
HAL Id: pasteur-02552049
https://pasteur.hal.science/pasteur-02552049

Submitted on 23 Apr 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Sequana Coverage: Detection and Characterization of
Genomic Variations using Running Median and Mixture

Models
Dimitri Desvillechabrol, Christiane Bouchier, Sean Kennedy, Thomas Cokelaer

To cite this version:
Dimitri Desvillechabrol, Christiane Bouchier, Sean Kennedy, Thomas Cokelaer. Sequana Coverage:
Detection and Characterization of Genomic Variations using Running Median and Mixture Models.
GigaScience, 2018, 7 (12), pp.giy110. �10.1093/gigascience/giy110�. �pasteur-02552049�

https://pasteur.hal.science/pasteur-02552049
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

GigaScience, 7, 2018, 1–13

doi: 10.1093/gigascience/giy110
Advance Access Publication Date: 6 September 2018
Technical Note

TE CHNICAL NO TE

Sequana coverage: detection and characterization of
genomic variations using running median and
mixture models
Dimitri Desvillechabrol1,†, Christiane Bouchier1, Sean Kennedy1 and
Thomas Cokelaer 1,2,*,†

1Institut Pasteur – Pole Biomics – 25-28 Rue du Docteur Roux, 75015 Paris, France and 2Institut Pasteur –
Bioinformatics and Biostatistics Hub – C3BI, USR 3756 IP CNRS – Paris, France
∗Correspondence address. Thomas Cokelaer, 25-28 Rue du Docteur Roux, 75015 Paris, France; E-mail:
thomas.cokelaer@pasteur.fr http://orcid.org/0000-0001-6286-1138
†Equal contributions

Abstract

Background: In addition to mapping quality information, the Genome coverage contains valuable biological information such
as the presence of repetitive regions, deleted genes, or copy number variations (CNVs). It is essential to take into
consideration atypical regions, trends (e.g., origin of replication), or known and unknown biases that influence coverage. It
is also important that reported events have robust statistics (e.g. z-score) associated with their detections as well as precise
location. Results: We provide a stand-alone application, sequana coverage, that reports genomic regions of interest (ROIs)
that are significantly over- or underrepresented in high-throughput sequencing data. Significance is associated with the
events as well as characteristics such as length of the regions. The algorithm first detrends the data using an efficient
running median algorithm. It then estimates the distribution of the normalized genome coverage with a Gaussian mixture
model. Finally, a z-score statistic is assigned to each base position and used to separate the central distribution from the
ROIs (i.e., under- and overcovered regions). A double thresholds mechanism is used to cluster the genomic ROIs. HTML
reports provide a summary with interactive visual representations of the genomic ROIs with standard plots and metrics.
Genomic variations such as single-nucleotide variants or CNVs can be effectively identified at the same time.

Keywords: genome coverage; sequencing depth; running median; Sequana; NGS; Python; Snakemake; CNV

Background

Sequencing technologies allow researchers to investigate a wide
range of genomic questions [1], covering research fields such
as the expression of genes (transcriptomics) [2], the discovery
of somatic mutations, or the sequencing of complete genomes
of cancer samples, to name a few [3, 4]. The emergence of
second-generation sequencing, which is also known as next-
generation sequencing, or NGS hereafter, has dramatically re-
duced the sequencing cost. This breakthrough multiplied the
number of genomic analyses undertaken by research laborato-

ries but also yielded vast amounts of data. Consequently, NGS
analysis pipelines require efficient algorithms and scalable visu-
alization tools to process this data and to interpret the results.

Raw data generated by NGS experiments are usually stored
in the form of sequencing reads (hereafter simply called reads).
A read stores the information about a DNA fragment and also
an error probability vector for each base. Read lengths vary from
35 to 300 bases for current short-read approaches [1] to several
tens of thousands of bases possible with long-read technologies
such as Pacific Biosciences [5, 6] or Oxford Nanopore [7].

Received: 21 September 2017; Revised: 9 March 2018; Accepted: 23 August 2018

C© The Author(s) 2018. Published by Oxford University Press. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium,
provided the original work is properly cited.

1

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/article-abstract/7/12/giy110/5091804 by Institut Pasteur user on 23 April 2020

http://www.oxfordjournals.org
http://orcid.org/0000-0001-6286-1138
mailto:thomas.cokelaer@pasteur.fr
http://orcid.org/0000-0001-6286-1138
http://orcid.org/0000-0001-6286-1138
http://creativecommons.org/licenses/by/4.0/

2 Sequana coverage: detection and characterization of genomic variations using running median and mixture models

Figure 1: Example of a genome coverage series (in black in both panels). The

genome coverage corresponds to the bacteria test case (see text). It contains
a deleted region (around 2.2 Mbp) and various under- and overcovered regions
(from 100 bp to several Kbp). Although the sequencing depth is about 500X, there

is a nonlinear trend from 500X on both ends to 400X in the middle of the genome.
The top panel shows the sequencing depth (blue horizontal line) and two arbi-
trary fixed thresholds (dashed red lines) at 400X and 500. Due to the nonlinear
trend, the fixed thresholds lead to an increase of type I and type II errors. On the

contrary, in the bottom figure, the trend is estimated using a RM (red line), and
adaptive lower and upper thresholds (dashed red lines) can be derived.

After trimming steps (quality, adapter removal), most high-
throughput sequencing (HTS) experiments will require mapping
the reads onto a genome of reference [8]. If no reference is
available, a de novo genome assembly can be performed [9]. In
both cases, reads can be mapped back on the reference taking
into account their quality. We define the genome coverage as the
number of reads mapped to a specific position within the refer-
ence genome. The theoretical distribution of the genome cover-
age has been thoroughly studied following the seminal work of
the Lander-Waterman model [10, 11]. A common metric used to
characterize the genome coverage is the sequencing depth [12],
which is the empirical average of the genome coverage. It may
also be called depth of coverage (DOC), fold coverage, read depth,
or confusingly, depth or coverage. The sequencing depth unit is
denoted X. An example of genome coverage with a sequencing
depth of about 450X is shown in Fig. 1. Another useful metric
is the breadth of coverage (BOC), which is the proportion of the
intended genome reference covered by at least one read.

The required sequencing depth depends on the experimental
application. For instance, to detect human genome mutations,
single-nucleotide polymorphisms (SNPs), and rearrangements,
a 30 to 50X depth is recommended [1, 13] in order to distinguish
between sequencing errors and true SNPs. In contrast, the detec-
tion of rarely expressed genes in transcriptomics experiments
often requires greater sequencing depth. However, greater se-
quencing depth is not always desirable. Indeed, in addition to
a higher cost, ultradeep sequencing (large sequencing depth in
excess of 1,000X) may be an issue for a de novo genome assembly
[14].

The Lander-Waterman model provides a good theoretical es-
timate of the required sequencing depth to guarantee that all
nucleotides are covered at least N times. This is, however, a the-
oretical estimate that does not take into account technical and
biological limitations; some regions being difficult to efficiently
map (e.g., repetitive DNA) or containing compositional biases
(e.g., GC bias [15]). Furthermore, the genome coverage itself may
contain a nonconstant trend along the genome due to the im-
pact of the origin of replication. Finally, some regions may be
deleted or duplicated. The genome coverage example shown in
Fig. 1 shows these different features.

While the sequencing depth and other metrics (e.g., BOC)
provide a quick understanding about the quality of sequenc-
ing and mapping, the genome coverage can also be analyzed to
identify genomic variations such as single-nucleotide variations
(SNVs) or copy number variations (CNVs) [16–17].

In order to detect genomic regions of interest (ROIs) based on
genome coverage, a simple and fast approach might be to set
two arbitrary thresholds bounding the sequencing depth. How-
ever, there are two major drawbacks with this approach. First,
as shown in Fig. 1 (top panel) and Notebook 4 in [18], with a
fixed threshold, one may detect numerous false signals (type I
errors) or fail to detect real events (type II errors). An adaptive
threshold that follows the trend of the genome coverage is thus
required. Furthermore, a fixed threshold is arbitrary, and so the
detected events lack a robust means of assigning significance.
A more robust alternative is to estimate the genome coverage
profile histogram [19] from which a z-score statistic can be used
to identify outliers more precisely. Due to a number of known
and unknown biases, one should still normalize the data [16].
There are a number of different methods for detecting the ROIs.
For example, for CNV detection, numerous techniques are used
[17], such as the mean-shift technique [20] or bias correction fol-
lowed by application of a complex statistical model [16].

