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Abstract 31 

HIV-Controllers (HIC) maintain control of HIV replication without combined 32 

antiretroviral treatment (cART). The mechanisms leading to virus control are not fully 33 

known. We used gene expression and cellular analyses to compare HIC and HIV-1 34 

infected individuals under cART. In the blood, HIC are characterized by a low 35 

inflammation, a down modulation of NK inhibitory cell signaling and an up regulation 36 

of T-cell activation gene expression. This balance that persists following stimulation of 37 

cells with HIV antigens, was consistent with functional analyses showing a bias towards 38 

a Th1 and cytotoxic T cell response and a lower production of inflammatory cytokines. 39 

Taking advantage of the characterization of HIC based upon their CD8+ T lymphocyte 40 

capacity to suppress HIV-infection, we show that unsupervised analysis of differentially 41 

expressed genes fits clearly with this cytotoxic activity allowing the characterization of 42 

a specific signature of HIC. These results reveal significant features of HIC making the 43 

bridge between cellular function, gene signatures and the regulation of inflammation 44 

and killing capacity of HIV-specific CD8+T cells. Moreover, these genetic profiles are 45 

consistent through analyses performed from blood to PBMC and T-cells. HIV 46 

controllers maintain strong HIV-specific immune responses with low levels of 47 

inflammation. Our findings may pave the way for new immunotherapeutic approaches 48 

leading to strong HIV-1-specific immune responses while minimizing inflammation.  49 
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Importance 50 

A small minority of HIV infected patients, called “HIV Controllers” (HIC) maintains 51 

spontaneous control of HIV replication. It is therefore important to identify mechanisms 52 

that contribute to the control of HIV replication that may have implications for vaccine 53 

design. We observed a low inflammation, a down modulation of natural killer inhibitory 54 

cell signaling and an up regulation of T-cell activation gene expression in blood of HIC 55 

compared to patients under combined antiretroviral treatment. This profile persists 56 

following in vitro stimulation of peripheral blood mononuclear cells with HIV antigens, 57 

and was consistent with functional analyses showing a Th1 and cytotoxic T cell 58 

response and a lower production of inflammatory cytokines. These results reveal 59 

significant features of HIV controllers that maintain strong HIV-specific immune 60 

responses with low levels of inflammation. These findings define the immune status of 61 

HIC that is probably associated with the control of viral load.  62 
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Introduction 63 

If left untreated, HIV-1 infection is characterized by a detectable HIV replication and a 64 

rapid decline in CD4+ T lymphocytes leading to AIDS, whereas a small minority of 65 

patients, called “HIV Controllers” (HIC) maintains spontaneous control of HIV 66 

replication (1-3). Although, this population is heterogeneous and several mechanisms 67 

leading to the control of HIV replication contribute to this outcome (4, 5), an efficient 68 

HIV-specific CD8+ T cell response appears to be a key factors associated with the 69 

control of viremia. HIC maintain polyfunctional CD8+ T cell responses to HIV-1 70 

antigens (6, 7) in particular to gag polypeptide (8). A population of HIC exhibiting 71 

strong functional HIV-specific cytotoxic CD8+ T cell responses (2) has been 72 

characterized (9). Indeed, primary CD8+ T cells from many HIC are able to suppress 73 

HIV-1 replication ex vivo by efficient granzyme B and perforin mediated killing of 74 

infected T cells (10). In previous reports (9, 11), we have defined two sub-groups of 75 

HIC in function of the capacity of their CD8+ T cells to ex vivo suppress HIV-1 76 

infection in autologous CD4+ T lymphocytes (12). Strong responders HIC (SRHIC) 77 

exhibit a higher CD8+ T cell HIV-suppressive capacity than weak responders HIC 78 

(WRHIC). It was also observed that WRHIC maintain a large pool of HIV Gag-specific 79 

central memory T cells that are highly functional and readily expandable upon antigen 80 

stimulation, able to reach functions and high frequency similar to those observed in 81 

SRHIC (13). A negative correlation between expandable Gag-specific memory T cell 82 

responses and residual viremia suggest that these cells actively contribute to the 83 

sustained suppression of virus replication (14). 84 

In order to identify mechanisms that may contribute to the spontaneous control of HIV 85 

replication in HIC, we hypothesized that comparison of blood gene expression profiles 86 
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of HIC and chronically HIV-infected patients, with high CD4+ T cells counts and 87 

suppressed plasma HIV viral load while on cART, might help to identify features of 88 

spontaneous HIV control. In a second approach, cellular and genetic analyses of PBMC 89 

of these patients stimulated in vitro with HIV antigens were performed. Finally, in order 90 

to further characterize the SRHIC and WRHIC, we compared gene profiles of purified 91 

CD4+ and CD8+ T lymphocytes. Globally, our results identified key profiles of 92 

immune control of viral replication delineating implications for the design of strategies 93 

aimed to a sustained remission of HIV infection.  94 
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 95 

