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Systematic evaluation of DNA methylation
age estimation with common preprocessing
methods and the Infinium MethylationEPIC
BeadChip array
Lisa M McEwen1* , Meaghan J Jones1, David Tse Shen Lin1, Rachel D Edgar1, Lucas T Husquin3,4,5,
Julia L MacIsaac1, Katia E Ramadori1, Alexander M Morin1, Christopher F Rider2, Chris Carlsten2,
Lluís Quintana-Murci3,4,5, Steve Horvath6 and Michael S Kobor1

Abstract

Background: The capacity of technologies measuring DNA methylation (DNAm) is rapidly evolving, as are the
options for applicable bioinformatics methods. The most commonly used DNAm microarray, the Illumina Infinium
HumanMethylation450 (450K array), has recently been replaced by the Illumina Infinium HumanMethylationEPIC
(EPIC array), nearly doubling the number of targeted CpG sites. Given that a subset of 450K CpG sites is absent on
the EPIC array and that several tools for both data normalization and analyses were developed on the 450K array,
it is important to assess their utility when applied to EPIC array data. One of the most commonly used 450K tools is
the pan-tissue epigenetic clock, a multivariate predictor of biological age based on DNAm at 353 CpG sites.
Of these CpGs, 19 are missing from the EPIC array, thus raising the question of whether EPIC data can be used to
accurately estimate DNAm age. We also investigated a 71-CpG epigenetic age predictor, referred to as the Hannum
method, which lacks 6 probes on the EPIC array. To evaluate these epigenetic clocks in EPIC data properly, a prior
assessment of the effects of data preprocessing methods on DNAm age is also required.

Methods: DNAm was quantified, on both the 450K and EPIC platforms, from human primary monocytes derived
from 172 individuals. We calculated DNAm age from raw, and three different preprocessed data forms to assess the
effects of different processing methods on the DNAm age estimate. Using an additional cohort, we also investigated
DNAm age of peripheral blood mononuclear cells, bronchoalveolar lavage, and bronchial brushing samples using the
EPIC array.

Results: Using monocyte-derived data from subjects on both the 450K and EPIC, we found that DNAm age was highly
correlated across both raw and preprocessing methods (r > 0.91). Thus, the correlation between chronological age and
the DNAm age estimate is largely unaffected by platform differences and normalization methods. However, we found
that the choice of normalization method and measurement platform can lead to a systematic offset in the age
estimate which in turn leads to an increase in the median error. Comparing the 450K and EPIC DNAm age estimates,
we observed that the median absolute difference was 1.44–3.10 years across preprocessing methods.
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Conclusions: Here, we have provided evidence that the epigenetic clock is resistant to the lack of 19 CpG sites
missing from the EPIC array as well as highlighted the importance of considering the technical variance of the
epigenetic when interpreting group differences below the reported error. Furthermore, our study highlights the utility
of epigenetic age acceleration measure, the residuals from a linear regression of DNAm age on chronological age, as
the resulting values are robust with respect to normalization methods and measurement platforms.

Keywords: Epigenetic age, DNA methylation age, Epigenetic clock, EPIC, DNA methylation, 450K, Human, Microarray,
Preprocessing

Background
Epigenetics is a rapidly evolving field in the contexts of
new biological discoveries as well as the available tech-
nologies used to drive such findings. The most com-
monly studied epigenetic mark in humans is DNA
methylation (DNAm), defined as the covalent addition
of a methyl group to DNA, most frequently occurring at
cytosine-guanine dinucleotides (CpGs) [20]. DNAm pro-
files change naturally during the development of an or-
ganism, resulting in tissue identity being the strongest
predictor of DNAm variation. As such, DNAm variabil-
ity between tissues, for example, the blood and brain,
within an individual can be larger than the variability ob-
served across individuals from the same tissue [7, 27].
Inter-individual variability in DNAm has been linked to
a number of different sources, including but not limited
to the underlying DNA sequence, environmental expo-
sures, and health outcomes. One of the most active areas
of research related to DNAm inter-individual variability
in human cohorts focuses on the relationship between
DNAm and aging, as there has been substantial evidence
that DNAm changes with age, both linearly and
non-linearly, across the entire life course [12].
Rapidly evolving new technologies and resources have