Here, we describe a novel approach that can be used to ef-
ficiently detect various types of genomic ROIs. The algorithm
does not target any specific type of genomic variations but in-
stead systematically reports all positions (with a z-score) that
have depth departing from the overall distribution. The algo-
rithm normalizes the genome coverage using a running median
(RM) and then calculates a robust statistic (z-score) for each base
position based on the parameter estimation of the underlying
distribution. This allows us to obtain robust and nonconstant
thresholds at each genome position. Various types of clustering
or filtering can then be implemented to focus on specific cate-
gories of variations.

In the Data Description section, we describe the datasets
used throughout as test-case examples. In the Methods sec-
tion, we describe the RM used to detrend the genome coverage,
the statistical methods used to characterize the central distribu-
tion from which outliers can be identified, and a double thresh-
olds method proposed to cluster the ROIs. Finally, in the Ap-
plications section, we describe the standalone application, se-

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/article-abstract/7/12/giy110/5091804 by Institut Pasteur user on 23 April 2020

Desvillechabrol et al. 3

quana coverage, and potential applications for HTS-dependent
research projects, including CNV detection.

Data Description

Three test cases of genome coverage are presented here, cov-
ering representative organisms and sequencing depths. The
genome coverage datasets are in BED (Browser Extensible Data)
format, a tabulated file containing the coverage, reference (e.g.,
chromosome number, contig), and position on the reference.
BED files can be created from binary alignment (BAM) files
(mapped reads) using bedtools [21], in particular, the genomecov

tool.
We first considered bacteria from a study of methicillin-

resistant Staphylococcus aureus [22]. One circular chromosome of
3 Mbp is present. The sequencing depth is 450X and the genome
coverage exhibits a nonconstant trend along the genome (see
Fig. 1). This pattern, often observed in rapidly growing bacteria,
is the result of an unsynchronized population where genome
replication occurs bidirectionally from a single origin of repli-
cation [23, 24]. The proportion of outliers (see Table 1) is about
2.5% of the total bases. The original datasets (Illumina sequenc-
ing reads, paired-end, 100 bp) are available at the European Nu-
cleotide Archive (ENA) [25] under study accession number PR-
JEB2076 (ERR036019). The accession number of the reference is
FN433596.

The second organism is a virus with a sequencing depth of
1000X [26]. A circular plasmid containing the virus chromosome
is 19,795 bp long. About 13% of the genome coverage contains
large or low coverage regions (outliers). It also contains two large
undercovered regions (one partially undercovered and one re-
gion that is not covered at all), as shown in the Notebook 1
of [18]). The accession number of the reference is JB409847.

The third test case is a fungus (Schizosaccharomyces pombe)
[27]. The genome coverage has a sequencing depth of 105 X. It
has three noncircular chromosomes of 5.5 Mbp, 4.5 Mbp, and
2.5 Mbp. The references from ENA are CU329670.1, CU329671.1,
and CU329672.1. Although we will look at the first chromosome
only (1.5% of outliers), the tools presented hereafter handle cir-
cular chromosomes and multiple chromosomes. See examples
in Notebook 3 of [18].

We provide the three genome coverage data files in BED for-
mat on Synapse [28, 29]. See Availability of supporting data and
materials, at the end of the article, for more details.

In addition to these three cases, we also use a population
composed of six S. aureus isolates from [16] (Supplementary
Data), which is used to measure the efficiency of our algorithm
against two dedicated CNVs detection tools: CNOGpro [16] and
CNVnator [20].

Methods
Detrending the genome coverage

The genome coverage function is denoted C(b) where b is the
base (nucleotide) position on the genome of reference. The
genome coverage and reference lengths are denoted N. For sim-
plicity, we drop the parentheses and refer to the genome cover-
age as Cb. The empirical sequencing depth (average of genome
coverage) is denoted δ = Cb. Ideally, Cb is made of a continuous
homogeneous central region. In practice, however, this may be
interrupted by a succession of under- and overcovered regions;
these are the genomic ROIs that we want to detect.

Figure 2: Moving average (top panel) and RM (bottom panel) behaviors in the
presence of outliers (here, a deleted region in the center followed by a depleted
region). In both cases, the window parameter is set to 40,000 bases. The presence

of the deleted and depleted regions shows how the moving average (blue line,
top panel) can be shifted compared to the RM (blue line, bottom panel). In the top
panel, the thresholds (red lines) are also shifted and consequently the depleted
region (position 1,620,000) is not detected. In addition, the rate of false detection

increases (red dots). On the contrary, the RM has a better behavior with fewer
false detections and the ability to detect the depleted region.

A naive classifier consists of setting two fixed thresholds, δ−

and δ+, whereby low and high ROIs are defined as C−
b = Cb ≤ δ−

and C+
b = Cb ≥ δ+, respectively. If C0

b denotes the remaining data
such that δ− < C0

b < δ+, then the genome coverage can be written
as Cb = {C0

b , C+
b , C−

b }.
The advantage of the fixed-thresholds method is that it is

conceptually simple and computationally inexpensive. How-
ever, there are two major drawbacks. First, as shown in Fig. 1A,
false negatives and false positives will increase as soon as there
is a nonconstant trend present in the data. It may be a low-
frequency trend as shown here, but high-frequency trends are
also present (see, e.g., Fig. 2). Also of importance is that an ar-
bitrary choice of threshold(s) is unsatisfactory from a statistical
point of view since we cannot associate any level of significance
to a genomic region.

In order to account for a possible trend in the genome cover-
age series (and remove it), a standard method consists of divid-
ing the series by a representative alternative such as its moving
average (MA) or RM.

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/article-abstract/7/12/giy110/5091804 by Institut Pasteur user on 23 April 2020

4 Sequana coverage: detection and characterization of genomic variations using running median and mixture models

Table 1: Metrics derived from the genome coverage of the three test cases considered—bacteria, fungus, and virus).

Metric Bacteria Fungus Virus

Genome length 3 Mbp 5.5 Mbp 19,795 bp
BOC 0.985 1.0 0.966
Mean δ 447.8 105.49 931.3
Median δ 453 105 988
σ 84.1 19.9 237.2
CV 0.19 0.19 0.25
W 5,001/(20,001) 5,001/(20,001) 5,001
μ̃0 1.000/(1.001) 1.002/(1.002) 1.011
σ̃0 0.073/(0.073) 0.162/(0.158) 0.069
�4 0.957/(0.960) 0.986/(0.985) 0.868

The top part of the table contains metrics derived from the genome coverage only, while the bottom part contains metrics derived from the normalized genome

coverage. All metrics are defined in the text; BOC stands for breadth of coverage, δ for sequencing depth, and CV for coefficient of variation. The standard deviation
is denoted σ . In the bacteria and fungus cases, the running window W is set to 5,001 or 20,001, while for the virus we used 5,001 only. The parameters of the central
distribution,μ̃0 and σ̃0 , and the centralness, �4, are reported. Proportion of outliers (1 – �4) are about 4.5%, 1.5%, and 13% for the bacteria, fungus, and virus, respectively.

The MA is computed at each position, b, as the average of W
data points around that position and defined as follows:

MAW(b) = 1
W

V∑
i=−V

C(b + i), (1)

where W is the length of the moving window (odd number) and
V = (W − 1)/2. Note that the first and last V values are unde-
fined. However, in the case of circular DNA (e.g., viral or bacterial
genomes), the first and last V points are defined since Cb is now
a circular series.

Similarly, the RM is computed at each position, b, as the me-
dian of W data points around that position:

RMW(b) = median({C(b − V), .., C(b + V)}), (2)

where W and V are defined as before and the median function
is defined as the middle point of the sample set (half of the data
are below the median and half are above). A mathematical ex-
pression of the median and running median are given in the Ap-
pendix (Eq. 8).