Results 96 

Characteristics of the study population 97 

The blood samples of the cohort comprised 53 HIC subjects and 27 cART treated 98 

patients. Clinical characteristics of the two groups are shown in Table 1. No statistically 99 

differences were observed between the two groups in terms of age (median of 47 vs 52 100 

years old), viral load (1.6 vs 1.3 RNA log10 copies/ml), CD4+ T (689 vs 588 cells/mm
3
) 101 

and CD8+ T (829 vs 725 cells/mm
3
) cell counts. No statistically differences were also 102 

observed for these parameters between the 10 SRHIC and 9 WRHIC subjects used for 103 

purification of CD4 and CD8 T cells, and between HIC and cART used for PBMC 104 

purification. 105 

HIC are characterized by an increase in T cell activation and a down modulation 106 

of inflammatory genes in the blood. 107 

Gene expression profile analysis of whole blood of HIC (n=53) and cART patients 108 

(n=27) showed that 1244 genes differentially expressed. Globally, these genes belong to 109 

pathways involved in innate immunity and NK signalling, T-cell activation and 110 

inflammation. HIC were clearly characterized by a down modulation of genes related to 111 

inflammation response with a down regulation of TLRs and TREM1 pathways (TLR1 (-112 

1.73), TLR4 (-1.91), TLR6 (-1.87), TLR8 (-2.61), CD14 (-1.66), TREM1 (-2.12) and 113 

TYROBP (-1.62) and of many pro-inflammatory genes including neutrophils 114 

chemotactic factor IL-8/CXCL8 (-8.14) and its receptors CXCR1 (-3.12) and CXCR2 (-115 

4.09) (Fig 1A). More precise analysis revealed also a down modulation in HIC of 116 

receptors for the Fc portion of immunoglobulin (FCGR3A/FCGR3B (-7.65),  FCER1G 117 

(-1.94) including the CD32A gene (FCGR2A) (-2.77) as well as killer cell 118 

https://en.wikipedia.org/wiki/Interleukin_8_receptor,_alpha
https://en.wikipedia.org/wiki/Interleukin_8_receptor,_beta
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immunoglobulin-like receptors (KIR2DL1/KIR2DL3 (-1.85), KIR3DL1 (-1.82), 119 

KIR2DL4 (-1.7), KIR2DL5A (-1.25)) and killer cell lectin like receptors KLRD1 (-1.76), 120 

KLRC3 (-1.96) and KLRC2 (-1.69) (Fig. 1A). This result contrasts with an upregulation 121 

in HIC of the expression of Src family kinases, FYN (+1.66) and ZAP70 tyrosine kinase 122 

(+1.73), IFNGand STAT1 genes (+1.54) (Fig 1B). Interestingly, the low 123 

inflammatory profile in HIC is consistent with the down modulation of inflammation 124 

regulatory pathways mitogen-activated protein kinase 1 (MAPK1) (-1.59) and PI3-125 

kinase PIK3CG (-1.52) and PIK3CB (-1.61) (Fig. 1B), a critical regulatory factor that 126 

connect immune stimulation and suppression during inflammation (15, 16). Globally, as 127 

illustrated in Fig. 1B, analysis revealed significant direct interactions between these 128 

pathways linking the down modulation of PIK3CG with an increase of T-cell activation 129 

(ZAP70/FYN) and a decrease of innate cell inhibitory signaling of NK cells (KIRs). 130 

We have also looked for immunometabolism pathways that play important role in the 131 

modulation of the immune system. In whole blood, we have observed an enrichment of 132 

gluconeogenesis and lipid metabolism pathways. In that respect, we observed a down 133 

regulation in HIC compared to cART, of ALDOA (aldolase, fructose-bisphosphate A) (-134 

1.57), BPGM (bisphosphoglycerate mutase) (-2.31), ME2 (malic enzyme 2) (-1.61), 135 

PGAM1 (phosphoglycerate mutase 1) (-1.54) and PGAM4 (phosphoglycerate mutase 4) 136 

(-1.51) and an up-regulation of ENO3 (enolase 3) (+1.64). In lipid metabolism, there 137 

was a down modulation of PTGS2 (prostaglandin-endoperoxide synthase 2) (-2.88), 138 

CD36 (-2.24), ACSL1 and 4 (acyl-CoA synthetase long chain family members) (-2.97 139 

and -1.56), S1PR1 and S1PR3 (sphingosine-1-phosphate receptors) (-1.62 and -1.70), 140 