fueled exponential growth in human DNAm research over
the past decade, enhancing our ability to address
questions such as the effects of aging. Although many
methodologies can be used to measure DNAm, Illumina
microarrays are the most common method for
population-based epigenetic studies, as they provide an
economical and accessible high-throughput platform.
Over a little more than a decade, the capacity of Illumina
DNAm microarray platform has increased from 1506
CpGs to more than 860,000 CpGs. The increased num-
bers of CpGs reflect both better coverage across genes
and expanded interrogation of genomic regions. For ex-
ample, the Illumina 27 K (27 K) array targeted > 27,000
CpG sites and interrogated at least one CpG per gene, but
was biased towards CpG islands [2]. Its successor, the Illu-
mina Infinium Methylation450 (450K) array assessed >
485,000 CpGs and covered 99% of RefSeq genes. The Illu-
mina Infinium MethylationEPIC (EPIC) array is the new-
est tool and allows the quantification of over 860,000 CpG

sites, with the additional content providing higher cover-
age of specific genomic regions, such as enhancers and
non-coding regions. The EPIC array generally uses the
same DNAm measurement protocol as the 450K array
and includes over 94% of the 450K content [24]. However,
the increased genomic resolution and complexity of the
EPIC array in conjunction with missing 6% of the 450K
CpGs necessitates an evaluation of the applicability of
established bioinformatic tools established for the 27 K or
450K arrays.
To accommodate advancements in DNAm array tech-

nology and the increasing volume of data, many pipelines
for data preprocessing, normalization, and analyses have
been developed to streamline data handling [1, 5, 25, 28,
30]. Here, we refer to “preprocessing methods” as algo-
rithms commonly performed on DNAm data prior to
probe-type normalization, including methods to reduce
background fluorescence or adjust for dye bias, which if
unaddressed can reduce the dynamic range of beta values
[31]. Probe-type normalization is a necessary adjustment
for Illumina microarray DNAm data, as there are two dif-
ferent probe designs that possess differential beta distribu-
tions [2]. Tools such as the R function ‘preprocessNoob’
in the minfi package subtract background based on the
out-of-band intensities (for example, Infinium I probes
fluorescing in the color channel opposite their designed
base extension). Color or dye bias adjustment is applied to
account for the two color channels that type II probes em-
ploy, one for methylated and one for unmethylated CpGs,
since residual dye can introduce unwanted variation.
Tools to account for the color bias include in the Biocon-
ductor package ‘methylumi,’ which is based on smooth
quantile normalization, or the Illumina GenomeStudio
software which implements a shift-and-scaling
normalization [6]. Although these methods have been
reviewed in comparison to one another [33, 35, 36], a
mixed variety of pipelines are used across the literature
and the influence of method selection on detecting true
positives or generating accurate predictions should be in-
vestigated both within and across array technologies.
One tool that could be compromised by different pre-

processing methods or the lack of certain 450K CpG sites
on the EPIC array is the pan-tissue epigenetic clock, a
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popular predictive model that estimates an individual’s
biological age, irrespective of tissue type, using DNAm at
353 CpGs [12]. Established on DNAm profiles (obtained
from 27 K and 450K data) from 51 different tissues from
over 8000 individuals, the epigenetic clock calculates
DNAm age, which has been shown to correlate well with
chronological age (r > 0.80) across the life course [14]. This
epigenetic clock is hypothesized to be an accurate molecu-
lar biomarker of biological aging and deviations between
chronological and DNAm age, commonly referred to as
epigenetic age acceleration (which can be positive or nega-
tive), have been correlated with a host of age-related con-
ditions, such as Parkinson’s disease, time until death,
frailty, and cognitive and physical decline [4, 15, 22, 23].
There are several other DNAm-based age predictors

that have been reported [3, 9, 34], but another commonly
used age predictor, specific to blood samples and referred
to as the Hannum clock, is based on methylation at 71
CpG sites has also been observed to predict age with im-
pressive accuracy. However, both the Horvath and Han-
num models are lacking CpG sites on the on the EPIC
array (19 of the 353 pan-tissue clock-CpGs and 6/71 of
the Hannum clock CpGs are missing), and since the 450K
platform is no longer available, it is crucial to assess the
performance of these tools despite the missing probes, if
use is to be continued.
Here, we investigated (1) the consistency between

