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Bacterial pathogens have developed many different strategies to hijack host cell
responses to promote their own survival. The manipulation of lipid biogenesis and
cell membrane stability is emerging as a key player in bacterial host cell control.
Indeed, many bacterial pathogens such as Legionella, Pseudomonas, Neisseria,
Staphylococci, Mycobacteria, Helicobacter, or Clostridia are able to manipulate and use
host sphingolipids during multiple steps of the infectious process. Sphingolipids have
long been considered only as structural components of cell membranes, however, it is
now well known that they are also intracellular and intercellular signaling molecules that
play important roles in many eukaryotic cell functions as well as in orchestrating immune
responses. Furthermore, they are important to eliminate invading pathogens and play
a crucial role in infectious diseases. In this review, we focus on the different strategies
employed by pathogenic bacteria to hijack the sphingolipid balance in the host cell to
promote cellular colonization.
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INTRODUCTION

Sphingolipids constitute an important class of lipids that are structural modules in eukaryotic
membranes. However, they have also been shown to act as signaling molecules that play critical
roles in regulating diverse physiological processes including signal transduction, regulation of cell
growth and death, adhesion, migration, and inflammation. Indeed, sphingolipids are also bioactive
molecules and their highly interconnected and spatially regulated pathways are very complex
(Hannun and Obeid, 2008).

Briefly, the main hub in the sphingolipid pathway is ceramide that can be synthesized de
novo from serine and palmitate, present in the endoplasmic reticulum (ER) and in ER-associated
membranes, or from the breakdown of sphingomyelin (SM) into ceramide and phosphatidylcholine
catalyzed by sphingomyelinase enzymes (SMases) (Figure 1). Sphingomyelinases are classified
as acidic, neutral or alkaline, based on their optimal pH and they are located in distinct
cellular sub-compartments, where their products eventually mediate specific functions (Goni and
Alonso, 2002). The ceramide generated by acidic SMase (ASM), for example, resides either in
the lysosome or at the plasma membrane, where ceramide aggregates into microdomains. Later,
aggregation of those microdomains into ceramide-enriched membrane platforms induces local
changes in the membrane environment thereby affecting the permeability and the fluidity of the
membrane and causing conformational changes in membrane-associated enzymes or receptors
(Cremesti et al., 2002).
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Ceramides themselves function also as bioactive molecules
and provide a basis for the synthesis of other signaling molecules
such as ceramide-1-phosphate or glucosylceramide, or they can
eventually, through the catabolic pathway, be hydrolyzed by
ceramidases to form sphingosine (Figure 1). Sphingosine can
then be recycled into the sphingolipid pathway, the “salvage”
pathway, where ceramide synthase hydrolyzes ceramide directly
from sphingosine, or is phosphorylated by the sphingosines
kinases (SKs). The product sphingosine-1-phosphate (S1P) can
be dephosphorylated to regenerate sphingosine (through the
action of specific S1P-phosphatases) or can be irreversibly
cleaved by a sphingosine phosphate lyase (SPL) to generate
ethanolamine phosphate and hexadecenal (which, in turn, can be
reduced to palmitate and subsequently reincorporated into lipid
metabolic pathways) (Figure 1). S1P is one of the most soluble
sphingolipids, it is able to move between membranes, as well
as act extracellularly. It interacts with sphingosine-1-phosphate
receptors, S1PRs, which are high-affinity G-protein coupled
receptors (Lee et al., 1998). S1PRs display selective tissue
expression and activate specific intracellular signaling pathway,
providing to S1P crucial roles in cell survival, cell migration and
inflammation (Hla, 2004).