PCTP (phosphatidylcholine transfer protein) (-2.13) and PTGS2 (prostaglandin-141 

endoperoxide synthase 2) (-2.88). In contrast, PTGR2 (prostaglandin reductase 2) 142 
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(+2.15), PLA2G2D (phospholipase A2 group IID) (+2.18), SREBF1 (sterol regulatory 143 

element binding transcription factor 1) (+1.55) were upregulated in HIC compared to 144 

cART. However, the modulated genes did not allow to predict an activation or 145 

inhibition of these pathways in HIC compared to cART. 146 

HIC cellular responses to HIV peptides are associated with a low inflammatory 147 

gene expression associated with Th1 and cytotoxic profiles 148 

We analyzed differences in gene expression of PBMC isolated from HIC (n=25) and 149 

cART (n=15) patients, before and after in vitro stimulation with pools of HIV peptides.  150 

Gene expression analysis before HIV peptides stimulation revealed that 113 genes were 151 

differentially expressed. Analysis on the Ingenuity Pathway software showed that these 152 

genes are significantly involved in inflammation with a down regulations of many genes 153 

such as IL1A (-2.28) and IL1B (-7.02), IL6 (-5.71), CXCL5 (-6.89), CXCL13 (-1.97), 154 

CCL23 (-1.68), CXCL1 (-4.19), TREM1 (-1.66) and CD14 (-2.86) (Fig. 2A). Some of 155 

these genes are also related to granulocytes adhesion and diapedesis (IL1A, IL1B, 156 

CXCL5, CXCL1, FPR1, FPR2, CCL22, CXCL13, CCL19, CCL23) and to IL6, HMGB 157 

and TREM1 signaling (IL1B, IL6, CD14, IL1A, FOS, LAT2, RHOU, TREM1). We also 158 

observed a down regulation of genes involved in iron homeostasis pathway such as 159 

HBA1/HBA2 (-12.93), HBB (-12.3), HBG1 (-8.14), HBG2 (-7.58), IL6 (-5.71), ALAS2 (-160 

4.52), SLC11A1 (-2.24) and SLC25A37 (-1.88).  Likewise, gene expression analysis of 161 

HIV peptides stimulated PBMC between HIC and cART revealed that 144 annotated 162 

genes were differentially expressed. Pathway analyses showed, as for unstimulated 163 

cells, a down regulation of genes belonging to inflammatory immune response, 164 

including CD14 (-5.12), CXCL8 (-1.84), TREM1 (-1.71) and IL6 (-7.78), as well as 165 

CXCL5 (-7.87), IL1B (-5.45), IL1A (-4.74), CCL3L1 (-4.17), CXCL1 (-3.82) and CCL24 166 
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(-3.55) (Fig 2B). We further observed a significant up regulation of genes related to the 167 

interferon pathway such as IFIT1 (+3.54), IFI44L (+2.50), IFI44 (+1.94), MX1 (+2.02), 168 

OAS3 (+1.91) (Fig 2C). 169 

These genetic characteristics were found to be consistent with the profile of cytokine 170 

production of in vitro stimulated PBMC from HIC (20 samples) and cART (15 171 

samples), as shown in Fig. 3. We observed a lower production of IL1 and a higher 172 

production of IP, TNFandMIP- in HIC compared to cART as measured by 173 

Luminex (Fig. 3A). This result was confirmed by ICS analysis after PBMC stimulation 174 

with HIV peptides showing a higher frequency of CD8+ T cell producing TNF, MIP-175 

1 and IFN in HIC patients compared to cART (p=0.0127, Mann-Whitney test) (Fig. 176 

3B). In contrast, no difference was observed in the profile of cytokine production for 177 

CD4 T cells of HIC and cART (Fig. 3C). 178 

Genetic and functional analyses of CD8+ T cells from SRHIC and WRHIC reveal 179 

specific signatures. 180 

We analysed cytokine patterns of in vitro stimulated PBMC and gene expression 181 

profiles of purified CD4 and CD8+ lymphocytes from SRHIC and WRHIC. PBMC 182 

stimulation with HIV peptides led to a significant higher production of IL-2, IP-10, 183 

Granzyme A, Perforin and MIP-1 in SRHIC as compared to WRHIC (Fig. 4A), which 184 

is consistent with a stronger Th1- and T effector-cytokines response in SRHIC subjects 185 

(Fig. 4B). Phenotypic analyses in ICS assay confirmed a higher frequency of CD8+ T 186 

cells producing cytokines in SRHIC compared to WRHIC group (p=0.031, Mann-187 

Whitney test), specially MIP-1 (p=0.024) (Fig. 5A). CD8+ T cells from SRHIC and 188 