The mean estimator is commonly used to estimate the cen-
tral tendency of a sample; nevertheless, it should be avoided in
the presence of extraneous outliers, which are common in NGS
genome coverage series (see, e.g., Fig. 1). Figure 2 shows the im-
pact of outliers when using an MA or a running mean. We will
use the running median (RM) only and define the normalized
genome coverage as follows:

C̃b = Cb

RMW(b)
. (3)

We will use the tilde symbol for all metrics associated with the
normalized genome coverage, C̃b. For instance, C̃b = {C̃0

b , C̃+
b , C̃−

b }.
The RM is used in various research fields, in particular, in

spectral analysis [30] to estimate the noise floor while ignoring
biases due to narrow frequency bands (e.g., [31]). Here, the goal
is to avoid narrow peaks but also to be insensitive to long deleted
regions. This can be a major issue in NGS as the RM estimator
complexity is a function of the window length. Indeed, the RM
algorithm involves the sorting of a sample of length W at each
position of the genome. So, the RM estimator must be efficient
and scalable. This is not an issue in spectral analysis and most
fields where RMs are used but is a bottleneck for NGS analysis

Figure 3: Normalized genome coverage C̃b (bacteria test case). The outliers
present in the original genome coverage Cb (see Fig. 1) are still present as well as
the deleted regions. The distribution is now centered on unity (blue line). Since

the distribution is normalized, constant thresholds can be used (dashed lines).

where W is large. As explained in the Appendix, the complexity
of the sorting part is in O(n2) in the worst case but, as with the
MA, one can take advantage of the rolling window and the fact
that the previous block is already sorted. We opted for the very
efficient Pandas [32] implementation (see Appendix for details).
In our implementation, both the MA and RM have the ability to
account for circular DNA data, which are essential for handling
a circular series.

If we normalize the genome coverage from the bacteria ex-
ample (Fig. 1), we obtain the results shown in Fig. 3. Finally, note
that with the genome coverage being discrete, the RM is also
discrete as well as the normalized genome coverage. The dis-
creteness will become more pronounced as sequencing depth
decreases.

Hereafter, we will discuss the impact of the W parameter on
the detection of genomic ROIs and how to set its value.

Parameter estimation of the central distribution and
adaptive thresholds in the original space

In the ideal case of randomly distributed reads across the
genome, the number of reads covering each base follows a Pois-

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/article-abstract/7/12/giy110/5091804 by Institut Pasteur user on 23 April 2020

Desvillechabrol et al. 5

son distribution [10]. This distribution is discrete and has one
parameter that corresponds to the sequencing depth (mean of
the distribution). Yet, the Poisson distribution is often too nar-
row [19], as can be observed in the three test cases considered.
This is generally due to biological overdispersion. In order to
account for overdispersion, the Poisson parameter can be dis-
tributed according to a second distribution. For instance, when
the Poisson parameter is distributed according to a Gamma dis-
tribution, we obtain a negative binomial, which has two shape
parameters [19].

A Poisson distribution with a large mean parameter approx-
imates a normal distribution, even though, technically speak-
ing, it is not (discrete vs continuous and one parameter vs two).
Yet, for δ � 1, we can assume that the Cb distribution exhibits
a Gaussian distribution denoted N (μ, σ 2) hereafter where μ is
the average of the genome coverage (δ in an ideal case) and σ

is its standard deviation. What about the normalized genome
coverage C̃b? It is a ratio distribution where the numerator fol-
lows N (μ, σ 2) distribution while the denominator’s distribution
is that of the RM. We can see empirically that for large δ and
small W parameter, the distribution of the RM follows a Gaus-
sian distribution, while for large W or small δ, the RM tends to
be discrete and the distribution may depart from a Gaussian dis-
tribution (see Notebook 7 of [18]). Even if we knew the RM dis-
tribution, the ratio distribution is only known for two Gaussian
distributions X and Y (Cauchy distribution) and when (i) the two
distributions are centered on zero, which is not the case, and (ii)
when they are independent, which is also not the case. Further-
more, the scenario we considered (ideal distribution, δ � 1) is
too restrictive since we are interested in identifying outliers in
real data and may encounter cases where δ is small (for which
Cb follows a negative binomial, not a Gaussian distribution). So,
we envisage a solution based on a mixture model as described
hereafter.

Genome coverage is a mix of distributions. Consider, for in-
stance, the presence of many CNVs, each with a different copy
number (CN; either depletion or duplication). The overall distri-
bution here would be very difficult to model analytically. There-
fore, the assumption and our goal are to fit a known distribution
on the central distribution so as to establish z-scores on the re-
maining data.

Our first hypothesis is that C̃b can be decomposed into a cen-
tral distribution, C̃0

b , and a set of outliers, C̃1
b = {C̃+

b , C̃−
b } where

the central distribution is predominant:
∣∣C̃0

b

∣∣ >
∣∣C̃1

b

∣∣ (vertical bars
indicate the cardinality of the sets).

Our second hypothesis is that the mixture model that rep-
resents C̃b is a Gaussian mixture model of k = 2 models only:
C̃0

b ∼ N (μ̃0, σ̃
2
0) and C̃1

b ∼ N (μ̃1, σ̃
2
1). The central distribution C̃0

b

exhibits a clear Gaussian distribution both on simulated data
(see Notebook 7 in [18]) and on real data (see the three examples
in Fig. 4). The second model is used to identify outliers (below
or above the central distribution). The parameters of the second
model are not used in defining the central distribution and so
have little impact on detection.

Similar to the method deployed in [19] to identify a mixture
model of negative binomials (on raw genome coverage), we will
use an expectation maximization (EM) [33] method to estimate
the parameters μ̃0,1 and σ̃0,1 (on the normalized genome cover-
age).

The EM algorithm is an iterative method that alternates be-
tween two steps: an expectation step that creates a function for
the expectation of the log-likelihood using the current estimate
of the parameters and a minimization step that computes pa-
rameters maximizing the expected log-likelihood found in the

Figure 4: Probability density functions (PDFs) of the normalized genome cover-

age function concerning the three test cases. The distributions were fitted with
Gaussian mixture models with k = 2 models. The first model (black line) fits the
central distribution’s PDF, and the second model (red line close to y = 0) fits the
outliers’ PDF. The dashed line (close to the black lines) indicates the mixture

distribution. In each panel, we report the parameters of the two Gaussian distri-
butions, the proportions π0, π1, and the � parameter introduced in the text that
gives the centralness of the data for each test case.

first step. The likelihood function and the maximum likelihood
estimate can be derived analytically in the context of Gaussian
distributions. Note that in addition to the means and standard
deviations, the mixture parameters also need to be estimated.
These are denoted π̃0 and π̃1. The EM algorithm is standard and
can be found in various scientific libraries. Note, however, that
the normalized genome coverage may contain zeros in the pres-
ence of deleted regions, and the estimation of the mixture model
should ignore them.

We have applied the EM algorithm on the normalized
genome coverage vector on various real NGS datasets, including
the three test cases in Fig. 4. The EM retrieves the parameters
of the central distribution (in particular, μ̃0 = 1) and the outliers.
Note that the choice of the RM parameter, W, does not signifi-
cantly affect the parameter estimation. In each case, the mean
of the central distribution is very close to unity. The standard
deviation varies significantly and is a function of the sequenc-
ing depth only (since the outliers are now incorporated in C1

b).
Finally, we can confirm that the proportion of outliers is small
compared to the central distributions by inspection of parame-
ters π0 and π1: π̃0 >> π̃1.

Once we have identified the parameters of the central distri-
bution C̃0, we can assign statistics for C̃b in terms of z-score:

z(b) = C̃ (b) − μ̃0

σ̃0
. (4)

Since the z-score corresponds to a normal distribution, we can
now set a threshold in terms of tolerance interval within which a
specified proportion of the genome coverage falls. For instance,
with a threshold of 3, we know from the normal distribution that
99.97% of the sample lies in the range –3 and +3. The exact math-
ematical value is given by the complementary error function,
erfc(x), where x = n/

√
2. Note that for n = 3, 4, and 5, the toler-

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/article-abstract/7/12/giy110/5091804 by Institut Pasteur user on 23 April 2020

6 Sequana coverage: detection and characterization of genomic variations using running median and mixture models

ance interval is 99.73%, 99.993%, and 99.999942%, respectively.
Thus, for a genome of 1 Mbp, by pure chance, we should obtain
about 2,700, 70, and 1 outlier(s), respectively.