The sphingolipid mediators described above, play a role in
many different cellular processes. For example, they modulate
the reorganization of cellular membrane receptors and thus
regulate the internalization of bacteria in the host cell, as well
as the subsequent fusion of phagosomes and lysosomes. They
are also implicated in intracellular signaling following bacterial
internalization such as cytokine release, inflammatory responses
and initiation of apoptosis of the infected cell (Maceyka and
Spiegel, 2014). However, many bacterial pathogens have acquired
the ability to counteract the cellular response and to change the
sphingolipid balance of the cell they infect. The majority of these
bacterial pathogens hijack different host cell factors to interfere
with the sphingolipid signaling to their advantage. In contrast, a
small number of them acquired the ability to produce enzymes
that directly change the sphingolipid composition of host
membranes in order to promote their colonization (Figure 1).

BACTERIAL PATHOGENS EXPLOIT AND
HIJACK THE HOST CELL SPHINGOLIPID
PATHWAY

Adhesion and Bacterial Uptake
The first critical step of hot-pathogen interaction is the
bacteria-cell contact and eventually the entry of the pathogen into
the host cell. Thus, bacterial pathogens may modulate membrane
properties and signaling pathways to invade eukaryotic cells,
therefore exploiting the sphingolipid pathway. In this context,
one of the frequent targets of bacteria is the ASM that is known
to participate in membrane reorganization and formation of
ceramide-enriched platforms. Several bacterial pathogens have
been shown to activate the ASM, a mechanism that promotes
bacterial colonization. Furthermore, sphingosine has been shown
to have antimicrobial properties as it inhibits growth and

kills many Gram-positive and Gram-negative bacteria (Fischer
et al., 2013). Thus decreasing sphingosine levels indirectly by
activating ASM is beneficial for survival and replication of
intracellular pathogens.

Pseudomonas aeruginosa, the primary cause of morbidity
and mortality in patients with cystic fibrosis, is the bacterium
for which the interaction with sphingolipids upon infection
is the best studied (Teichgraber et al., 2008). In particular,
P. aeruginosa infection triggers the activation of the ASM at the
plasma membrane, with the subsequent production and release of
ceramide that clusters at ceramide-enriched platforms required
for bacterial internalization (Grassme et al., 2003). The increase
of ceramide-enriched platforms induces a local accumulation
of ß1-integrins that downregulate acid ceramidase expression,
resulting in further accumulation of ceramide and consequently
a reduction of surface sphingosine, a lipid that kills bacteria
(Grassme et al., 2017).

Pathogenic Neisseria are Gram-negative pathogens that are
able to bind mucosal surfaces by employing multiple strategies
to interact with various cell receptors. Neisseria gonorrhoeae,
the etiological agent of gonorrhea, and Neisseria meningitis,
the major cause of meningitis and septicemia worldwide, are
able to transiently activate the ASM to mediate the formation
of ceramide-enriched platforms that favor bacterial infection.
The internalization is mediated by outer membrane proteins,
Opa and Opc, expressed by N. gonorrhoeae and N. meningitis,
respectively. Opa is responsible for ASM activation by binding
to the CEACAM receptor family (CD66) (Hauck et al., 2000),
whereas Opc-expressing N. meningitidis induces ceramide-
enriched platforms that serve to cluster the ErbB2 receptor
underneath adherent bacteria (Simonis et al., 2014).

Staphylococcus aureus, a common commensal bacterium, but
also an opportunistic pathogen that frequently causes different
diseases, such as pneumonia, endocarditis, or toxic shock
syndrome (Tong et al., 2015), also activates ASM. Recent studies
have demonstrated that staphylococcal α-toxin is one of the
factors mediating the activation of ASM and the release of
ceramide via ADAM10, which is linked to the degradation of tight
junctions (Becker et al., 2018). This mechanism reveals a central
role for α-toxin and ASM in S. aureus infection, in particular in
cystic fibrosis patients (Keitsch et al., 2018).

Clostridium botulinum C2 toxin, the binding component of
the binary C2I/C2II toxin, induces a release of sphingomyelinase
from lysosomes which leads to an increased level of ceramide
that is responsible for the endocytosis of the toxin (Nagahama
et al., 2017). Similar to C. botulinum, Clostridium difficile
exploits the sphingolipid machinery to colonize the host cells as
clostridium difficile toxin (CDT) causes actin ADP-ribosylation
and a subsequent formation of microtubule-based membrane
protrusions depending on sphingolipid-rich microdomains
(Schwan et al., 2011).