WRHIC were highly polyfunctional (55 to 60% of cells exhibit 2 or 3 cytokines) in both 189 

groups. Although CD4+ T cells from both SRHIC and WRHIC patients were highly 190 
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polyfunctional (60 to 75% of the cells exhibit 2 or 3 cytokines), no differences were 191 

observed between groups in terms of cytokine production following HIV peptide 192 

stimulation (Fig. 5B). 193 

We then compared gene expression profiles of ex vivo CD8+ and CD4+ T lymphocytes 194 

purified from SRHIC and WRHIC. In contrast to CD4+ T lymphocytes (Fig. 6A), 195 

unsupervised hierarchical clustering analysis of CD8+ T lymphocytes showed a perfect 196 

clustering of SRHIC and WRHIC groups (Fig. 6B). We found 804 annotated 197 

differentially expressed genes between SRHIC and WRHIC CD8 cells. Analysis of 198 

gene expression profiles of CD8+ T lymphocytes showed an up regulation in SRHIC of 199 

genes involved in the IFN pathway (Fig. 7), while proinflammatory genes such as 200 

CXCL8 (-3.53), IL1B (-2.28), IRAK3 (-1.61), TYROBP (-3.13) and FCER1G (-3.37) 201 

were down regulated. CD8+ T lymphocytes from SRHIC exhibited also a significant 202 

upregulation of CX3CR1 (+2.21) gene expression, a marker of CD8 effector memory 203 

cells (17). 204 

Among 804 genes differentially expressed between CD8+ T cells from SRHIC and 205 

WRHIC, 133 were also part of those identified in blood gene expression differences 206 

between HIC and cART (Fig. 8A). These genes are mainly associated with a down 207 

modulation of inflammation. Among the 671 genes differentially expressed specifically 208 

between CD8+ T cells from WRHIC and SRHIC (excluding the 133 genes 209 

differentiating blood gene expression of HIC from cART), four main functions were 210 

identified: three were predicted as activated (T cell response, cytotoxicity of leukocytes 211 

and killing Natural Killer cells) and one was predicted as inhibited (activation of 212 

leukocytes). The down regulation of genes such as NFKB1 was consistent with the 213 

decrease of leukocyte activation and increase of leukocyte toxicity (Fig. 8B). 214 
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These data reveal significant features of HIC making the bridge between HIV-specific 215 

cellular function; i.e polyfunctionality, low proinflammatory responses, cytotoxic 216 

activity and gene signatures. Interestingly enough, these genetic profiles are consistent 217 

through the analyses of ex vivo whole blood and PBMC to analyses performed at the 218 

cellular population levels.  219 
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Discussion 220 

We report here results of extensive functional and gene expression analyses performed 221 

in whole blood and at cellular level through PBMC and purified CD4 and CD8 T cells 222 

in a cohort of HIC. Globally, these analyses performed through the different 223 

compartments were consistent. They show that HIC individuals, as compared to 224 

chronically HIV-1 infected individuals under cART have a low inflammatory 225 

background which contrasts with activation of adaptive immune response pathways. 226 

Interestingly this balance persists following in vitro stimulation of cells with HIV 227 

antigens. This genetic profile was also consistent with functional analyses as assessed 228 

by the production and cellular expression of cytokines. Finally, taking advantage of the 229 

characterization of HIC based upon their in vitro CD8+ T lymphocyte capacity of 230 

killing HIV-infected cells, we show clearly that unsupervised genetic analysis of 231 

differentially expressed genes fits clearly with this cytotoxic activity. Here again we 232 

found a balance between low activation and the commitment of genes associated with 233 

cytotoxicity and T cell response.  234 

Although cART has significantly improved the prognosis of HIV infected individuals, 235 

they remain at increased risk of morbidity and mortality (18, 19). These clinical events 236 

are supposed to be related to residual immune activation and inflammation in cART-237 

treated patients. The immune activation is also associated to the poor HIV-specific 238 

response in chronically infected patients (20). Several studies have shown that HIC 239 

exhibited cellular and serological markers of immune activation and inflammation 240 

despite a spontaneous control of HIV replication (21-24). However, no evidence of 241 

persistent inflammation was observed when HIC were defined using stringent criteria in 242 

relation to the cutoff level of viremia (≤50 copies/mL) and a minimum follow-up time 243 
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of >5 years, compared to HIV uninfected subjects (25). We found here, as compared to 244 

cART patients, that the level of inflammatory gene expression remains still dramatically 245 

reduced in HIC with a significant down regulation of TLRs, TRIM1 and CXCL8/IL8. 246 

This result extends several observations showing that HIC have significantly lower 247 

levels of IL-8 mRNA when PBMCs were exposed to exogenous HIV-1 compared to 248 

HIV-progressors, cART treated or not, and HIV uninfected control (26). It was also 249 

observed a higher expression of CXCL8 in untreated HIV-1 infected progressors and 250 

cART nonresponders when compared to LTNPs (long term non progressors) and cART 251 

responders, respectively. Furtheremore, a negative correlation of plasma levels of 252 

CXCL8 with CD4 counts was found in HIV-1 infected cART naïve subjects, while the 253 

CXCL8 levels positively correlated with viral load in the cART treated children (27). 254 

