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ABSTRACT. 25 

 26 

Actinobacillus pleuropneumoniae is a Gram-negative bacterium that belongs to the family 27 

Pasteurellaceae. It is the causative agent of porcine pleuropneumonia, a highly contagious 28 

respiratory disease that is responsible for major economic losses in the global pork 29 

industry. The disease may present itself as a chronic or an acute infection characterized by 30 

severe pathology including hemorrhage, fibrinous and necrotic lung lesions, and, in the 31 

worst cases, rapid death. A. pleuropneumoniae is transmitted via aerosol route, direct 32 

contact with infected pigs, and by the farm environment. Many virulence factors associated 33 

with this bacterium are well characterized. However, much less is known about the role of 34 

biofilm, a sessile mode of growth, that may have a critical impact on A. pleuropneumoniae 35 

pathogenicity. Here we review the current knowledge on A. pleuropneumoniae biofilm, 36 

factors associated with biofilm formation and dispersion, and the impact of biofilm on the 37 

pathogenesis A. pleuropneumoniae. We also provide an overview of current vaccination 38 

strategies against A. pleuropneumoniae and consider the possible role of biofilms vaccines 39 

for controlling the disease.  40 

 41 

Keywords: Actinobacillus pleuropneumoniae, pleuropneumonia, biofilm, antimicrobial 42 

therapy and vaccine. 43 

  44 
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INTRODUCTION. 45 

Respiratory diseases in pigs are common global problems for modern pork producers and 46 

are frequently associated with the porcine respiratory disease complex (PRDC) (Opriessnig 47 

et al., 2011). PRDC is a multifactorial syndrome caused by the interaction of bacteria, 48 

viruses and stresses associated with management practices, environmental conditions and 49 

genetic predispositions (Opriessnig et al., 2011; Schmidt et al., 2016). Within PRDC, 50 

Actinobacillus pleuropneumoniae is one of the most commonly identified bacterial 51 

pathogen that causes respiratory infections in pigs (Opriessnig et al., 2011; Dayao et al., 52 

2016). A. pleuropneumoniae is a Gram-negative rod-shaped bacterium belonging to the 53 

Pasteurellaceae family (Chiers et al., 2010; Gómez-Laguna et al., 2014) and is the 54 

etiologic agent of porcine pleuropneumonia (Frey, 1995; Buettner et al., 2011).  This 55 

respiratory infection is the major cause of morbidity and mortality, and is responsible for 56 

substantial economic losses worldwide (Chiers et al., 2010; Bossé et al., 2014). The disease 57 

is characterized by an exudative, fibrinous, hemorrhagic, and necrotizing pneumonia and 58 

associated pleuritis (Chen et al., 2011). Porcine pleuropneumonia is transmitted via 59 

aerosols or direct contact with infected animals including asymptomatic carriers (i.e. 60 

animals with a sub-clinical infection). Clinical infections may result into a chronic and 61 

persistent form, an acute form with the pathology described above or a peracute form 62 

associated with severe pathology and rapid death (Gottschalk, 2015).  63 

 64 

In 1964, Shope was the first to described a disease affecting pigs in Argentina as porcine 65 

contagious pleuropneumonia (PCP) and he named the causative agent Haemophilus 66 

pleuropneumoniae (Shope, 1964; Shope et al., 1964). In 1983, Pohl and coworkers 67 

transferred the causative agents of PCP or similar infections to the genus Actinobacillus 68 
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based on the higher DNA-sequence homology to the genus Actinobacillus (Actinobacillus 69 

lignieresii, 72-75%) (Pohl et al., 1983; Nicolet, 1988). In 1986, O'Reilly and Niven 70 

identified the pyridine nucleotides, the precursors that were needed to satisfied the V-factor 71 

requirement, and the nicotinamide adenine dinucleotide (NAD) was identified as a 72 

supplement that supported in vitro growth (O'Reilly and Niven, 1986). A. 73 

pleuropneumoniae is now divided into two biovars based of their NAD requirement for 74 

growth: biotype 1 is NAD-dependent, and biotype 2 is NAD-independent (Turni et al., 75 