DNAm age measured from 450K and EPIC array data
from the same individuals to evaluate the utility of EPIC
array data given that it is missing clock CpGs used in the
Horvath and Hannum age predictors, and (2) whether
DNAm age estimates differ with different preprocessing
methods. We found that EPIC data can be used to predict
DNAm age accurately using both assessed epigenetic
clocks. Additionally, we observed differences in DNAm
age across preprocessing methods, although the differ-
ences across the values were below the reported median
absolute error of the epigenetic clock. Lastly, we have rep-
licated accurate measurement of DNAm age, using the
pan-tissue predictor, across tissues using an EPIC dataset
with three different tissues from 13 individuals. Our find-
ings support the epigenetic clock as a robust tool that may
be applied with EPIC array data in the future.

Methods
Cohort characteristics
We used two different cohorts in order to assess the
pan-tissue epigenetic clock on the EPIC array. The first
consisted of primary monocytes collected from 172
healthy males, aged 19–50 years old, of self-reported Afri-
can- and European-descent from the EVOIMMUNOPOP
project [19]. Genomic DNA was isolated from the mono-
cyte fraction using a phenol/chloroform protocol followed
by ethanol precipitation, and then subjected to bisulfite

conversion with the EZ DNA Methylation Kit (ZymoRe-
search, Irvine, CA, USA). We quantified DNAm on all
samples using two separate Illumina microarray platforms:
450K and EPIC arrays (Illumina, San Diego, CA, USA),
following the manufacturer’s instructions. To ensure
sample labeling across technologies, we assessed the cor-
relation between the overlapping quality control single-
nucleotide polymorphic (SNP) probes present on both
microarrays (59 SNPs); observing all sample pairs corre-
lated with a Pearson’s coefficient of r ≥ 0.99 (Additional file 1:
Figure S1). Four technical replicates were included during
the 450K processing and 12 technical replicates were in-
cluded during the EPIC sample processing, with two com-
mon technical replicates across technologies.
A secondary cohort was used to investigate EPIC DNA

methylation data derived from tissues other than the
blood. This cohort consisted of 13 individuals aged 23–
46 years old from the control subset of Diesel Exhaust
Study III (DE3) and was comprised of DNAm from per-
ipheral blood mononuclear cells (PBMCs), bronchoalveo-
lar lavage (BAL), and bronchial brushings (brush). All
samples were collected from individuals after control
(filtered air/saline) exposures. Primary cohort characteris-
tics are provided in Additional file 1: Table S1. Note, ap-
proximately half of the individuals had prior physician-
diagnosed asthma. Genomic DNA was isolated using the
DNeasy Blood and Tissue Kit (Qiagen, Hilden Germany)
and subsequently bisulfite converted using the EZ DNA
Methylation Kit (ZymoResearch, Irvine, CA, USA).
Bisulfite-treated samples were processed using the EPIC
array as above (Illumina, San Diego, CA, USA).

DNA methylation quantification
All microarrays were scanned with an Illumina HiScan
system. For the EPIC array data, we used the most
current manifest file, “Infinium MethylationEPIC v1.0 B4
Manifest File,” released by Illumina on May 26, 2017
and consisting of 865,918 probes, whereas for the 450K
we used the “HumanMethylation450 v1.2 Manifest File”
with 485,577 probes. Both manifest files are available at
https://support.illumina.com/downloads.html. In addition
to unprocessed (raw) data, we used data preprocessed in
three different ways (1) color corrected/background sub-
tracted in Genome Studio (GS), (2) quantile-normalized
using “preprocessQuantile” [29], (3) normal-expontential
out-of-band (noob)-normalized with “preprocessNoob”
[30]. Raw data and data that were to be quantile or noob
normalized were uploaded directly into R from IDAT
files using the ‘minfi’ package function “read.metharray”
[8]. For the color correction/background subtracted pre-
processing, data were background subtracted/color cor-
rected with GenomeStudio, and then uploaded into R
with the package ‘methylumi,’ function ‘lumiMethyR’ [5].
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DNA methylation age
We calculated DNAm age for each sample by using a
modified version of the publicly available R code at
https://dnamage.genetics.ucla.edu, with the normalization
feature set to “TRUE” [12]. We focused our inquiry
on data preprocessing only, and not probe-type
normalization methods, as the epigenetic clock code
applies an imputation of missing values and performs
a calibrated version of a beta-mixture quantile
normalization [12, 28]. The 71-CpG Hannum method
age estimates were generated using methods described
previously [10].