The ASM is not the only sphingomyelinase playing a role
in bacterial invasion as it has been shown that the neutral
sphingomyelinase 2 (Nsm2) plays a role in the formation of
granuloma induced by Mycobacterium tuberculosis in mice (Wu
et al., 2018). Nsm2 is located in the inner leaflet of the plasma and
Golgi membranes and has been shown to induce ceramide release
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FIGURE 1 | Manipulation of the sphingolipid pathway by bacterial pathogens. Ceramide, the hub of the sphingolipid pathway, can be formed by two different routes:
de novo synthesis, that starts by the condensation of the amino acid serine and the saturated fatty acid palmitate (purple), or the sphingomyelinase pathway that
allows the degradation of sphingomyelin in ceramide (orange). The catabolic pathway (green) leads to the formation of bioactive lipids via the action of different
enzymes. All steps are reversible, except the sphingosine lyase activity that irreversibly cleaves sphingosine-1-phosphate to generate ethanolamine phosphate and
hexadecenal, which can be subsequently reincorporated into the de novo synthesis. Bacterial pathogens that target host cell sphingolipid enzymes are indicated.
Their names are written next to the host enzyme they target/manipulate either directly (written in blue color) or indirectly (written in black color). For a comprehensive
review describing the subcellular localization of sphingolipid enzymes refer to Yamaji and Hanada (2015). SMase, sphingomyelinase; GlcCer, glucosylceramide;
S1PPase, sphingosine-1-phosphate phosphatase; SPL, sphingosine-1-phosphate lyase.

upon several cellular and pathological processes (Shamseddine
et al., 2015). Nsm2 is also a key factor for N. gonorrhoeae invasion,
in particular strains expressing the major outer membrane
protein PorB that binds the SREC-I receptor and triggers Nsm2
activation (Faulstich et al., 2015).

Several bacterial pathogens can directly use glycosphingolipids
of the plasma membrane as receptors, in order to internalize
into the target cell. In particular, lactosylceramide (LacCer)
acts as a pattern recognition receptor (Nakayama et al.,
2013). One example is M. tuberculosis, that can bind
LacCer- enriched lipid rafts of human neutrophils via
its membrane lipoarabinomannans (LAMs) to stimulate
phagocytosis (Nakayama et al., 2016).

Glycosphingolipids are also exploited by bacterial toxins
to translocate into target cells. It has been shown that
globotriaosylceramide (Gb3), also known as CD77 or Pk blood
group antigen, is the ligand of Escherichia coli shiga toxins
(Lingwood et al., 2010) and lectin 1 (LecA), an outer membrane
virulence factor of P. aeruginosa. In the case of shiga toxins,
the receptor binding allows the toxin internalization and, once
into the cell cytosol, the triggering of cell toxicity (Melton-
Celsa, 2014), whereas LecA once it binds Gb3 triggers a signaling
cascade through CrkII phosphorylation (Zheng et al., 2017).
This interaction also promotes a cell membrane engulfment, that
prompts P. aeruginosa uptake by host cells (Eierhoff et al., 2014).

Sphingomyelin is also required for entry of Helicobacter
pylori, a gastric pathogen causing chronic infections that are

a significant risk factor for the development of ulcer disease
or gastric adenocarcinoma in epithelial cells. The secreted
vacuolating cytotoxin (VacA) plays an important role in bacterial
colonization and multiple putative VacA receptors have been
reported (Foegeding et al., 2016). Between them sphingomyelin
is essential for targeting VacA to membrane rafts and subsequent
Cdc42-dependent pinocytic cellular entry (Gupta et al., 2010).