2014; Gottschalk, 2015; Ito, 2015).  76 

 77 

A. pleuropneumoniae is further divided into 16 serotypes (or serovars) based on the 78 

antigenic properties of the capsular polysaccharides and the O-chain of the 79 

lipopolysaccharides (LPS) (Sárközi et al., 2015; Kim et al., 2016; Bossé et al., 2017). 80 

Serotypes 1 to 12 and 15 typically belong to biotype 1 whereas serotypes 13 and 14 are 81 

typically biotype 2 (Serrano et al., 2008; Gottschalk, 2015). The serotype 16 is not yet 82 

officially grouped in any biotype. However, this is not an absolute rule since variants of 83 

serotype 2, 4, 7, 9 and 11 have been identified as NAD-independent (biotype 2) (Perry et 84 

al., 2012). Furthermore, there has been an increase in the prevalence of isolates that are 85 

untypable (UT) (Morioka et al., 2016). Despite the global distribution of A. 86 

pleuropneumoniae, the prevalence of different serotypes varies between countries (Morioka 87 

et al., 2015). Specifically, serotypes 1, 5 and 7 are predominantly found in North America, 88 

serotype 2 is the most common type in Europe and serotypes 1, 3, 4, 5 and 7 are typically 89 

isolated in China (Buettner et al., 2011; Gottschalk and Lacouture; 2015; Morioka et al., 90 

2016). For South America, serotypes 4, 6 and 7 are reported as the dominant serotypes in 91 

the region (Gómez-Laguna et al., 2014). 92 
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 93 

Infection and persistence of A. pleuropneumoniae is mediated by multiple virulence factors. 94 

Well characterized virulence factors of A. pleuropneumoniae include: the Apx toxins 95 

(ApxI, ApxII, ApxIII and ApxIV), lipopolysaccharide (LPS), capsule polysaccharide 96 

(CPS), proteases (e.g. LonA), urease, iron acquisition systems (e.g. transferrin-binding 97 

protein [Tbp], haemoglobin-binding protein [HbpA]), enzymes involved in anaerobic 98 

respiration (e.g. two-component signal transduction system [TCSTS] arcB and arcA), type 99 

IV pilus, Flp pilus, autotransporters (e.g. Trimeric Autotransporter Adhesin [TAA]), and 100 

more recently biofilms (Chiers et al., 2010; Tremblay et al., 2017). The role of biofilm in 101 

persistence, survival and pathogenesis of A. pleuropneumoniae is relatively new and the 102 

importance of biofilm is not fully understood. It has now been demonstrated that biofilms 103 

can develop during an infection and a recent report describes the growth of A. 104 

pleuropneumoniae as aggregates in lungs obtained from natural pig infections (Tremblay et 105 

al., 2017). In this review, our aim is to highlight and summarize the current knowledge on 106 

A. pleuropneumoniae biofilm formation and suggest its possible role in pathogenesis. 107 

Furthermore, we will also talk about vaccination and new strategies based on recent biofilm 108 

findings. 109 

 110 

BIOFILMS AND ANIMAL HEALTH 111 

It is well accepted by the scientific community that most bacteria can produce biofilms in 112 

their natural ecosystem as well as in artificial in vitro ecosystems (Briandet et al. 2012). 113 

Biofilms are defined as structured communities enclosed in a self-produced matrix that is 114 

attached to a surface (biotic or abiotic); however, recent evidences have demonstrated that 115 

in vivo biofilms and bacterial aggregates are not necessarily attached to the surface and are 116 
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often embedded in host material (Bjarnsholt et al., 2013; Kragh et al., 2016). Our group has 117 

extensively reviewed biofilm formation by animal and zoonotic pathogens, and we will not 118 

cover general information about biofilm in this review (see Jacques et al., 2010). Several 119 

members of the Pasteurellaceae family, which include many important animal pathogens, 120 

are able to form biofilms and several studies in the past decade have demonstrated the 121 

ability of its members such as Haemophilus influenzae, Pasteurella multocida, 122 

Aggregatibacter actinomycetemcomitans, Mannheimia haemolytica Histophilus somni, and 123 