If we now replace C̃b in Eq. 4 using its expression from Eq. 3,
we can express the original genome coverage as a function of the
RM, the z-score, and the parameters of the central distribution:

C (b) = (μ̃0 + z(b)̃σ0) RMW(b). (5)

We can now set a fixed threshold z(b) = ±n in the normalized
space. This is much easier to manipulate. Moreover, we can de-
rive a variable threshold in the original space that is function of
the genome position:

δ̃±(b) = (μ̃0 ± n± × σ̃0) RMW(b). (6)

Examples of variable upper and lower threshold functions are
shown in Figs. 1 and 2 (red dashed lines). This manipulation re-
sults in a robust statistical estimate of the presence of outliers
in the genome coverage. The z-score, computed earlier, provides
a precise level of confidence.

Using the normalization presented above, we can define the
centralness as one minus the proportion of outliers contained in
the genome coverage:

�n = 1 −
∣∣C̃1

b

∣∣∣∣C̃b
∣∣ = 1 −

∣∣C̃1
b

∣∣
G

, (7)

where G is the length of the genome and vertical bars indicate
the cardinality. This necessarily depends on how the threshold
n is set in the normalized space. In the case of an ideal Gaus-
sian distribution and n = 3, the centralness should equal the
tolerance interval of a normal distribution N (0, 1) that is the er-
ror function, erf(n/

√
2). The centralness equals unity when there

are no outliers, i.e., n → ∞. Finally, note that the centralness is
meaningless for values below 0.5 (meaning that the central dis-
tribution is not central!). As shown in Table 1, �3 equals 0.974,
0.99, and 0.86 in the three cases considered (bacteria, fungus,
and virus). So the proportion of outliers in the virus case is
higher than in the two other test cases, which is not obvious at
first glance given the very different lengths of the genome con-
sidered.

Finally, it is important to note that the z-scores assigned to
each position on the genome coverage are stable with respect
to the W parameter. Indeed, as shown in Notebook 7 of [18], the
mean and standard deviation of the distribution of the normal-
ized genome coverage C̃ are not affected by the parameter W.

Genomic ROIs

Starting from the normalized genome coverage, C̃ , we estimate
the parameters of the central distribution. This allows us to set a
z-score on each genome position. All values above the threshold
n+ are stored into a subset of events denoted C̃+

b , and all values
below the threshold n− are stored into C̃−

b . The selected data can
be made of continuous or noncontinuous regions. The number
of events can be quite large for low thresholds (e.g., for n+ = 2.5,
the bacteria has 35 Kbp such events). However, many positions
belong to the same event (i.e., same cluster). Consider the short
genomic region in Fig. 5, which is made of 2,000 base positions. It
contains five different regions that cross the threshold n+. Ide-
ally, the five events should be clustered together. To do so, we
proceed with a double-threshold approach [31] where a second

Figure 5: Example of a genomic ROI clustered using a double-threshold method.

The genome coverage (black line) and its RM (red) on a short genome location of
2 Kbp. The first threshold (top dashed gray line) alone identifies many short ROIs
(dark blue areas). Using a second threshold (bottom dashed gray line), the short
ROIs are clustered and identified as a single ROI (colored areas). Yellow vertical

lines indicate the beginning and end of the cluster.

fixed threshold m+ is defined as m+ = α+n+ where α+ ≤1 and
usually set to 1/2.

In the normalized space, the double-threshold method works
as follows. We scan the entire genome coverage vector starting
from the first position b = 0. As soon as a per-base coverage value
crosses the threshold m+, a new cluster starts. We then accumu-
late the following bases until the per-base coverage crosses m +
again (going down). If the maximum of the cluster is above the
first threshold, n+, then the cluster is classified as an ROI . The
process carries on until the end of the vector is reached. We re-
peat this classification for the lower case (with m− = α−n−). This
method dramatically reduces the number of short ROIs. Finally,
we can characterize each region with various metrics such as
the length of the region, maximum coverage, or mean coverage.
If consecutive data points were independent, we could also re-
port a z-score for large events (probability that an event of length
N crosses a predefined threshold). Instead, for simplicity, we re-
port the mean and max z-score of the event only.

Impact of the RM window parameter

In order to estimate correctly the general trend of the genome
coverage, the RM should cancel out the impact of long deleted,
duplicated, or depleted regions. Because the median takes the
middle point of a segment as its estimate, the parameter W
should be set to 2N where N is the longest atypical genomic re-
gion present in the data. For instance, an expected CNV region
with a length of 50,000 would imply setting W = 100,000 so that
the genome coverage trend remains appropriate (see Notebook 6
in [18] for a counter example). Since such regions are not known
in advance, W should be as large as possible so as to avoid the
presence of any long regions that depart from the central distri-
bution. Yet, over-increasing W may have undesired effects. For
instance, in the extreme case where W is set to the full genome
length, one would obtain the same value all along the genome
(the sequencing depth itself). This could lead to an increase of
false detections or missed detections. By default, we recom-
mend setting W to 20,000. Indeed, below this value, it seems that
there is a slight increase in marginal false detections, while for
values in the range W = 20,000 to 500,000, the list of ROIs is sim-
ilar (see Notebook 6 in [18]). As mentioned above, the impact of

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/article-abstract/7/12/giy110/5091804 by Institut Pasteur user on 23 April 2020

Desvillechabrol et al. 7

Figure 6: Two-dimensional histogram of the GC content vs coverage available in

the HTML reports. The data used correspond to the bacteria test case. We can
quickly see that the mean coverage is around 450, the mean GC is around 30%,
there is part of the genome coverage with zero coverage (left hand side blue line),

and there are low and high ROIs with coverage up to 1,500X that would possibly
require more investigations. Be aware of the logarithmic scale; most of the data
are indeed centered in the blue area. The brown outliers represent less than a
few percentages of the data.

the W parameter on the z-scores is marginal, so one can safely
change it from 20,000 to 100,000. A strategy could be to run two
analysis: one with W = 20,000 to list the short events and one
with very large W for longer events.

Applications
Stand-alone and computational time

Although the algorithm described here is quite simple per
se, each of the three steps requires optimization in order to
handle HTS datasets. We provide an implementation within
the Sequana project [34], which is a Python library that also
provides HTS pipelines based on the workflow management
system called Snakemake [35] (Makefile-like with a Python
syntax). Stand-alone applications are provided, including se-
quana coverage. In addition to the algorithm described above,
the stand-alone application has several additional features as
explained hereafter. The input file can be either a BAM or a BED
file [21] encoded as a three-column tab-delimited file (chromo-
some, position, coverage). Consider this command:

sequana coverage --input virus.bed -w 4001 -o

The -o option indicates that the input is a circular DNA
molecule. The RM window can be tuned using the -w option.
Several chromosomes may be present (e.g., fungus case). By
default, all chromosomes are analyzed, but users can select a
specific one using the -c option. Other useful options are the
ability to change the thresholds on the z-score, cluster close
ROIs, and analyze the data by chunks (useful for large eukary-
ote genomes). An additional feature is the ability to download a
reference genome (given its ENA [25] accession number). This is
achieved internally using BioServices [36], which can switch be-
tween the ENA and National Center for Biotechnology Informa-
tion web services to download the data automatically. Regions of
lower genome coverage are sometimes related to repeated con-
tent or unusual GC content [37]. Using the reference, we provide
a GC content vs coverage plot in the report as shown in Fig. 6.
GenBank annotations can also be downloaded to annotate ROIs.

