative machineries
258		and their cognate Escherichia coli host strains. Res Microbiol 156(2):245–255.
259	3.	Heidelberg JF, et al. (2000) DNA sequence of both chromosomes of the cholera
260		pathogen Vibrio cholerae. Nature 406(6795):477–483.
261	4.	Val ME, Skovgaard O, Ducos-Galand M, Bland MJ, Mazel D (2012) Genome
262		engineering in Vibrio cholerae: A feasible approach to address biological issues. PLoS
263		Genet 8(1). doi:10.1371/journal.pgen.1002472.

- 2645.Waldor MK, Mekalanos JJ (1994) ToxR regulates virulence gene expression in non-265O1 strains of Vibrio cholerae that cause epidemic cholera. Infect Immun 62(1):72–78.
- Guzman LM, Belin D, Carson MJ, Beckwith J (1995) Tight regulation, modulation, and
 high-level expression by vectors containing the arabinose P(BAD) promoter. J
 Bacteriol 177(14):4121–4130.
- Bartolome B, Jubete Y, Martinez E, de la Cruz F (1991) Construction and properties of
 a family of pACYC184-derived cloning vectors compatible with pBR322 and its
 derivatives. *Gene* 102(1):75–78.