Haemophilus parasuis to produce a biofilm (Olson et al., 2002; Kaplan and 124 

Velliyagounder, 2004; Jin et al., 2006; Sandal et al., 2007; Wu et al., 2013; Bello-Ortí et al. 125 

2014; Boukahil and Czuprynski, 2015). For several members of the Pasteurellaceae 126 

family, it has been suggested that biofilm formation is crucial for the persistence of these 127 

obligate inhabitants (Jin et al., 2006; Sandal et al., 2007; Bello-Ortí et al. 2014; Boukahil 128 

and Czuprynski, 2015). For example, non-virulent isolates of H. parasuis formed stronger 129 

and more robust biofilms than virulent isolates, suggesting that the biofilm phase favors 130 

colonization and the planktonic phase allows for the dissemination within the host (Jin et 131 

al., 2006; Bello-Ortí et al. 2014).  132 

 133 

ACTINOBACILLUS PLEUROPNEUMONIAE BIOFILMS. 134 

The ability of A. pleuropneumoniae to form biofilms in vitro was first studied using a 96-135 

well microtiter plate model (Coffey and Anderson, 2014) (Fig. 1). Kaplan et al. (2004) 136 

were the first to report that serotype 5b and 11 are producers of biofilms in vitro (Kaplan et 137 

al., 2004). A. pleuropneumoniae biofilms have also been assessed in glass tubes and under 138 

agitation. Biofilms form a ring at the air-liquid interface in this closed system model that 139 

incorporates shear force (Kaplan and Mulks, 2005). The ability to form biofilms appears to 140 
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be common among A. pleuropneumoniae isolates since studies demonstrate that isolates 141 

from every serotype are able to produce biofilms in microtiter plates and/or glass tubes 142 

(Kaplan and Mulks, 2005; Labrie et al., 2010). In the case of the newly reported serotype 143 

16, the ability to form biofilms has yet to be studied. 144 

 145 

Biofilm formation in microtiter plates 146 

In general, the production of biofilm by A. pleuropneumoniae in microtiter plates is 147 

described as a rapid process with the detection of biomass as early as 3 hours for serotype 1 148 

type strain S4074 and 6 hours for serotype 5b type strain L20 and clinical isolates (Labrie et 149 

al., 2010; Tremblay et al., 2013a). Interestingly, the biofilm cycle of serotype 1 type strain 150 

S4074 is completed within 8 hours. Specifically, biomass becomes detectable after 3 hours 151 

and reaches its peak at 5 hours, which correspond to the mature form of the biofilm 152 

(Tremblay et al., 2013a). Dispersion of the biofilm begins between 5-6 hours and the 153 

biomass is no longer detectable after 8 hours (Tremblay et al., 2013) (Fig. 2). The biofilm 154 

persistence can be extended if the spent medium is removed and fresh culture medium is 155 

added to a 4-hour old biofilm (i.e., a maturing biofilm). The change of growth medium can 156 

cause an increase in biomass and delay biofilm dispersion by 1 hour. This suggests that 157 

depletion of the culture medium or the accumulation of one or several signals molecules 158 

can activate biofilm dispersal (Tremblay et al., 2013a). These observations provide a good 159 

example for the limitations of closed biofilm systems. 160 

 161 

Biofilm formation in models with biologically relevant parameters 162 

To overcome the limitations of the microtiter plates, dynamic models are often used and 163 

these systems are thought to be more representative of the conditions encountered by 164 
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bacteria in their natural environment (Coenye and Nelis, 2010). For example, the “drip 165 

flow” reactor is a continuous flow system that continuously irrigates biofilms with fresh 166 

medium and allows biofilms to form on a coupon of choice (e.g., glass, stainless steel, 167 

PVC) that is deposited inside a sealed chamber (Goeres et al., 2009). In this model, 168 

biofilms are formed at the air-liquid interface in the presence of low shear forces that mimic 169 

the environment found in the lung and oral cavities (Goeres et al., 2009; Schwartz et al., 170 

2010). Unlike the results obtained with the microtiter plates, A. pleuropneumoniae S4074 is 171 

able to establish and maintain a biofilm for up to 48 hours (Tremblay et al., 2013a). To 172 

grow biofilms under these conditions, the growth medium (Brain Heart Infusion [BHI] with 173 