The output is a directory that contains (for each con-
tig/chromosome): an HTML report, a summary file (JSON format),
and a comma-separated values (CSV) file with detected ROIs. In
addition, we provide a multiQC report [38] via a plugin avail-
able in the Sequana library. The multiQC report contains a sum-
mary of the mapping metrics, including the DOC and BOC met-
rics, the number of ROIs, and the centralness (defined in this
manuscript). The CSV file is structured with one ROI per row, in-
cluding information such as the location, length, mean z-score,
max z-score, and mean coverage. In the individual HTML re-
ports, JavaScript plots are provided together with the ROIs for
quick inspection (not available for genomes >5 Mbp).

Finally, the stand-alone application is designed to be scal-
able. The virus genome is analyzed in a few seconds, while the
5-Mbp bacteria genome is analyzed in about 1 minute on a stan-
dard computer including analysis and HTML reports (Python im-
plementation). Although the stand-alone was initially designed
for bacterial genomes (genome could fit in memory), we ex-
tended the functionality so that larger genomes could also be
analyzed. In particular, we looked at human genome used in
[20]. Although the algorithm is not designed for this lower DOC
(around 5X), as the central distribution does not follow a Gaus-
sian distribution, the genome coverage can still be analyzed.
Thresholds were increased (from 4 to 6) to avoid an abundance of
false detections. The 3.5-Gb genome could be analyzed in a cou-
ple of hours (see the conclusion section for details) on a single
core. This required adding an option called binning that merges
data before analysis. Similar to the CNVnator implementation,
this reduces the breakpoint accuracy and prevents the tool from
identifying short events.

Example: viral genome characterization

In this section we illustrate the usage of sequana coverage on
the viral test case (described in the Data Description section).
This 18-kb-long genome contains three SNVs (coverage of zero)
of length 3, 1, and 1 base with two of them separated by only
two bases; two deleted events (700 and 800 bases long); and three
short depleted regions with a low signal-to-noise ratio (see Fig. 7
for a visual representation). When running sequana coverage,
the default window parameter is set to 20,000 bases for genomes
longer than 100,000 bases. Otherwise, the default value of W is
set to a fifth of the genome length. Here, it means W ∼ 4,000.
Taking into account the circularity of the genome, we obtain the
results shown in Fig. 7 and Table 2, where nine ROIs are found
distributed into eight depleted regions and one enriched region.
We emphasize the z-score using the following color code: red,
orange, and yellow for large, intermediate, and small values, re-
spectively. Table 2 lists the lengths of the ROIs as well as their
starting positions. The second ROI (enriched region) can be con-
sidered as a false positive, but the eight depleted regions can
be considered as true positives. The false positive is due to the
presence of two depleted regions that bias the RM estimation
and can be avoided by increasing the W parameter. For instance,
with W = 5,000, the enriched region is not detected while keep-
ing the eight depleted regions.

For comparison, we used CNVnator and CNOGpro tools. Al-
though they are dedicated to the search for CNVs, we were ex-
pecting to detect at least the long deleted events (ROIs 1 and 3).
As summarized in Table 2, with a bin parameter of 10 or 20, CN-
Vnator detects the two CNV-like events with lengths similar to
what is reported by sequana coverage. No other events were de-
tected (none of the short ones). We obtained similar results with
a bin set to 5 (optimal, as explained hereafter), but there are also

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/article-abstract/7/12/giy110/5091804 by Institut Pasteur user on 23 April 2020

8 Sequana coverage: detection and characterization of genomic variations using running median and mixture models

Figure 7: ROIs detected with sequana coverage. The W window parameter was
set to 4,000 bases, and circularity was taken into account. We identify nine
events: eight depleted regions and one enriched region. The enriched region
could be considered as a false positive that appears like a detection due to the

presence of two flanking deleted regions. The color code is as follows: red for
max z-score above 12, orange for max z-score between 8 and 12, and yellow for
max z-score between 4 and 8; gray is for the false-positive event. Using a larger
window (e.g., 5,000), the RM would be smoother between the two long deleted

events (on the right-hand side); therefore, the false positive would no longer be
detected while keeping the eight depleted regions in the list of ROIs.

Table 2: List of ROIs detected by sequana coverage, CNVnator, and
CNOGpro tools

The sequana columns include three analyses with a window parameter W set to

2, 4, and 5 kb. The 4-kb column corresponds to the results shown in Fig. 7. The
CNVnator columns include two analyses with a bin parameter set to 10 and 20.
The CNOGpro columns include two analyses with a bin parameter set to 10 and
100. The color code is the same as in Fig. 7: red, orange, and yellow for significant,

intermediate, and small z-scores. Note that CNVnator and CNOGpro tools have
no false-positive results (ROI 2 is not detected). However, none of the ROIs 4 to 9
(short ones) are detected. For each event, we also indicate the starting position
(s) and length (L) of the events reported by sequana coverage.

two short false positives. CNOGpro tool detects the ROI 1, but
the ROI 3 is either missed or only partially detected (see Note-
book 10 [45]for details). So, despite a marginal false positive, se-
quana coverage is able to detect the eight depleted ROIs with
sensible length estimation. The results are also robust with re-
spect to the window parameter W.

CNV detection

In extending the functionality of sequana coverage to include
larger genomes, we also explored its ability to detect CNVs.

CNV detection methods can be categorized into five differ-
ent strategies depending on the input data: paired-end map-
ping, split-read, read depth (i.e., genome coverage), de novo as-
sembly, and combinations of these approaches. Among the nu-
merous tools based on the genome coverage reported in [17],

Figure 8: Distribution of ROIs found by analyzing 100 simulated genome coverage
data from Staphylococcus aureus at a depth of 100X. No features such as CNVs were
injected. We plot the mean z-score of each ROIs vs its length (in bases). No events

have z-score above 5 or below -5. All ROI lengths are below 100 bases. For each
simulation, an average of 17 ROIs are found.

we choose CNVnator [20], which is able to detect CNVs in vari-
ous sizes ranging from a few hundred bases to mega-bases. CN-
Vnator can also handle whole genome datasets and exhibits a
good precision at detecting breakpoints. We also considered a
more recent tool, CNOGpro [16], which is dedicated to prokary-
otic whole genome sequencing data. As stated in [17], none of
the various tools have been able to detect the full spectrum of all
types of CNVs with high sensitivity and specificity. To increase
the performance in detecting CNVs and reduce false positives,
a combinatorial approach could take advantage of the different
methods.

We first examined the false-positive rate of se-
quana coverage on simulated data. Technical details can
be found in the Notebook 5 [18]. Simulated paired-end data
were used to create 100 genome coverage data for S. aureus,
each one having a depth of 100X. The number of ROIs detected
with sequana coverage is 17.5 on average (standard deviation
of 6). The 1,750 ROIs are plotted in Fig. 8, showing their mean
z-scores vs lengths. We observed that no z-score are above 5
(in absolute value). However, the sizes of the ROIs vary widely,
up to 80 bases. Such events are not caused by genuine features
in the genome (e.g., high GC, repeats). Indeed, across the 100
independent lists of ROIs, the longest events do not appear at
the same location on the reference. They are therefore real false
positives. Consequently, in the context of CNVs detection, one
should ignore events with mean z-score below 5 and length
below 100 bases.

We then studied the sensitivity of sequana coverage by in-
jecting three types of CNVs into the simulated data. First, we
deleted 30 nonoverlapping regions (length between 1,000 and
8,000). We achieved a 100% sensitivity. Indeed, all deleted regions
were reported with starting and ending position accuracies be-
low 5 bases. Second, we duplicated 80 nonoverlapping regions
(same length as above), with a CN = 2. Again, we have a 100%
sensitivity with accuracies below 5 bases. The sequana coverage
stores a value called log2 ratio for each ROI. This value corre-
sponds to the ratio of the mean coverage and mean RM for that
ROI and is equivalent to the CN. The average CN reported for
the 80 injected CNVs is 1.96 ± 0.04. Third, we injected a mix of
80 depleted and duplicated events (same length as above) at a
coverage of 150X (CN = 1.5) or 50X (CN = 0.5). The 80 events are
found with a slightly reduced accuracy (still below 20 bases). The

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/article-abstract/7/12/giy110/5091804 by Institut Pasteur user on 23 April 2020

Desvillechabrol et al. 9

Figure 9: Detection of a depleted region (CN 0.5). CNVnator (thick yellow seg-
ments) and sequana coverage (thin green segments and dots) identifies the 6,300
long event with the correct location and similar CN (based on the mean of the
data). The sequana coverage identifies the other depleted region of about 500

bases at position 392,000. CNVnator’s ability to detect that event depends on the
bin parameter: missed for a value of 1 or 100, found for a value of 6. All short
events (few bases long) are missed by CNVnator. Conversely, CNVnator is able to
identify very long CNV regions up to mega-bases.