These observations suggest a strong link between CXCL8 through its proinflammatory 255 

action, to viral replication and disease progression. On the other hand, El-Far M et al. 256 

(28) underlined the role of proinflammatory IL-32 cytokine in the failure of virus 257 

replication control in HIC. We did not find any differences between HIC and cART 258 

patients in the expression of IL-32 gene in our study where there was no failure to 259 

control viral replication, neither in HIC nor in cART patients. Beside the down 260 

regulation of inflammatory genes, HIC down regulated many genes belonging to the 261 

natural killer cell signaling pathway such as receptors for the Fc portion of 262 

immunoglobulin, inhibitory killer cell immunoglobulin-like receptors and killer cell 263 

lectin like receptors. Interestingly, studies on HIV slow progressors linked the 264 

protective effect of NK cells with certain killer immunoglobulin-like receptors and their 265 

ligands the human leukocyte antigen-class I molecules (HLA) on the target cells (29, 266 

30). The responsiveness of NK cells varies depending on the number of inhibitory 267 
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receptors (iKIR) expressed in particular KIR2DL1/KIR2DL3 (29, 31, 32). Interestingly, 268 

expansion of the activating KIR3DS1+ and the inhibitory KIR3DL1+ NK cells are 269 

increased in patients with acute HIV-1 infection in the presence of HLA-B Bw480I. 270 

However, it was not associated with reduction in HIV levels in the blood. Engagement 271 

of the inhibitory KIR3DL1 receptor on these NK cells with its ligand on the target HIV 272 

infected cells could lead to the inhibition of NK cell cytotoxicity. Similarly, studies 273 

have shown that CD56− CD16+ NK cells, which are expanded in HIV-viremic 274 

individuals, have impaired function and high expression of inhibitory KIR2DL2 and 275 

KIR2DL3 receptors, which would explain their defective lytic capability toward HIV-276 

infected cells (33). Although we did not evaluate the functional capacity of NK cells in 277 

HIC, one can hypothesis that the down regulation of iKIR, observed in HIC may result 278 

in strong NK cell activation leading to viral load control. 279 

We also observed a down regulation in HIC of receptors for the Fc portion of 280 

immunoglobulin (FCGR3A/FCGR3B, FCGR2A and FCER1G). Many studies indicate 281 

that antibody-induced effectors responses mediated through FCGR signaling contribute 282 

to the control and prevention of HIV-1 infection (34-36). FCGR2A (CD32A) receptor 283 

has also been reported as a marker of the CD4+ T cell HIV reservoir in HIV-infected 284 

patients (37), but more recently contradictory works have shown that CD32 is not a 285 

marker of HIV-1 reservoir but of CD4+ T cell activation in HIV+ individuals (38, 39). 286 

Despite that the role of the FC receptors in virus control remains to be thoroughly 287 

explored, one can speculate that the down regulation of these receptors could be 288 

associated with both the lower activation/inflammation and HIV reservoir observed in 289 

HIC compared to cART (40). It was also reported that the quality rather than the 290 

number of the FCGR signaling, could be responsible of the wider poly-functional Fc-291 
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mediated responses observed in HIC (36, 41). In parallel, there is a down regulation in 292 

HIC of mitogen-activated protein kinase 1 (MAPK1) and PI 3-kinase (PIK3CG and 293 

PIK3CB), both are critical regulatory factor of immune stimulation and suppression 294 

during inflammation (15, 16, 42). In mice, an inhibition of PIKG promotes adaptive 295 

immunity and CTL activities (16, 43). Here, we observed a down regulation of PIKG 296 

associated to a down regulation of many inflammatory genes including IL-4 especially 297 

in HIC presenting a strong viral inhibition capacity. Globally, the observation in HIC of 298 

a link between the low expression of PIK3CG and both an activation of T-cell signaling 299 

and a down modulation of inflammatory pathways is reminiscent to the action of this 300 

“switcher” in the balance between immune suppression and inflammation (16). HIC 301 

seem to develop an efficient adaptive immune response through a modulation of 302 

expression of regulatory molecules of cytoplasmic signal transduction pathways FYN, 303 

ZAP70, MAPK1. Indeed, increase in expression of Src family kinases, FYN and ZAP70 304 

tyrosine kinase in HIC are in favor of activation of T cells through the TCR, which 305 

allows a specific immune response (44, 45). This specific response was associated to a 306 

drastic down regulation of chemoattractive molecules such as CXCL5, IL1B, IL1A, 307 

CCL3L1, CXCL1 and CCL24 in HIV-peptides stimulated PBMC of HIC compared to 308 

cART. The same profile was observed with CD8 T lymphocytes of SRHIC compared to 309 

WRHIC, that also have less proinflammatory response, through down regulation of 310 

mRNA of CXCL8, S100A8, S100A9 and IL1B, while the IFNG response was activated. 311 

Immunological and virological aspects in the blood, gut associated lymphoid tissues 312 