NAD) is diluted to 50% and the flow can be set from 50 mL to 200 mL per hour per 174 

chamber (Tremblay et al., 2013a; Hathroubi et al., 2016a).  After 24 hours, A. 175 

pleuropneumoniae forms an important biomass on a glass slide that is visible with the 176 

naked eye (Fig. 2). This biofilm contains 109-1010 colonies forming units (CFU) per 177 

chamber with an average dry weight of 10 mg (Tremblay et al., 2013a; Hathroubi et al., 178 

2016a). Although the “drip-flow” reactor provides a dynamic environment that resembles 179 

the lung cavity, the surface used was a microscopic slide, a substrate that A. 180 

pleuropneumoniae would never encounter in vivo.  181 

 182 

In order to see if a biotic surface could be used by A. pleuropneumoniae, Tremblay and 183 

colleagues (2013b) investigated biofilm formation on a SJPL cell line by a non-hemolytic, 184 

non-cytotoxic mutant of strain S4074, called MBHPP147. This mutant has deletions in both 185 

the apxIC and apxIIC genes which prevents the acylation (and hence activation) of the 186 

protoxins ApxIA and ApxIIA. As observed with strain S4074, MBHPP147 is able to form a 187 

biofilm on polystyrene in microtiter plates. Furthermore, a robust biofilm is observed after 188 
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24 and 48 hours of contact with the SJPL cells (Tremblay et al., 2013b). These studies are 189 

consistent with the notion that A. pleuropneumoniae can form biofilms on biotic surfaces 190 

during host colonization. 191 

 192 

Recently, A. pleuropneumoniae biofilm formation was studied using an embedded model 193 

created with 0.5% agarose. This porous substrate is thought to simulate the conditions 194 

found in the lungs during a natural infection (Tremblay et al., 2017). Biofilm formation in 195 

this model was tested with two clinical isolates of A. pleuropneumoniae (one serotype 5, 196 

and one serotype 7) that were previously shown to form biofilms in a 96-wells plates and 197 

aggregates in the lungs of naturally infected pigs. In the embedded models, both isolates 198 

developed aggregates ranging from 20-30 microns within the porous matrix formed by the 199 

agarose. The size of the aggregates (30-45 microns) and their structure were similar to 200 

those observed in the lungs of pigs naturally infected by either isolates (Tremblay et al., 201 

2017). The use of this new model that mimic the pulmonary alveolus environment during 202 

an infection has a promising future and could provide a new platform to test the sensitivity 203 

of A. pleuropneumoniae biofilm to several antibiotics. 204 

 205 

Factors involved in the formation and dispersion of A. pleuropneumoniae biofilms. 206 

Several strategies have been used to identify genetic factors associated with biofilm 207 

formation. For example, a library of mini-Tn10 transposon mutants in A. pleuropneumoniae 208 

S4074 was screened in a 96-wells microplate assay and 16 genes affecting biofilm 209 

formation were identified (Grasteau et al., 2011). Otherwise, microarrays have also been 210 

used to gain insight into the transcriptome of maturing or dispersing biofilms formed under 211 

static or dynamic conditions (Tremblay et al., 2013a). These approaches provide different 212 
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insight into the biofilm formation process. The results are summarized in the sections 213 

below. 214 

 215 

1) Composition of the biofilm matrix 216 

Poly-N-acetyl-glucosamine (PGA) is the major component and an essential element of the 217 

A. pleuropneumoniae biofilm matrix regardless of the growth conditions and surfaces used 218 

(Fig. 1) (Izano et al., 2007; Bossé et al., 2010; Labrie et al., 2010; Tremblay et al, 2013a; 219 

Tremblay et al., 2013b; Hathroubi et al., 2015; Hathroubi et al., 2016a). The proteins 220 

responsible for PGA synthesis are encoded by the pgaABCD operon (Kaplan et al., 2004; 221 