Results
The epigenetic clock accurately predicted DNA methylation
age from EPIC methylation data
From the 450K array, 33,059 of 485,557 (6.8%) of probes
are not represented on the EPIC array, including 19/353
epigenetic clock-CpGs (5.4%). The lack of 19 epigenetic
clock CpGs on the EPIC array could reduce the accuracy
of the epigenetic clock when using EPIC array data. There-
fore, we investigated the consistency between DNAm age

as calculated from the 450K (original 353-CpG model) and
the EPIC (reduced 334-CpG model) arrays.
Focusing on a recently published data set of DNAm in

purified monocytes from the EVOIMMUNOPOP project
[19], we applied the epigenetic clock to data from samples
run on both platforms and found a high correlation
between the 450K and EPIC array DNAm age values
regardless of preprocessing method (r = 0.91–0.96,
error = 1.44–3.10 years, R2 = 0.83–0.91, Fig. 1), observing
consistent patterns between chronological age and DNAm
age as measured from both the EPIC (r = 0.84–0.86) and
450K (r = 0.86–0.87) arrays (Additional file 1: Figure S2).
Additionally, we performed probe-wise correlations of log
transformed beta values at the 334 common clock CpG
sites across the two platforms and found a range of
Pearson’s correlation coefficients r = − 0.18–0.98
(Additional file 1: Figure S3A); specifically, out of the 334
probes an average (across preprocessing data sets) of 146
(44%) had ≤ 0.20, 118 (35%) had r > 0.50, and 44 (13%)
had r > 0.80. Previous reports showed low correlation as-
sociated with low variation across the EPIC and 450K ar-
rays, and so we tested to determine whether the clock
probes with low correlation were also invariable. We

Fig. 1 DNA methylation age comparison between 450K or EPIC Monocyte data across preprocessing methods. Identical samples were assayed
on both the 450K and EPIC arrays, and then each preprocessed in one of four ways prior to calculating DNA methylation (DNAm) age: raw unprocessed,
GenomeStudio color correction/background subtraction (GS), normal exponential out-of-band (noob) normalization, or quantile normalization. Solid
colored line represents corresponding group regression line. For each regression, the Pearson’s correlation coefficient, error (median absolute error
between EPIC DNAm age and 450K DNAm age), R2 value, and p value corresponding to the correlation coefficient are shown
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observed that lower beta value ranges were strongly asso-
ciated with lower correlation values between the EPIC and
450K (r = 0.75–78, depending on preprocessing method,
Additional file 1: Figure S3B). As a second approach to as-
sess the direct consequence of the absent clock sites, we
removed the 19 missing EPIC clock-CpGs in the 450K
data to simulate the 334-CpG model. We then calculated
DNAm age using both the 353-CpG model and the
334-CpG model from the 450k data, finding a strong cor-
relation of r = 0.998, indicating that the missing 19 CpGs
did not adversely affect DNAm age prediction in mono-
cytes (Additional file 1: Figure S4). Furthermore, we calcu-
lated another DNAm age measure based on the Hannum
method using 71 CpG sites of which only 6 (8.5%) are
missing on the EPIC array [10], and again found strong
correlations between Hannum DNAm age as calculated
from EPIC and 450K array data (r = 0.92–0.95,
Additional file 1: Figure S5).
Lastly, to confirm that the epigenetic clock could pro-

duce an accurate estimate of age from EPIC data across
different tissues, we used an independent cohort of
three tissues (PBMCs, BALs, brushes) collected from
13 healthy adults. Importantly, data from lung tissues
has been reported previously to accurately estimate
DNAm age in the context of DNAm age using the
450K array [12]. Calculating DNAm age with
GS-preprocessed data, we observed a strong correlation
with chronological age using EPIC data for the PBMC and
BAL samples (r = 0.88, r = 0.89, respectively), but a lesser
degree of correlation for the brush samples (r = 0.59,
Fig. 2). We note that the brush beta-value distribution ap-
peared to have higher inter-individual variability than the
other tissues, which may explain the lower correlation in
brush samples (Additional file 1: Figure S6).