(GALT) and lymph nodes of HIC and cART showed the crucial role in the virus control 313 

of both HIV specific responses and immune activation (44, 45). Our observations 314 

highlight only mechanisms involved in the blood of HIC compared to cART patients. 315 
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Though, HIV infection induces also the expression of different components of the 316 

inflammasomes in GALT (46) and both the immune regulation and delayed progression 317 

to AIDS were associated with a particular activation phenotype of T cells in GALT 318 

from HIV-controllers (47). Furthermore, in HIV infection the immune activation and 319 

inflammation were also associated with immunometabolism reprogramming through the 320 

use of glucose and fatty-acid (48). In whole blood, we observed an enrichment of 321 

gluconeogenesis and lipid metabolism pathways in differentially expressed genes 322 

between HIC and cART, but it was not possible to determine if there was activation or 323 

inhibition of these pathways. 324 

Altogether, we show that HIC associate an anti-inflammatory state and strong adaptive 325 

immune response to virus that probably allows for the control of viral loads below the 326 

limits of detection. Efficient HIV therapeutic vaccine would mimic such response 327 

profiles by inducing strong HIV-specific immune response whereas minimizing 328 

inflammation.  329 

  330 
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Materials and Methods 331 

Patients and samples 332 

Whole blood samples were collected from 53 HIV HIC subjects of the ANRS CO21 333 

CODEX cohort and 27 HIV-cART treated patients followed in Henri Mondor Hospital 334 

(Créteil, France). HIC individuals were never treated with cART, HIV-infected for at 335 

least 5 years and with last five consecutive plasma HIV RNA < 400 HIV-RNA 336 

copies/ml (49). Control cART patients exhibited plasma HIV RNA <50 copies HIV-337 

RNA/ml for at least 2 years and CD4 lymphocytes ≥500 cells/mm
3
. CD4 and CD8 T 338 

lymphocytes were purified from SRHIC and WRHIC subjects, and Peripheral blood 339 

mononuclear cell (PBMC) from HIC and cART patients. The study protocol was 340 

approved by the regional investigational review board (Comité de Protection des 341 

Personnes Ile-de-France VII and IX) with approval reference 05–22 and 10-023. The 342 

study protocol was performed in compliance with the tenets of the Declaration of 343 

Helsinki. 344 

RNA isolation and microarray sample preparation 345 

Whole blood RNA was purified using Tempus™ Spin RNA Isolation Kit 346 

(ThermoFisher scientific). PBMC, CD4- and CD8-lymphocytes RNA were purified on 347 

Qiagen RNeasy Micro Kit. RNA was quantified using a ND-8000 spectrophotometer 348 

(NanoDrop Technologies, Fisher Scientific, Illkirch Cedex, France) before being 349 

checked for integrity on a 2100 BioAnalyzer (Agilent Technologies, Massy Cedex, 350 

France). cDNA was synthesized and biotin-labelled cRNA was generated by an in vitro 351 

transcription reaction using Ambion Illumina TotalPrep RNA Amplification Kits 352 
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(Applied Biosystem/Ambion, Saint-Aubin, France). Labeled cRNA were hybridized on 353 

Illumina Human HT-12V4 BeadChips. 354 

CD4 and CD8 T lymphocytes isolation 355 

CD4- and CD8-lymphocytes were isolated only from SRHIC and WRHIC subjects (9). 356 

T cells were isolated with an automated Robosep cell separator (STEMCELL) by 357 

indirect magnetic cell sorting with a T cell enrichment kit (STEMCELL) customized to 358 

also eliminate gamma/delta T cells. CD4+ T cells were subsequently separated by 359 

positive selection using anti-CD4 coated beads (STEMCELL) and CD8+ T were 360 

recovered in the resulting negative fraction. The purities of CD4 and CD8-T cells were 361 

> 95%. 362 

In vitro stimulation of purified PBMC with HIV peptides for gene expression and 363 

cytokines profile analyses  364 

After resting, 8.10
5
 of thawed cells were stimulated for 24 hours in 48-well plates with a 365 

HIV peptide pool of 36 peptides (15-mers overlapping by 11 amino acids peptides) 366 

covering 5 regions of HIV Gag, Pol and Nef (50). Cells were then pelleted for 367 

transcriptomic analysis. In parallel, 5.10
5
 cells were cultured in triplicate in 96 deep well 368 

plates and stimulated with the same antigens. At day 2, supernatants were collected for 369 

Luminex assay. 100 Units/ml IL2 (Miltenyi Biotec) was added in the culture medium at 370 

days 2 and 5 for longer stimulation. At day 8, all wells were split in 2, and cells were re-371 

stimulated with the same antigens either for 6 hours in the presence of brefeldin A for 372 

ICS assay or for 24h for Luminex assay. 373 

For ICS analyses, cells were first stained with surface monoclonal antibodies: anti-CD3 374 