Izano et al., 2007). This operon is highly prevalent among A. pleuropneumoniae serotypes 222 

and appears to have been preserved in every studied serotype (Izano et al., 2007). In studies 223 

by Izano et al. (2007), PCR analysis of the gene coding for the biosynthesis of PGA, pgaC, 224 

demonstrated that it was present in every reference strains investigated (serotypes 1 to 12) 225 

and in 76 of the 77 field isolates tested. The synthesis of PGA is essential for the biofilm 226 

formation process and deleting one gene in the operon, pgaC, completely abolishes the 227 

production of PGA and, thus, prevents biofilm formation (Izano et al., 2007; Bossé et al., 228 

2010; Hathroubi et al., 2016a).  229 

 230 

A. pleuropneumoniae can also control the degradation of the self-produced PGA polymers 231 

using a glycoside hydrolase, dispersin B (Izano et al., 2007). This enzyme can detach 232 

biofilms formed on difference surfaces, under different conditions and in different model 233 

systems (Izano et al., 2007; Labrie et al., 2010; Tremblay et al., 2013a; Tremblay et al., 234 

2013b; Hathroubi et al., 2015; Hathroubi et al., 2016a). 235 

 236 
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Other components, such as extracellular DNA (eDNA) and proteins, may also provide 237 

building blocks for the matrix. Proteins and eDNA have been stained and observed by 238 

confocal microscopy in the biofilm formed by A. pleuropneumoniae (Wu et al., 2013; 239 

Hathroubi et al., 2016a). Under most conditions tested, these components do not appear to 240 

be required for the integrity of the biofilm matrix since proteinase K or DNase does not 241 

disperse pre-established biofilms (Grasteau et al., 2011; Hathroubi et al., 2016a). However, 242 

eDNA might contribute to the integrity of the biofilm under certain conditions such as in 243 

the presence of sub-minimal inhibitory concentration of penicillin B or in multi-species 244 

biofilms (Hathroubi et al., 2016b; Loera-Muro et al., 2016). 245 

 246 

2) Growth medium and other conditions inducing biofilm formation 247 

The composition of the culture medium affects A. pleuropneumoniae biofilm formation. 248 

For example, Li and collaborators  in 2008 demonstrated that the reference strain S4074 249 

only produced a biofilm in TSB (Tryptic Soy Broth) medium in the absence of serum 250 

although the mechanism of this inhibition remains to be determined (Li et al., 2008). Later, 251 

Labrie et al. (2010) demonstrated that BHI medium favored biofilm formation of A. 252 

pleuropneumoniae S4074 when compared to TSB. Further, 54% serotypes 1, 5, 7 and 15 253 

strains produced biofilms in BHI reinforcing the idea that BHI would better for the study of 254 

biofilms in vitro. However, the source of the BHI medium also has an impact on biofilm 255 

formation. For example, BHI from Oxoid enhanced the production of a robust biofilms 256 

whereas BHI from Difco does not promote biofilm formation (Labrie et al., 2010). 257 

 258 

When the composition of both media was analyzed the concentration of zinc was identified 259 

as a key difference with higher levels in BHI-Difco than BHI-Oxoid (Labrie et al., 2010). 260 
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In support of these observations, researchers have shown that the addition of zinc to BHI-261 

Oxoid inhibits biofilm formation in a dose-dependent manner without affecting bacterial 262 

growth (Labrie et al., 2010; Wu et al., 2013). Thus, zinc appears to specifically inhibit the 263 

production of biofilm by A. pleuropneumoniae. A similar inhibitory effect has also been 264 

observed for other porcine pathogens such as Escherichia coli, Salmonella Typhimurium, 265 

Staphylococcus aureus and Streptococcus suis (Wu et al., 2013). In A. pleuropneumoniae, 266 

the presence of zinc might interfere with the expression or biosynthesis of the major 267 

polymer found in the biofilm matrix, PGA, since the expression of the pgaABCD operon is 268 

up-regulated in BHI-Oxoid (Labrie et al., 2010) and zinc inhibits the activity of PgaB in E. 269 

coli (Little et al., 2012). 270 

 271 

In addition to growth medium, anaerobic conditions also appear to induce biofilm 272 

formation (Li et al., 2014). Indeed, exposure to anaerobic conditions result in an increase in 273 

biofilm formation that is associated with the upregulation of the fine tangled pili major 274 

subunit gene (ftpA) and pgaA (Li et al., 2014). 275 

 276 

Other growth conditions appear to induce the expression of biofilm-associated genes. For 277 

example, direct contact of A. pleuropneumoniae with epithelial cells results in an increased 278 

expression of the pgaABCD operons (Auger et al., 2009). Further, epinephrine and 279 

norepinephrine affect expression of pgaB and Apa1, an auto-transporter adhesin (Li et al., 280 