CN reported for duplicated and deleted events is 1.49 ± 0.023
and 0.5 ± 0.026, respectively. The simulated data indicate that
the algorithm can detect short CNVs (from 1,000 to 8,000) with
high sensitivity and accurate estimate of CN and location. If we
set the threshold to a mean z-score of 5 and discard events with
length below 100 bases, there are no false-positive detections.

For a comparison with published tools using real data, we ex-
amined the S. aureus case used in [20]. We ran sequana coverage
and CNVnator on the 3-Mbp genome. CNVnator has a param-
eter called bin, which is essentially used to define the break-
point resolution accuracy. We used bin parameters of 1, 6, and
100 (default) where 6 was chosen as the optimal bin size for the
sequencing depth considered (500X). Here, we refer to the in-
structions found in [20] that led to an empirical equation bin =
2,500/DOC (see also Notebook 8 [18]). All results can be found
in Notebook 9 in [18]. The number of events reported by CN-
Vnator are 207, 72, and 13 for bin = 1, 6, and 100, respectively.
With sequana coverage, W was set to 40,000 bases. The num-
ber of reported events is about 600 events (quite stable with re-
spect to theW parameter). Only 211 events have a size larger
than 10 bases and a mean z-score above 5 (47 events have a size
larger than 100 bases and a mean z-score above 5). All events
reported by CNVnator with a bin = 6 or 100 are also detected
by sequana coverage with the same breakpoint resolution. The
additional CNVnator events, obtained with bin = 1, are mostly
false positives (see Notebook 9 [18] for examples). Visual inspec-
tion of events reported by sequana coverage, but not found by
CNVnator, show that they are close to the threshold and appear
to be real events (see example in Fig. 9). In terms of computa-
tional time, sequana coverage takes 1 minute to process this 3-
Mbp genome, irrespective of W, while CNVnator takes about 25
minutes, 5 minutes, and 40 seconds for bin = 1, 6, and 100, re-
spectively.

Then, we looked at a population of six isolates of S. au-
reus used in [16]. The six datasets have a wide range of se-
quencing depth: 165, 61, 36, 94, 1,100, and 34, for the isolate
ERR043367, ERR043371, ERR073375, ERR043379, ERR14216, and
ERR316404, respectively. We compared the results provided in
the supplementary data of [16] with those obtained by running

Figure 10: Detection and segmentation of complex events in a population sam-
ple. We focus on the region between positions 86,500 and 90,000. We analyze
the data (black lines) with sequana coverage (horizontal red lines) and CNVna-

tor (green areas). We also report the results of CNOGpro (red areas in the top
panel only). CNOGpro detects the complex event as a single event with poor
breakpoint resolution (end location is offset by 300 bases); see text for an expla-

nation. CNVnator detects one event in three isolates, two events in two isolates)
and four events in one isolate (fifth row); the gap in the middle of the genomic
region considered is missed in 50% of the cases; breakpoint resolution is high.
sequana coverage reports four to six events; the breakpoint resolution is high;

the event in the middle is systematically ignored, as it should be, given its length
is about 100 bases.

sequana coverage and CNVnator. In CNOGpro’s supplementary,
the authors report 43 CNVs with various CNs. After visual in-
spection, we believe that seven are false positives and the re-
maining are confirmed by sequana coverage. It is important to
note that, unlike CNVnator and sequana coverage, which rely
on the data to find the breakpoint of the ROIs, CNOGpro break-
points are based on annotation and individual genes (or inter-
genic segments) assuming that duplications and deletions work
at the gene level. In Fig. 10, we show an example of a 2-kb-
long event present in the six isolates. CNOGpro found this event
(same gene position) in the six isolates, similar to CNVnator and
sequana coverage. However, the location of the event reported
by CNOGpro is not as precise as the two other tools because it
is influenced by the a priori knowledge of the gene starting and
ending positions. For the same reason, several narrow events
found in the same intergenic segment will be averaged together,
whereas sequana coverage reports the events individually, as
demonstrated in Fig. 11.

We also ran CNVnator, with its bin parameter set to the op-
timal value (see above). The detected events found by CNVnator
and sequana coverage (W = 40 000) are generally consistent in
location and CN. Both tools have a very good breakpoint accu-
racy, as shown in Fig. 10, with the main difference being that
sequana coverage splits events with a gap in between. Again,
CNVnator is optimized to detect long CNV events and may miss

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/article-abstract/7/12/giy110/5091804 by Institut Pasteur user on 23 April 2020

10 Sequana coverage: detection and characterization of genomic variations using running median and mixture models

Figure 11: Narrow event made of a strong central peak (CN = 10) and two sec-

ondary weak peaks (CN = 2.5). The three peaks can be identified visually in the
six isolates. In this plot, we only show the isolate ERR316404. The algorithm de-
signed in sequana coverage detects the main peak (with CN = 5) and the sec-
ondary peaks with CN = 2.5 (red segments). Note that in the six isolates the main

peak is always detected, while the secondary peaks are detected in 66% of the
cases (8 peaks out of 12). CNVnator does not detect those events in any of the
six isolates, probably because the length of those events (irrespective of their

strength) are too short. CNOGpro detects one event, shown here as the green
area with a CN = 2 for the overall event.

narrower events, even if those events have large variations, as
shown in Fig. 11.

Conclusions

The method presented here provides a robust statistical frame-
work to detect under- and overcovered genomic regions that
are then further annotated (e.g., length, mean coverage, maxi-
mum z-score). Although robust, the method is straightforward
and can be summarized in three main steps: (1) detrending of
genome coverage series using an RM, (2) parameter estimation
of the central distribution of the normalized genome coverage
series using an EM approach (for a Gaussian mixture model), and
(3) clustering and characterization of the outliers as genomic ROI
using a double-threshold clustering method.

We underlined the value of the RM algorithm as compared to
an MA while emphasizing the practical impact of the RM algo-
rithm complexity. We used an efficient RM algorithm (see Sup-
plementary Materials), which is of paramount importance in the
context of HTS analysis. In our implementation, we can take into
account the circularity of the molecules as well as multichromo-
some organisms.

We implemented the method described here within the
stand-alone application sequana coverage, which also provides
HTML reports with a summary of the genomic ROIs detected.
The HTML reports provide easy visual inspection of genome cov-
erage, a list of genomic ROIs, and statistics such as the central-
ness, a metric that encompasses the preponderance of the cen-
tral distribution with respect to the outliers.

We presented test cases with relatively large sequencing
depth (30X to 1,000X), although we believe that the algorithm
can be used for sequencing depths as low as 10X. A natural ex-
tension to this work is to consider sequencing depths below 10X
by using a mixture of binomial models instead of Gaussian mod-
els.

One obvious application of the algorithm presented is the
systematic identification of SNVs or CNVs in a single sample or
population of samples. We have shown that sequana coverage is

competitive with dedicated tools such as CNOGpro and CNVna-
tor. We believe that sequana coverage could be used in a combi-
natorial approach with existing tools to complement and com-
plete the toolkit of CNV detection.

sequana coverage is also relatively fast. Viral and bacterial
genomes can be analyzed in less than 1 minute. For larger Eu-
karyotic genomes (human), once the individual BED files are cre-
ated for each chromosome, the analysis of the 24 human chro-
mosome files should take less than 2 hours (1.5 hours on an
HPC cluster using only one core and 1 hour on a DELL Latitude
with an SSD hard disk using only one core). The longest chro-
mosome (chr1), with 250 Mb, is analyzed in about 5-6 minutes. A
Snakemake [35] pipeline was also recently implemented within
Sequana [34] (named Coverage), allowing each chromosome to
be analyzed independently. Using 24 cores, we could analyze the
24 chromosomes in about 7 to 8 minutes, which is basically the
time needed to analyze the longest chromosome. A graphical in-
terface using Sequanix [39] (a Snakemake graphical user inter-
face) is also available, making the configuration of the parame-
ters and execution of the analysis on a cluster accessible.