Alexa 700, anti-CD4 BV421 (BD Biosciences, Le Pont de Claix, France), anti-CD8 375 
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eFluor780 (affymetrix/eBioscience, Paris, France) and a viability marker (Live dead 376 

fixable Aqua Dead cell stain kit from Life Technologies, Saint Aubin, France), 377 

permeabilized and fixed with Cyto fix/Cytoperm Buffer (BD Biosciences). Cells were 378 

then stained with intracellular antibodies: anti-IFNG PerCP Cy5.5, anti-TNF PE-Cy7 379 

and anti-MIP1B PE (BD Biosciences). Data were acquired with a LSRII flow cytometer 380 

(BD, Le Pont de Claix, France), with a minimum of 100000 events collected in CD3+ 381 

alive cells, analyzed using FlowJo software, and the specific response has been 382 

expressed as the percentage of CD4 or CD8 T cells. 383 

For Luminex assay, 14 cytokines have been measured in the supernatants of cell 384 

cultures at days 2 and 9 using Millipore reagents (MILLIPLEX Human CD8 T-Cell 385 

Panel with IL-2, IL-5, IL-10, IL-13, IFN, TNF, MIP-1, Perforin, Granzyme A and 386 

Granzyme B; Magnetic beads and antibodies for human IP10, IL-21, IL-17A and IL-1, 387 

Millipore, Chicago, USA). Data were acquired with the Bio-Plex 200 system™ (Bio-388 

Rad, Marnes-la-Coquette, France).389 

Statistics 390 

Microarray data analyses were performed using R software version 3.2.2 (The R 391 

foundation for Statistical Computing, Vienna, Austria). Gene transcription data were 392 

pre-processed (51, 52) and corrected for potential batch effect (53). Statistical 393 

comparisons between groups were based on empirical Bayes moderated t-statistics (54). 394 

An adaptive FDR procedure was used to control for test multiplicity. Unsupervised 395 

hierarchical clustering heatmap analysis was performed on raw scaling expression using 396 

Euclidean distance matrix and Ward’s linkage (55). Canonical pathway and biological 397 

function analyses were then carried out using genes differentially expressed between 398 
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groups with adaptive FDR-adjusted P≤0.05 and fold-change |FC| ≥1.5. Ingenuity 399 

Pathway Analysis software (IPA®, Qiagen, Redwood City, 400 

www.qiagen.com/ingenuity) was used for gene pathway and function analyses. Mann 401 

Whitney tests have been used to compare cytokine production by T cells and PBMC. 402 

Data availability 403 

All microarray data are MIAME compliant, and the raw and normalized data have been 404 

deposited in the MIAME-compliant database Gene Expression Omnibus (GEO) under 405 

accession number GSE108297.  406 

http://www.qiagen.com/ingenuity
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Figure legends 627 

Fig. 1. Gene expression in HIC and cART in whole blood. (A) Heatmap of genes 628 

belonging to the main pathways associated to the differentially expressed genes in 629 

whole blood of HIC and cART patients, including NK cells, TLRs, TREM1 and 630 

CXCL8 pathways. (B) Relationships between genes differentially expressed in whole 631 

blood of HIC compared to cART patients. Red symbols are overexpressed genes in 632 

HIC compared to cART patients, green symbols are underexpressed genes. Solid 633 

lines represent direct links between genes and dashed lines represent indirect links 634 

(with no more than one gene between the two genes). 635 

 636 

Fig. 2. Gene expression in HIV peptides unstimulated and stimulated peripheral 637 

blood mononuclear cell (PBMC) of HIC and cART. (A) Main differentially 638 

expressed genes between HIC and cART patients associated with inflammation 639 

before HIV peptides stimulation. (B and C)  Differentially expressed genes between 640 

HIC and cART patients associated to inflammation and IFN signaling after HIV 641 

peptides stimulation of PBMC. 642 

 643 

Fig. 3. Cytokines profiles of peripheral blood mononuclear cell (PBMC) from HIC 644 

and cART patients stimulated in vitro with HIV peptides covering Gag, Pol and 645 

Nef antigens. (A) Cytokine measurements (pg/ml) in supernatants of stimulated 646 

PBMC from HIC (n=20) and cART (n=15). Cytokine secretion was measured in 647 

supernatants after HIV peptide stimulation of PBMC using Bio-Plex 200 system™ 648 

(Bio-Rad) at day 2 of stimulation for IP-10 and IL-1, and at day 9 after a re-649 

stimulation for 24 hours for TNF and MIP-1. (B, C) CD8 and CD4 T cell 650 
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producing cytokines after PBMC stimulation with HIV peptides for 9 days as 651 

measured by ICS. (B) Frequency of CD8 T cells producing TNF, IFN and MIP-652 

1 (sum of the cytokines or individual cytokines) in 18 HIC and 14 cART patients. 653 