Phagolysosome Fusion and Formation of
Intracellular Compartments for Bacterial
Replication
An efficient host response to bacterial invasion consists in an
appropriate fusion between phagosomes and lysosomes carrying
the pathogens to elimination. Interestingly sphingolipids, and
in particular ASM, play a role in mediating phagolysosome
fusion and degradation of bacteria. In fact, a high susceptibility
to bacterial infection of Listeria monocytogenes and S. aureus
has been shown in ASM deficient models. The role of ASM in
L. monocytogenes uptake and invasion has been shown both in
cellular (macrophages) (Schramm et al., 2008), and in animal
models (mice) (Utermöhlen et al., 2003).

Staphylococcus aureus infection causes the activation of CD44
receptor, which is stimulating ASM via the generation of reactive
oxygen species (ROS), resulting in ceramide release and increased
formation of ceramide-enriched domains after infection. These
domains cluster and thereby amplify CD44 signaling resulting
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in further activation of the ASM providing a positive forward
feedback loop between CD44 and the ASM. CD44 activation
by S. aureus stimulates small G proteins, a reorganization of
the cytoskeleton, internalization of the pathogen, and fusion of
phagosomes with lysosomes, a process that requires again ASM
(Li et al., 2017).

Mycobacterium tuberculosis is able to actively inhibit
phagosome maturation by acting on sphingosine kinase 1. This
pathogen inhibits both, the activation and the translocation of
SK1 to block the cytosolic Ca2+ signaling, required for normal
maturation of phagosomes (Thompson et al., 2005). In contrast
to M. tuberculosis, Chlamydia trachomatis, a Gram-negative
obligate intracellular pathogen responsible for trachoma and
sexually transmitted diseases, develops, after binding and
entry into target cells, a membrane-bound vacuole, termed
inclusion that minimizes the interaction with immune defenses
and other host-derived molecules. It has been shown that the
inclusion membrane contains sphingomyelin (Hackstadt et al.,
1996) and that C. trochomatis and Chlamydia psittaci actively
redirect sphingomyelin biosynthesis at the inclusion membrane
by recruitment of sphingomyelin synthases, a step strictly
necessary for inclusion growth and stability (Elwell et al., 2011;
Koch-Edelmann et al., 2017).

Signal Transduction, Apoptosis, and
Autophagy
Sphingolipid turnover affects the intracellular trafficking
of important membrane microdomains, impacting their
associated receptors, transporters and the production of a
cascade of products, each of which can interact with multiple
intracellular targets (Ohanian and Ohanian, 2001). Several
pathogens are able to modulate the cellular transduction
during infection upon a direct targeting of sphingolipid
enzymes. One example is the signaling pathway activated
by sphingosine kinase 1 upon Mycobacterium smegmatis
infection. Prakash et al. (2010) showed that sphingosine kinase
1 inhibition in infected macrophages leads to a decrease in
anti-mycobacterial proteins-pp38 and iNOS, via dampened

NF-kB and p38-MAPK activities. In a similar manner, specific
activation of mitochondrial ASM by P. aeruginosa triggers
the release of mitochondrial ceramide and the release of
cytochrome-c from mitochondria, leading to cell death
(Manago et al., 2015). Possibly this apoptotic process is
mediated by the formation of ceramide channels in the
mitochondrial outer membrane through which cytochrome
c can exit mitochondria and activate apoptotic pathway
(Ganesan et al., 2010).

Sphingolipids are well known in mediating key cellular
processes, including autophagy (Bedia et al., 2011; Jiang and
Ogretmen, 2014). Salmonella spp. is a food-borne Gram-negative
entero-pathogen that remains a major public health problem
word wide. After internalization, a type-III secretion system
(T3SS) is necessary to remodel the phagosome into a Salmonella
containing vacuole (SCV) where the bacterium replicates.
Salmonella, depending on the stage of replication, can induce a
suppression of autophagy, in order to enhance bacterial survival
(Owen et al., 2014). This induction seems to be orchestrated by
sphingolipid biomolecules, as inhibition of de novo sphingolipid
synthesis leads to decreased Salmonella-induced autophagy
(Huang, 2016).