2012). However, only norepinephrine induces enhance attachment to SJPL cells and neither 281 

catecholamine has an impact on biofilm formation (Li et al., 2012). It is conceivable that 282 

different factors play a role during the attachment of A. pleuropneumoniae to a biotic 283 

surface (e.g. SJPL cells) and an abiotic surface (e.g. polystyrene or glass). In support of this 284 
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statement, A. pleuropneumoniae does not form a biofilm on polystyrene when grown in a 285 

cell culture medium (Dulbecco’s modified Eagle’s medium DMEM) and was only able to 286 

form biofilm in the presence of SJPL in DMEM (Tremblay et al., 2013b).   287 

 288 

3) The biofilm transcriptome 289 

The transcriptomes of maturing (static 4h), mature (drip-flow) and dispersing (static 6h) 290 

biofilms have been analysed and compared to each other and to their planktonic 291 

counterparts. In a study by Tremblay et al. (2013a), only 47 and 117 genes were 292 

differentially up or down-regulated in static biofilms when compared to planktonic cells. 293 

For example, biofilm bacteria down-regulated the expression of their energy metabolism 294 

gene when compared to planktonic bacteria (Tremblay et al., 2013a). Indeed, the majority 295 

of energy metabolism genes such as the genes encoding the key enzymes of the anaerobic 296 

metabolism appeared to be repressed in the biofilm (Tremblay et al., 2013a).  297 

 298 

Major differences have also been observed when the maturing biofilm is compared to a 299 

dispersing biofilm. Specifically, 456 genes were differently regulated when a maturing 300 

biofilm and a dispersing biofilm were compared (Tremblay et al., 2013a).  Furthermore, the 301 

maturing biofilm appears to be under an iron-rich condition because several major genes in 302 

iron acquisition, including tbpB, are repressed in the maturing biofilm (Tremblay et al., 303 

2013a).  304 

 305 

Interestingly, a comparative analysis reveals that the transcriptome of drip-flow biofilms 306 

share few differentially expressed genes with static biofilms. On the other hand, the drip-307 
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flow transcriptome has several genes that has also been identified in natural or experimental 308 

infections of pigs (Tremblay et al., 2013a). Transcriptome and cross-referencing analyses 309 

indicate that biofilms formed in a drip-flow models require a different sub-set of genes than  310 

biofilms grown in microtiter plates (Tremblay et al., 2013a). Based on these results, it has 311 

been suggested that the drip-flow apparatus might provide a more relevant model to study 312 

biofilm formation by A. pleuropneumoniae (Tremblay et al., 2013a). 313 

 314 

4) Regulators of biofilm formation 315 

While environmental conditions and growth medium composition that are optimal for 316 

biofilm formation and induce production of PGA have been identified, other studies have 317 

identified potential regulators and molecular mechanism associated with biofilm formation. 318 

In addition to growth conditions, the expression of the pgaABCD genes and, consequently, 319 

PGA production are regulated by the histone type H-NS (histone-like protein), which acts 320 

as a repressor of expression and hence a suppressor of biofilm production (Dalai et al., 321 

2009; Bossé et al., 2010; Grasteau et al., 2011). Tn insertions in the hns gene of A. 322 

pleuropneumoniae serotype 1 results in a sharp increase in biofilm formation and a loss of 323 

virulence (Dalai et al., 2009). Indeed, H-NS specifically represses the expression of the 324 

operon by binding sequences upstream the pgaA gene (Bossé et al., 2010). The importance 325 

of hns in repressing biofilm formation has also been independently confirmed in a screen 326 

that identified three Tn-mutants with an increase biofilm production (Grasteau et al., 2011). 327 