(C) Frequency of CD4 T cells producing TNF, IFN and MIP-1 (sum of the 654 

cytokines or individual cytokines) in 18 HIC and 14 c-ART patients. Horizontal lines 655 

represent the median ± IQR, and Mann-Whitney test has been used. 656 

 657 

Fig. 4. Cytokines profiles of peripheral blood mononuclear cell (PBMC) from 658 

strong (SRHIC) and weak (WRHIC) responders HIC, stimulated in vitro with 659 

HIV peptides covering Gag, Pol and Nef antigens. (A) Cytokine measurements 660 

(pg/ml) in supernatants of stimulated PBMC from 10 SRHIC and 10 WRHIC. 661 

Horizontal lines represent median ± IQR and Mann-Whitney test has been used to 662 

compare cytokines secretion among groups of patients. (B) Heatmap of 14 cytokine 663 

profiles of SRHIC and WRHIC. Cytokine secretion was measured in supernatants 664 

after HIV peptide stimulation of PBMC using Bio-Plex 200 system™ (Bio-Rad) at 665 

day 2 of stimulation for IL-2, IL-1 and IP10 or at day 9 after a re-stimulation for 24 666 

hours for all other cytokines. The white color indicates a very low cytokine 667 

concentration (or no detection), and the dark red color indicates a high cytokine 668 

concentration. 669 

 670 

Fig. 5. CD4 and CD8 T cell producing cytokines after peripheral blood 671 

mononuclear cell (PBMC) stimulation with HIV peptides for 9 days measured 672 

by ICS assay. (A) Frequency of CD8 T cells producing TNF, IFN and MIP-1 673 

(sum of the cytokines or individual cytokines) in 9 SRHIC and 9 WRHIC. (B) 674 
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Frequency of CD4 T cells producing TNF, IFN and MIP-1 (sum of the cytokines 675 

or individual cytokines) in 9 SRHIC and 9 WRHIC. Horizontal lines represent the 676 

median ± IQR, and Mann-Whitney test has been used. Pie charts represent the cell 677 

poly functionality, ie the relative proportion of CD8 and CD4 T cells producing 1 678 

(grey), 2 (dark grey) or 3 (black) cytokines. 679 

 680 

Fig. 6. Unsupervised hierarchical clustering of differentially expressed genes 681 

between SRHIC and WRHIC subjects in purified T cell populations. (A) 682 

Unsupervised hierarchical clustering of CD4+ T lymphocytes samples between 8 683 

SRHIC and 9 WRHIC subjects. (B) Unsupervised clustering of CD8+ T lymphocytes 684 

samples between 10 SRHIC and 10 WRHIC subjects.  685 

 686 

Fig. 7. IFN pathway associated with differentially expressed genes between 687 

SRHIC and WRHIC purified CD8 T cells. Overexpressed genes with FC ≥ 1.5 are 688 

represented in red, underexpressed genes in green and genes with a FC <1.5 and >1.2 689 

in gray. 690 

 691 

Fig. 8. Summary of genes differentially expressed in the various experiments 692 

performed in the study. (A) Commonly differentially expressed genes between HIC 693 

and cART PBMC at 6 and 24 hours of stimulation, between SRHIC and WRHIC 694 

CD4, between SRHIC and WRHIC CD8 and between HIC and cART in the whole 695 

blood (WB). Commonly differentially expressed genes between HIC and cART in 696 

WB and between SRHIC and WRHIC CD8+T cells, are indicated by stars. (B) 697 

Predicted functions committed based on the 671 genes differentially expressed 698 
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specifically between SRHIC and WRHIC CD8+ T lymphocytes, using Ingenuity 699 

software. Green symbols are underexpressed genes in SRHIC compared to WRHIC, 700 

red symbols are overexpressed genes. Supplementary legends are depicted in the 701 

figure. 702 



Table 1. Characteristics of the HIC and cART subjects. 

 HIC cART patients 

   

Number of subjects 53 27 

Age in years (Q1/Q3) 47 (20/79) 52 (40/64) 

Genders (F; M)) F 24; M 29 F 12; M 15 

HIV-1 plasma viral load (RNA copies/ml)     

Mean (sd) 1.6 (0.46) 1.3 (0.16) 

Median (Q1/ Q3) 1.4 (1.3/1.9) 1.3 (1.3/1.3) 

CD4+ lymphocytes   

Number of subjects 53 27 

Count (cells/mm3)   

Mean (sd) 713 (249) 606 (186) 

Median (Q1/ Q3) 689 (502/859) 588 (498/698) 

CD8+ lymphocytes   

Number of subjects 50 27 

Count (cells/mm3)   

Mean (sd) 829 (398) 725 (330) 

Median (Q1/ Q3) 794 (593/920) 681 (526/852) 

 

 






