With additional features such as the ability to annotate
the ROIs with GenBank files and the identification of re-
peated regions, we believe that the stand-alone application se-
quana coverage will help researchers in deciphering the infor-
mation contained in the genome coverage.

Availability of source code
� Project name: Sequana (sequana coverage standalone), ver-

sion 0.7.0
� Project home page: http://sequana.readthedocs.org
� Operating system(s): Platform independent
� Programming language: Python 3
� Containers: Sequana is available on Bioconda channel [40,

41], and we also provide a Singularity container [42] (version
0.7.0). See http://sequana.readthedocs.org for details.

� License: BSD 3-clause Revised License

Availability of supporting data

The datasets supporting the results as well as addi-
tional files used to created them are available within
a Synapse project [29]. More specifically, the BED files
mentioned in the Data Description section correspond-
ing to the virus, bacteria, and fungus are available un-
der: doi:10.7303/syn10638370.1 (JB409847.filtered.bed),
doi:10.7303/syn10638494.1 (JB409847.filtered.bed), and
doi:10.7303/syn10638487.1 (S pombe.filtered.bed), respec-
tively. In addition, we provide the genome reference used
in Fig. 6 (doi:10.7303/syn10638477.1). The datasets are also
available on a GitHub repository [18] together with a notebook
that reproduces the figures. Finally, note that the BED files
can be recreated using the original FastQ files available on
doi:10.7303/syn10638358. We also provide recipes to create the
BED files from the FastQ files as notebooks in [18]. All notebooks
mentioned are available in [18]. Snapshots of the code are also
available in the GigaScience GigaDB database [43].

Abbreviations

BAM: binary alignment map; BED: Browser Extensible Data; BOC:
breadth of coverage; CN: copy number; CNV: copy number vari-
ation; DOC: depth of coverage; EM: expectation maximization;

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/article-abstract/7/12/giy110/5091804 by Institut Pasteur user on 23 April 2020

http://sequana.readthedocs.org
http://sequana.readthedocs.org

Desvillechabrol et al. 11

ENA: European Nucleotide Archive; HTS: high-throughput se-
quencing; MA: moving average; NGS: next-generation sequenc-
ing; RM: running median; ROI: regions of interest; SNP: single-
nucleotide polymorphism; SNV: single-nucleotide variation.

Competing interests

The authors declare that have no competing interests.

Funding

This work has been supported by the France Génomique Con-
sortium (ANR 10-INBS-09-08).

Author contributions

D.D. and T.C. conceived the study. D.D and T.C. implemented the
software. C.B. provided the data. T.C. did the CNV studies. D.D.
and T.C. contributed to the initial writing. D.D., T.C., C.B., and S.K.
contributed to the final manuscript. All authors contributed to
writing and revision and approved the submission.

Acknowledgements

We are grateful to Nicolas Escriou (Institut Pasteur) for provid-
ing the FastQ and reference of the virus test case. We are also
grateful to Benoit Arcangioli (Institut Pasteur) and Serge Gan-
gloff (Institut Pasteur) for providing the FastQ files and reference
of the S. pombe test case. We thank Juliana Pipoli da Fonseca for
her various comments on the manuscript. We are also grateful
to the reviewers who suggested the CNV studies.

References

1. Goodwin S, McPherson JD, McCombie WR. Coming of age: ten
years of next-generation sequencing technologies. Nat Rev
Genet 2016;17(6):333–351.

2. Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool
for transcriptomics. Nat Rev Genet 2009;10(1):57–63.

3. Meyerson M, Gabriel S, Getz G. Advances in understand-
ing cancer genomes through second-generation sequencing.
Nat Rev Genet 2010;11(10):685–696.

4. Iorio F, Knijnenburg TA, Vis DJ, et al. A landscape of pharma-
cogenomic interactions in cancer. Cell 2016;166(3):740–754.

5. Eid J, Fehr A, Gray J, et al. Real-time DNA sequencing from
single polymerase molecules. Science 2009;323(5910):133–
138.

6. Lee H, Gurtowski J, Yoo S, et al. Error correction and assem-
bly complexity of single molecule sequencing reads. BioRxiv
2004; 006395.

7. Eisenstein M. Oxford Nanopore announcement sets se-
quencing sector abuzz. Nat Biotechnology 2012;30(4):295–
296

8. Li H. Aligning sequence reads, clone sequences and
assembly contigs with BWA-MEM. 2013; arXiv preprint
arXiv:1303.3997.

9. Bankevich A, Nurk S, Antipov D, et al. SPAdes: a new genome
assembly algorithm and its applications to single-cell se-
quencing. J Comput Biol 2012;19(5):455–477.

10. Lander ES, Waterman MS. Genomic mapping by finger-
printing random clones: a mathematical analysis. Genomics
1988;2(3):231–239.

11. Wendl MC, Barbazuk WB. Extension of Lander-Waterman

theory for sequencing filtered DNA libraries. BMC Bioinfor-
matics 2005;6(1):245.

12. Sims D, Sudbery I, Ilott NE, et al. Sequencing depth and
coverage: key considerations in genomic analyses. Nat Rev
Genet 2014;15(2):121–132.

13. Ajay SS, Parker SC, Abaan HO, et al. Accurate and com-
prehensive sequencing of personal genomes. Genome Res
2011;21(9):1498–505.

14. Mirebrahim H, Close TJ, Lonardi S. De novo meta-assembly of
ultra-deep sequencing data. Bioinformatics 2015;31(12):i9–
i16.

15. Yoon S, Xuan Z, Makarov V, et al. Sensitive and accurate de-
tection of copy number variants using read depth of cover-
age. Genome Res 2009;19, 1586–1592.

16. Brynildsrud O, Snipen LG, Bohlin J. CNOGpro: detection and
quantification of CNVs in prokaryotic whole-genome se-
quencing data. Bioinformatics 2015;31(11):1708–1715.

17. Zhao M, Wang Q, Wang Q, et al. Computational tools for copy
number variation (CNV) detection using next-generation se-
quencing data: features and perspectives. BMC Bioinformat-
ics 2013; 14(Suppl 11):S1.

18. The Sequana resources GitHub repository. https://github.c
om/sequana/resources/coverage. 2018.

19. Lindner MS, Kollock M, Zickmann F, et al. Analyzing genome
coverage profiles with applications to quality control in
metagenomics. Bioinformatics 2013;29(10):1260–1267.

20. Abyzov A, Urban AE, Snyder M, et al. CNVnator: an approach
to discover, genotype, and characterize typical and atypi-
cal CNVs from family and population genome sequencing.
Genome Res 2011;21, 974–984.

21. Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for
comparing genomic features. Bioinformatics 2010;26, 6, pp.
841–842. http://bedtools.readthedocs.io

22. Tong SY, Holden MTG, Nickerson EK, et al. Genome sequenc-
ing defines phylogeny and spread of methicillin-resistant
Staphylococcus aureus in a high transmission setting. Genome
Res 2015;25(1):111–118.

23. Bremer H, Churchward G. An examination of the Cooper-
Helmstetter theory of DNA replication in bacteria and its un-
derlying assumptions. J Theoretical Biol 1977;69(4):645–654.

24. Prescott DM, Kuempel PL. Bidirectional replication of
the chromosome in Escherichia coli. Proc Nat Acad Sci
1972;69(10):2842–2845.

25. European Nucleotide Archive(ENA). http://www.ebi.ac.uk/EN
A. 2017.

26. Combredet C, Labrousse V, Mollet L et al. A molecularly
cloned Schwarz strain of measles virus vaccine induces
strong immune responses in macaques and transgenic mice.
J Virol 2003;77(21):11546–11554

27. Wood V, Gwilliam R, Rajandream MA et al. The genome
sequence of Schizosaccharomyces pombe. Nature
2002;415(6874):871–880.