Data preprocessing methods affected the calculated DNA
methylation age, but within error margins of the
epigenetic clock
Given that there is not an accepted standard practiced
method of preprocessing data prior to calculating DNAm
age, we assessed the potential effects of different com-
monly used data preprocessing methods on the DNAm
age estimates. We compared DNAm age estimates calcu-
lated from raw data as well as after applying three separate
standard data preprocessing methods: color-correction
and background-normalization with GenomeStudio soft-
ware (abbreviated GS), quantile-normalization, or noob-
normalization. Imputation and a probe-type normalization
were performed the same way across preprocessing
methods using the R code supplied with the epigenetic
clock method [16, 28, 32]. Using monocyte-derived data
from 172 subjects on both the 450K and EPIC, we found
that DNAm age was highly correlated across both raw
data and data after three different preprocessing methods
(r > 0.91) (Additional file 1: Figure S2). However, shifts in
mean DNAm age were observed, indicating that although
mean DNAm differences did exist, the trends with age
were consistent across preprocessing methods (Fig. 3a).
This was further supported by significant Kendall rank co-
efficients in DNAm age across each preprocessing method
(τ = 0.86–0.94, p value < 2.2 × 10− 6, Additional file 1:
Figure S7).
To further investigate the sample-to-sample trend in

DNAm age across methods, we explored two common
measures associated with the epigenetic clock, both con-
sidered measures of epigenetic age acceleration; the dif-
ference between DNAm age and chronological age (age
acceleration difference) and the residuals from a linear
model of DNAm age regressed onto chronological age

Fig. 2 EPIC DNA methylation age estimated in control samples from the Diesel Exhaust III Study across three tissues. DNA methylation (DNAm)
age was estimated using the EPIC 334-CpG model from GenomeStudio background-subtracted and color-channel-adjusted EPIC data. Linear regression
line shown with 95% confidence intervals is shown in gray. Error is the median absolute difference between EPIC DNAm age and chronological age.
Pearson’s correlation coefficients (r) and corresponding p value are shown for each tissue. BAL = bronchoalveolar lavage, PBMC= peripheral blood
mononuclear cells, brush = bronchial brushing
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(age acceleration residual). Since the observed mean
DNAm age shifts when using different preprocessing
methods (Fig. 3a), age acceleration difference is more
likely to be affected by which preprocessing method was
chosen. In contrast, age acceleration residual is less af-
fected by mean differences as it is expressed relative to
the measured population. As expected, we observed
significant discrepancies in the mean age acceleration
difference measure for nearly all comparisons (p value
< 0.0002 for all age acceleration difference compari-
sons except for noob versus GS p value = 0.23, me-
dian absolute difference ranging from 0.68–5.55 years
(Fig. 3b, Additional file 1: Table S2). Minimal vari-
ation was observed for the age acceleration residual
mean across preprocessing methods (p value > 0.99,
median absolute difference ranging from 0.52–1.23 years,
Fig. 3c, Additional file 1: Table S2). This supports the
previous suggestion of using age-acceleration residuals
[12] to correct for processing specific shifts in DNAm
estimates in order to accurately compare DNAm age
between people.