BACTERIAL PATHOGENS MIMIC HOST
SPHINGOLIPID ENZYMES

While most bacteria do not contain sphingolipids, some of
them have evolved mechanisms by which they can utilize
sphingolipids of the eukaryotic cells. Interestingly, certain
bacterial pathogens encode enzymes implicated in the catabolic
pathway of sphingolipids in the eukaryotic cells (Figure 1
and Table 1).

Examples are Bacillus cereus, a facultative anaerobic
Gram-positive bacterium associated with food poisoning
and nosocomial infections, S. aureus a Gram-positive facultative
pathogen and Listeria Ivanovii, a ruminant pathogen. All three
encode enzymes with a high degree of amino acid sequence

TABLE 1 | Bacterial enzymes that mimic host sphingolipids.

Bacterium Enzyme Gene Protein References

B. cereus Sphingomyelinase sph Bc-SMase Oda et al., 2012

S. aureus Sphingomyelinase hlb ß-toxin Herrera et al., 2017

L. ivanovii Sphingomyelinase smcL SmcL Gonzalez-Zorn et al., 1999

M. tuberculosis Sphingomyelinase rv0888 SpmT Speer et al., 2015

L. pneumophila strain Paris Sphingomyelinase∗ lpp2641 – Cazalet et al., 2004

L. pneumophila strain Longbeachae Sphingomyelinase∗ llo2622 llo1999 llo1141 – Cazalet et al., 2004

P. aeuroginosa Sphingomyelin synthase PlcH PlcH Luberto et al., 2003

P. aeuroginosa strain AN17 Ceramidase PA0845 PaCD Okino et al., 1998

L. pneumophila strain Paris Sphingosine kinase∗ lpp2295 – Cazalet et al., 2004

B. pseudomallei strain K96243 Sphingosine phosphate lyase BPSS2021 BPSS2025 BPSS2021 BPSS2025 Custodio et al., 2016

B. thailandensis strain E264 Sphingosine phosphate lyase BTH_II0309 BTH_II0311 BTH_II0309 BTH_II0311 Custodio et al., 2016

L. pneumophila strain Paris Sphingosine phosphate lyase∗ lpp2128 LpSPL Cazalet et al., 2004;
Rolando et al., 2016a

∗The functional annotation is based on sequence similarity.
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homology that encode sphingomyelinase (Smase) activities.
S. aureus ß-toxin confers to the bacterium its hemolytic and
lympholytic activities (Herrera et al., 2017), whereas Bc-Smase,
produced in large amounts by clinical isolates of B. cereus,
enhances bacterial colonization by inducing clustering of
ceramide and attenuation of membrane fluidity (Oda et al.,
2012). L. ivanovii Smase, encoded by the smcL gene induces
hemolysis and facilitates the disruption of the phagocytic vacuole
thereby promoting intracellular survival and propagation
(Gonzalez-Zorn et al., 1999).

Pseudomonas species are also known to express and secrete
sphingolipid-metabolizing enzymes. P. aeruginosa encodes a
sphingomyelin synthase, PlcH, which specifically recognizes
the choline head-group of sphingomyelin as well as the
primary hydroxyl group of ceramide (Luberto et al., 2003)
and its gene expression is strictly regulated by cellular
amounts of sphingolipids (Okino and Ito, 2016). Furthermore,
P. aeruginosa seems also to be able to hydrolyze ceramide as
an alkaline ceramidase (Cdase) has been characterized from the
P. aeruginosa strain AN17 isolated from the skin of a patient with
atopic dermatitis (Okino et al., 1998). Enzymatic characterization
of the P. aeruginosa Cdase showed that it can be inhibited
by sphingosine and by sphingosine analogs, but not by typical
mammalian Cdase inhibitors. This suggests that the bacterial
Cdase has a novel active site and/or substrate-binding region
(Nieuwenhuizen et al., 2002).

Mycobacterium tuberculosis encodes a sphingomyelinase,
SpmT, that is a cell-surface exposed protein, anchored in the outer
membrane, that possesses a strong sphingomyelinase activity
which is required for bacterial growth and nutrient acquisition
(Speer et al., 2015). The hydrolyzed products, ceramide and
phosphocholine, are utilized by M. tuberculosis as source of
carbon, nitrogen and phosphorous, respectively, explaining
the stimulating activity of sphingomyelin on bacterial growth
described in the past (Dubos, 1948).