28. Sages’s Synapse platform. https://www.synapse.org. 2017.
29. Supporting materials on Synapse project page (BEDs, FastQs,

Genome references and genbanks). http://dx.doi.org/doi:10.7
303/syn10638358. 2017.

30. Percival DB, Walden AT. Spectral Analysis for Physical Appli-
cations. Cambridge University Press 1993.

31. Balasubramanian R, Babak S, Churches D, et al. GEO 600 on-
line detector characterization system. Classical Quant Grav
2005;22(23):4973–4986.

32. McKinney W. Data structures for statistical computing in
Python. Proc 9th Python in Science Conference 2010; 51–56.

33. Dempster AP, Laird NM, Rubin DB. Maximum likelihood from

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/article-abstract/7/12/giy110/5091804 by Institut Pasteur user on 23 April 2020

https://github.com/sequana/resources/coverage
http://bedtools.readthedocs.io
http://www.ebi.ac.uk/ENA
https://www.synapse.org
http://dx.doi.org/doi:10.7303/syn10638358

12 Sequana coverage: detection and characterization of genomic variations using running median and mixture models

incomplete data via the EM algorithm. J Royal Stat Soc Series
B (methodological) 1977;39(1):1–38.

34. Cokelaer T, Desvillechabrol D, Legendre R, et al. Sequana:
a set of Snakemake NGS pipelines. Journal of Open Source
Software 2017;2, 16https://doi.org/10.21105/joss.00352.

35. Köster J, Rahmann S. Snakemake- a scalable bioinformatics
workflow engine. Bioinformatics 2012;28(19):2520–2522.

36. Cokelaer T, Pultz D, Harder LM, et al. BioServices: a common
Python package to access biological web services program-
matically. Bioinformatics 2013;29(24):3241–3242.

37. Dohm JC, Lottaz C, Borodina T, et al. Substantial biases in
ultra-short read data sets from high-throughput DNA se-
quencing. Nucleic Acids Res 2008;36(16):e105

38. Ewels P, Magnusson M, Lundin S, et al. MultiQC: summarize
analysis results for multiple tools and samples in a single
report. Bioinformatics 2016;32(19):3047–3048.

39. Desvillechabrol D, Legendre R, Rioualen C, et al. Sequanix:
a dynamic graphical interface for Snakemake workflows.
Bioinformatics, 34, 11, 1934–1936 2017; 10.1093/bioinformat-
ics/bty034.

40. Conda: Package, dependency and environment management
for any language. https://conda.io/docs. 2017.

41. Grüning B, Dale R, Sjödin A, et al. Bioconda: sustainable and
comprehensive software distribution for the life sciences.
Nat Methods 2018;15, 475–476.

42. Kurtzer GM, Sochat V, Bauer MW. Singularity: scientific con-
tainers for mobility of compute. PLoS One 2017;12(5).

43. Desvillechabrol D, Bouchier C, Kennedy S, et al. Supporting
data for ”Sequana coverage: detection and characterization
of genomic variations using running median and mixture
models.” GigaScience Database 2018; http://dx.doi.org/10.55
24/100493

44. Mohanty SD. Median based line tracker (MBLT): model inde-
pendent and transient preserving line removal from inter-
ferometric data. Class Quantum Grav 2002;19(7):1513–1519.

45. Jones E, Oliphant T, Peterson P, et al. SciPy: Open Source Sci-
entific Tools for Python. 2001, https://www.scipy.org.

Appendix: Running median implementation

The mean is a measure of the central tendency of a population.
It is not a robust estimator in the presence of large extraneous
outliers in the population. In such a situation, it is preferable to
consider a truncated mean or a median estimator. The median
is the middle point of a sample set in which half the numbers
are above the median and half are below. More formally, let us
consider a sample s[i], i = 1, .., n and S[i], the sequence obtained
by sorting s[i] in ascending order (ordering of equal elements is
not important here). Then, the median is defined as

ν = median(
{
s[1], s[2], .., s[n]

}
) =

{
S

[n+1
2

]
n odd,

S[n/2]+S[n/2+1]
2 n even.

(8)

Let us now consider a series X(k) where k = 1, .., N. Then,
the running median (RM) of X(k) is defined as the sequence ν(k) =
median({X(k), X(k + 1), .., X(k + W)}), k = W/2, .., N − W/2 where
W is a window size defined by the user and the application. The
first W/2 and last W/2 values are undefined, so we should have
W � N.

Since we perform a sorting of an array of W elements at N
positions, the complexity of the RM is N times the complexity
of the sorting algorithm. If W and N are small (e.g., removal of
narrow lines in power spectral density in addition to the overall

Figure 12: Computational cost of RM algorithms as a function of the window size

parameter W (for N = 1e6). Four variants are considered: SciPy [45] implemen-
tation (function medfilt v0.17), Pandas [32], and two Python variants available in
Sequana based on a list or blist data containers (see text for details). The SciPy

variant has a O(W) complexity irrespective of the W value. For low W values (W

<20,000), the two Python variants have O(log(W)) complexity. For larger W val-
ues, the blist keeps its O(log(W)) complexity while the list container follows a
O(W) complexity. Pandas complexity is less clear with a O(W) for W <20,000 and
O(log(W)) otherwise. The fastest implementation is clearly the Pandas one, even

for large W values.

smoothing of time or frequency series [31]), a naive quick-sort
algorithm (O(W2) in the worst case scenario) may be used. How-
ever, better algorithms do exist and can be decreased to O(

√
W)

in the worst case, as implemented in [44]. Yet, in NGS applica-
tions, N could easily reach several million, and W may need to
be set to large values up to 50,000 (e.g., to identify long deleted
regions).

Instead of computing the median at each position, k, a more
efficient solution consists of re-using the sorted block at k − 1
and maintaining the block as sorted as new elements are added.
Indeed, one only needs to insert the next sample into the sorted
block and delete the earliest sample from the sorted block. A
standard Python module named bisect provides an efficient in-
sertion in sorted data (keeping the data sorted). The complexity
of this sorting algorithm is O(log W).

So far, we have neglected the cost of the insertion and dele-
tion steps, which is not negligible. For instance, in Python lan-
guage, one of the most common data structures is the list. It is
a dynamically sized array (i.e., insertion and deletion of an item
from the beginning or middle of the list requires moving most
of the list in memory), and the look-up, insertion, and deletion
have a O(n) complexity. So, the RM is actually dominated by the
slow O(n) insertion and deletion steps. A better data structure is
available thanks to the blist package; it is based on a so-called B-
tree, which is a self-balancing tree data structure that keeps data
sorted. The blist allows searches, sequential access, insertions,
and deletions in O(log n) (see https://pypi.python.org/pypi/blist/
for details).

Based on materials from http://code.activestate.com/recipes
/576930/, we have implemented these two variants of RM func-
tions in Python available in the Sequana [34] library. We also
considered established numerical analysis tools from the SciPy

[45] and Pandas [32] libraries. We finally compare the four im-
plementations in terms of computation time and complexity, as
shown in Fig. 12. It appears that the Pandas implementation is
the fastest. For W >20,000 up to 200,000, our implementation is
2 to 3 order of magnitude faster than the SciPy version but 4
to 5 times slower than Pandas. We should emphasize the fact

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/article-abstract/7/12/giy110/5091804 by Institut Pasteur user on 23 April 2020

https://doi.org/10.21105/joss.00352
https://conda.io/docs
http://dx.doi.org/10.5524/100493
https://pypi.python.org/pypi/blist/
http://code.activestate.com/recipes/576930/

Desvillechabrol et al. 13

that the SciPy function has additional features since it is avail-
able for N-dimensional datasets, whereas we restrict ourselves
to 1-D datasets. In Sequana, the two variants only differ in the
data structure being used to hold the data (list vs blist). Fig-
ure 12 shows the difference between the list and blist data struc-
tures that is marginal for low W values, while for large values

asymptotic behaviors are reached, showing the interest of the
blist over the list choice. We also see that our implementation
with blist has a lower complexity than the Pandas implemen-
tation. However, for the range considered, Pandas is always the
fastest choice.

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/article-abstract/7/12/giy110/5091804 by Institut Pasteur user on 23 April 2020