We assessed how different preprocessing methods in-
fluenced the DNAm age estimate by examining the con-
cordance of DNAm age measured from EPIC array
technical replicates. A technical replicate pair repre-
sented an identical DNA sample quantified twice for
quality control purposes; specifically, the sample was di-
vided into two separate tubes after bisulfite conversion
and DNAm was quantified separately. Technical repli-
cate sample identity was confirmed by examining the 59
SNP probes present on the EPIC array (Additional file 1:
Figure S8). We focused on the 24 technical replicates
(12 pairs) from the EPIC array, calculating DNAm age
for each technical replicate from data subjected to each
separate preprocessing method: raw, GS color corrected
and background subtracted, quantile normalized, or
noob normalized. We calculated the median absolute
difference between each technical replicate pair’s DNAm
age estimates in each dataset. We found that the GS
color correction and background subtraction had the
least deviation across replicates (errorGS = 2.17 years),
followed by noob normalization (errorNoob = 2.41 years),

Fig. 3 DNA methylation age acceleration variation across preprocessing methods. a Scatter plot of EPIC DNA methylation (DNAm) age calculated
from raw and data from three different preprocessing methods: quantile, GenomeStudio (GS), and normal exponential out-of-band (noob) normalization.
Colored regression lines and surrounding shaded gray areas represent 95% confidence interval for each group. b Boxplot of estimated DNA methylation
(DNAm) age—chronological age (acceleration difference) for each preprocessing method. c Boxplot of residuals from a linear regression (DNAm
age~chronological age) across methods. The median is illustrated by horizontal line with upper and lower hinges representing the 25th and 75th
percentiles, upper and lower whiskers extend no further than the inter-quartile range multiplied by 1.5. Colored data points represent individual samples
for each group

McEwen et al. Clinical Epigenetics  (2018) 10:123 Page 6 of 9



quantile normalization (errorQuantile = 2.89 years), and then
raw data having the largest deviation (errorRaw = 3.14 years,
Fig. 4). Notably, these values are all below the median ab-
solute error of the epigenetic clock (3.6 years) [12].

Discussion
This study had two primary aims (1) to investigate
whether using EPIC methylation data to calculate
DNAm age is an appropriate approach, given the 19 and
6 missing probes used in the pan tissue 353 CpG model
(Horvath) and 71 CpG model (Hannum), respectively,
and (2) to evaluate the effect of various data preprocess-
ing methods prior to calculating DNAm age, as a stand-
ard pipeline for processing data prior to calculating
DNAm age does not exist. By analyzing monocyte
DNAm from 172 individuals quantified on both the
450K and EPIC arrays, we demonstrated that the lack of
the clock-CpGs on the EPIC array did not compromise
the utility of the epigenetic age predictors. We also eval-
uated the performance of the EPIC pan-tissue epigenetic
clock (334-CpG model) on another EPIC dataset, con-
sisting of three tissues from 13 individuals, finding com-
parable correlations with age to those reported with the
450K array (353-CpG model). Furthermore, we found
small differences in the DNAm age estimate between
data preprocessing methods, implying that although the
methods assessed here differed in mean values, the
trends in respect to chronological age were consistent
across methods.

Finding that preprocessing method influenced mean
values of DNAm age is important for the interpretation
of future analyses, as we demonstrated that variation in
DNAm age can be introduced by how the data are pre-
processed. Our work here provides supporting evidence
for the DNAm age acceleration residual measure, since
this value is reflective of inter-individual variability
within a measured dataset, and is, therefore, more com-
parable across studies. In contrast, the DNAm age differ-
ence, the crude difference between estimated DNAm age
and chronological age, can be reflective of global DNAm
shifts due to preprocessing methods.
Whichever measure of DNAm age is used (acceler-

ation difference, residual, or age itself ), there is an add-
itional consideration that small effect sizes should be
interpreted with caution. To highlight this point, we cal-
culated DNAm age for technical replicates from raw
data and three different preprocessing methods. We
found that while there was some variability in DNAm
age across technical replicates, regardless of preprocess-
ing methods, the observed median absolute error in
DNAm age for each method (2.7–3.14 years) was lower
than the reported error of the epigenetic clock (3.6 years)
[17]. GS-preprocessed data produced the tightest repli-
cates, followed by noob and then quantile normalization,
and the consistency between replicates was lowest when
DNAm age was calculated from raw data. These findings
may suggest using preprocessed data rather than raw
data, but overall we emphasize the importance of con-
sidering the technical error of the epigenetic clock and
caution interpretation of changes of less than 3.6 years.
To examine the appropriateness of using EPIC data to