Burkholderia pseudomallei and Burkholderia thailandensis,
two closely related intracellular Gram-negative pathogens found
in soils and water, encode SPL like proteins (Custodio et al.,
2016). B. pseudomallei, the causative agent of melioidosis, is
able to invade, survive and replicate in both phagocytic and
non-phagocytic cells, whilst B. thailandensis, although it displays
a similar intracellular phenotype, exhibits an attenuated form
of the disease (Lennings et al., 2018). Custodio et al. (2016)
showed that orthologs Burkholderia SPL proteins possess SPL
activity and that they play a critical role in virulence. In
addition, treatment of Burkholderia-infected macrophages with
exogenous SPL-receptor agonists enhances their bactericidal
activity (Custodio et al., 2016).

A striking example of a bacterial pathogen encoding
sphingolipid enzymes is Legionella pneumophila, a
Gram-negative intracellular bacterium responsible for
Legionnaire’ disease, a severe pneumonia that is often fatal
when not treated rapidly (Steinert et al., 2007). Shortly after
its discovery in 1977, it has been shown that L. pneumophila is
pathogenic for freshwater and soil amoebae (Rowbotham, 1980),
leading to the new perception in microbiology, whereby bacteria
that parasitize protozoa can utilize similar processes to infect

human cells (Escoll et al., 2013). Genome analyses uncovered
that the ability of Legionella to infect eukaryotic cell is partly
due to the acquisition of eukaryotic gene functions from their
protozoan hosts due to the Legionella-protozoa coevolution
(Nora et al., 2009; Gomez-Valero and Buchrieser, 2013).
Interestingly, L. pneumophila has been shown to encode for at
least three proteins mimicking the host sphingolipid pathway
(Cazalet et al., 2004): a sphingomyelinase, a sphingosine kinase
and a sphingosine-1-phosphate lyase (Rolando et al., 2016a).

Till now only the sphingosine-1-phosphate lyase has been
characterized functionally (Khweek et al., 2013; Rolando
et al., 2016b). Indeed, Legionella SPL is encoded by all
L. pneumophila strains analyzed, but Legionella Longbeachae, and
is highly homologous to the eukaryotic SPL (Gomez-Valero and
Buchrieser, 2019). The secreted protein effector (named LpSpl
and LegS2 in L. pneumophila strains Paris and Philadelphia,
respectively) possesses SPL activity and triggers the reduction of
several sphingolipids in infected host cells. Thus, LpSPL alone is
sufficient to prevent an increase in sphingosine levels in infected
cells in order to inhibit autophagy during infection (Rolando
et al., 2016b). This strategy allows the bacterium to counteract
the host cell response and to facilitate intracellular growth.

CONCLUSION AND OUTLOOK

Several bacterial pathogens have been shown to actively modulate
the sphingolipid pathway of their host cells to promote
cellular colonization. Among the different strategies employed
one of the commonly targeted activity is that of the acid
sphingomyelinase (ASM), which can be regulated by bacterial
virulence factors. ASM activation leads to an increase of the
membrane levels of ceramide resulting in the formation of
ceramide-enriched membrane platforms. These structures form a
unique microenvironment with biophysical properties that allow
them to trap and cluster receptor molecules and intracellular
signaling molecules, thereby permitting and amplifying signal
transduction. Thus, ceramide acts by re-organizing molecules in
cells and in that way bacteria can regulate their internalization in
the host cell, the subsequent cytokine release and inflammatory
response or the regulation of cell death (Gulbins et al., 2004). This
specific ASM activation is driven not only by secreted virulence
factors and toxins, but also by the bacterial lippopolysaccaride
(LPS) itself. Indeed, the exposure of diverse cell types to LPS
induces an activation of ASM and a release of ceramide.