calculate DNAm age for future research, we took advan-
tage of a cohort with DNAm data on the same individ-
uals on both the 450K and EPIC arrays. It is crucial to
examine whether the epigenetic clock can continue to
be used on EPIC data, as the 450K platform is no longer
available. There was high consistency between 450K and
EPIC DNAm age estimates, and the lack of 19 CpG sites
did not significantly affect the prediction accuracy of the
epigenetic clock. Probe-wise correlation coefficients of
the 334 common clock CpG sites across the 450K and
EPIC were lower than anticipated; however, previous re-
ports have demonstrated that the majority of EPIC
probes are not well correlated to those of the 450K and
that this is most prevalent at invariable probes [21].
These observations highlight the robustness of the
multi-CpG predictors assessed, as despite the low
probe-wise correlations the correlation between the esti-
mated ages was highly correlated. This result is consist-
ent with classical test theory in that error for any given
probe is random, and largely uncorrelated with the error
of other probes, and therefore these random effects would
become redundant in a composite index like epigenetic

Fig. 4 Absolute difference between technical replicate pairs for each
processing method. The y axis represents the absolute difference
between each technical replicate pair’s DNA methylation (DNAm)
age. Each processing method is represented on the x axis. The median
difference is indicated by the red cross for each group. The color
of data points represents one technical replicate pair for ease of
interpretation across methods. Error refers to the median absolute
difference between DNAm age and chronological age
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age [26]. The consistency in estimated age lends support
to the strength of this predictive model on the EPIC plat-
form and will allow users to continue applying this bio-
informatic tool to continue to calculate DNAm age.
To further examine the application of EPIC array data

to predict DNAm age, we estimated DNAm age in an
independent EPIC array cohort. We observed correla-
tions between EPIC DNAm age and chronological age
that were comparable to previous reports, specifically in
PBMCs and BAL samples. The strong association in
PBMCs is consistent with previous reports of DNAm
age in PBMCs as generated from 450K data [13, 18]. We
observed less consistency in the brush samples; however,
this tissue was not included in the training data of the
353-CpG epigenetic clock and so performance may not
be reflective of EPIC array but rather be a property of
clock itself. This is reinforced by our experiment remov-
ing the 19 clock CpGs not present on the EPIC array
from the 450K data, where we observed a nearly perfect
correlation with the 353-CpG data, suggesting that the
loss of the 19 clock CpG sites did not influence the ac-
curacy of the epigenetic clock.
There are limitations to this study that should be

taken into consideration when interpreting the results.
The primary datasets we investigated when comparing
EPIC versus 450K estimated DNAm age were from
monocyte samples, and although we found that the lack
of 19 CpGs did not affect the pan-tissue DNAm age esti-
mate in this specific cell type, those 19 CpGs may be im-
portant to estimate age in other tissues. Their
importance to other tissues remains to be explored.
Additionally, the methods applied in the current study
should not be generalized across all studies. For ex-
ample, global normalization methods, such as quantile
normalization, are not appropriate in all cases as inter-
esting biological information can be removed in datasets
with large variation across samples, such as cancer com-
pared to normal or multiple-tissue projects. Instead, the
use of these data transformation methods should be
considered on a study-by-study basis [11]. Furthermore,
while we are cognizant there are several other available
preprocessing options, for the purposes of our explor-
ation and presentation of these data, we only assessed
three of the most common methods.
In summary, we have investigated and confirmed that

two commonly used methods of DNAm-based age esti-
mation, the 353 CpG Horvath model and the 71-CpG
Hannum model, were not compromised when using the
latest human DNAm microarray platform, the EPIC
array, which is lacking 19/353 CpG and 6/71 CpG tar-
gets, respectively. We have also tested whether DNAm
age estimates were influenced by the preprocessing
stage; for example, whether raw data generated differing
results than normalized data. We assessed raw data and

three different preprocessed inputs (noob-, quantile-,
and GS-normalized) and found age estimates were dif-
ferent, but less than that of the reported error of the
model. Related, we finally also provided support for
using the age acceleration residual metric rather than
the age acceleration difference in studies applying the
epigenetic clock. Our work will provide researchers the
confidence to investigate DNAm age using the EPIC
array, as well as encourage users to critically consider
the technical error of the epigenetic clock when inter-
preting future findings.
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