Sphingolipids play also an important role in respiratory
tract infections, as they are one of the active constituents of
the mucus secreted by the alveolar epithelium, which protects
the lung tissue from invading pathogens. A large number of
intermediate metabolites in the mucus are secreted by the alveolar
epithelium where they act as surfactants and maintain the barrier
integrity. Thus, the sphingolipid balance plays an additional
role in lung infection diseases. Sphingolipids, in particular
ceramide and sphingosine, are in particular important in lung
antibacterial defense (Seitz et al., 2015). It is thought, that in
healthy individuals the constitutive presence of sphingosine in
upper airway cells helps to eliminate pathogens that become
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highly infective in diseased lungs, e.g., cystic fibrosis, where
the concentrations of both sphingosine and ceramide are
altered (downregulated and upregulated, respectively). Indeed,
the normalization of the lipid levels in a mouse model of
cystic fibrosis was shown to be sufficient to prevent infections
(Pewzner-Jung et al., 2014).

These observations point to a possible antibacterial effect of
sphingolipids which could perhaps be exploited in times where
antibiotic resistance has become a severe threat to global public
health and it has become highly important to identify novel
therapeutic targets to fight bacterial infections. Antibacterial
activity of diverse sphingolipids has been shown in several types
of bacterial infections and thus they are a potential new tool to
fight them (Baker et al., 2018).

Actually, sphingosine has been shown to prevent
P. aeuroginosa and S. aureus infections in mice (Pewzner-Jung
et al., 2014; Tavakoli Tabazavareh et al., 2016). At present it
is unknown how it is able to kill pathogens, however, recent
findings suggest that it can cause ultrastructural damages,
both extracellularly and intracellularly (Fischer et al., 2013).
Resistant S. aureus strains, in particular methicillin-resistant
S. aureus strains, have become an important clinical problem
and are recognized as serious threats in communities and
hospitals worldwide (Grundmann et al., 2006). It is thus
crucial to find new therapeutic strategies and to provide
alternatives to existing approaches. One possibility could
be the combination of antibiotics with new target drugs
as, for example, a specific inhibitor of the sphingolipid
catabolic pathway. Peng et al. (2015) showed that ASM
inhibition successfully rescues mice from the lethality of
S. aureus infection.

It has also been suggested that sphingosine possesses
an anti-biofilm activity by inhibiting bacterial adherence of
Streptococcus mutans, a highly cariogenic bacterium (Cukkemane
et al., 2015). An antibacterial activity has been shown also
for ceramide, that has been proven to actively kill pathogenic
Neisseriae, likely by causing dissipation of the membrane
potential (Becam et al., 2017). In addition to ceramide
and sphingosine, other sphingolipid metabolites, in particular
S1P may offer therapeutic benefits when managing bacterial

diseases. S1P has been shown to increase intracellular killing
of M. tuberculosis by macrophages (Garg et al., 2004), as well
as to reduce neonatal death associated with pertussis infections
(Scanlon et al., 2015). As sphingolipids play important roles
in controlling infection, future research to get a deeper insight
in their functioning and the different signaling roles might
allow to develop new strategies to fight bacterial pathogens.
However, it would also be very interesting to study in
depth how bacterial pathogens may exploit sphingolipids to
their own advantage. Indeed, as discussed in this review,
several intracellular pathogens that live in close contact with
eukaryotic hosts have evolved strategies allowing them to mimic
their functions and thereby to promote their intracellular
replication. One example is L. pneumophila, a bacterium that
has acquired several eukaryotic-like proteins in its effector
arsenal among which are three enzymes that share activities
of eukaryotic enzymes that act in the sphingolipid degradation
pathway. However, many other intracellular pathogens, such
as Coxiella, Brucella, or Chlamydia may encode among the
many effectors for which the functions are not known yet,
effectors mimicking or targeting the sphingolipid pathway.
Their identification and characterization would help to not
only better understand the bacterial strategy, but probably
also new cellular pathways regulated by the sphingolipid
bioactive molecules.
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