Unlike H-NS, the alternative sigma factor RpoE (or σE) is a transcriptional activator of the 328 

pgaABCD operon (Bossé et al., 2010).  329 

 330 

Deletion of the gene encoding the negative regulator of the σE factor, RseA (regulator of 331 



 15 

sigma-E), results in increased expression of the pgaABDC operon and higher biofilm 332 

production (Bossé, et al., 2010). Additionally, expression of the pgaABCD operon is also 333 

under the control of the RNA chaperone Hfq (Subashchandrabosea et al., 2013). Disruption 334 

of hfq decreases PGA production, biofilm formation, virulence and fitness 335 

(Subashchandrabosea et al., 2013).   336 

 337 

Deletion of the quorum-sensing (QS) gene also results in an increase in pgaABC 338 

expression, a strong increase in biofilm production and a decrease in virulence (Li et al., 339 

2008; Li et al., 2011). S-ribosylhomocisteine lyase (LuxS), is a protein involved in the 340 

production of the auto-inducer type 2 (AI-2) and in the QS mechanism. QS is involved in 341 

the biofilm formation in many bacteria (Prouty et al., 2002; Merritt et al., 2003; Ethapa et 342 

al., 2013). The increase biofilm production in A. pleuropneumoniae appears, however, to be 343 

independent of the production of AI-2 since the addition of AI-2 to the culture medium 344 

results in an increase biofilm production in the absence of LuxS (Li et al., 2011). Enhanced 345 

biofilm formation has also been observed in a mutant lacking the relA, a gene encoding the 346 

stringent response regulatory protein responsible for synthesis of (p)ppGpp (Li et al., 347 

2015). This deletion results in the up-regulation of a fimbrial biogenesis protein and tight 348 

adherence protein, proteins thought be important for adhesion to surfaces (Li et al., 2015). 349 

 350 

In addition to quorum sensing and the stringent response, two-component regulatory 351 

system also controls biofilm formation in A. pleuropneumoniae. For example, deletion of 352 

the ArcA, which belongs to the ArcAB two-component system, causes a defect in 353 

autoagregation and biofilm formation (Buettner et al., 2008). Furthermore, the expression 354 

of the cpxA, a gene encoding the histidine kinase of the CpxRA stress response system, is 355 
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induced in bacteria grown in biofilm when compared to their planktonic counterparts 356 

(Tremblay, et al., 2013a). In E. coli, this system is induced during the biofilm maturation 357 

phase (Otto and Silhavy, 2002) and the CpxRA system can be activated by mechanical 358 

pressure (Vogt and Raivio, 2012). It has been suggested that such pressure could be 359 

encountered by bacteria during the initial attachment and biofilm formation and could 360 

activate the CpxRA stress response. Interestingly, an O-antigen mutant, which lost its 361 

ability to produce a biofilm, exhibits reduced expression of cpxRA (Hathroubi et al., 362 

2016a). Furthermore, enhanced biofilm production induced by sub-MIC of penicillin G is 363 

associated with increased cpxRA expression (Hathroubi et al., 2015). In both cases 364 

described above, the expression of pgaA is also affected in the same direction suggesting a 365 

link between the CpxRA response and pgaABCD expression. Overall, activation of the A. 366 

pleuropneumoniae CpxRA system appears to occur during biofilm formation; however, the 367 

link between the CpxRA system, pgaABCD expression and biofilm formation requires 368 

further investigation before this could be said definitively. 369 

 370 

5) Surface-associated proteins and polysaccharides 371 

Proteins and polysaccharides located at the bacterium/surface interface are crucial for 372 

facilitating attachment, microcolonies formation, and/or subsequent maturation of the 373 

biofilm. Several proteins and polysaccharides have been identified and characterized as 374 

important for biofilm formation. In addition to the biofilm matrix polysaccharides, other 375 

surface polysaccharides have an impact on biofilm formation. For example, inactivation of 376 

galU results in an increase biofilm production (Grasteau et al., 2011). The galU gene 377 

encodes an UTP-α-D-glucose-1-phosphate uridylyltransferase, an enzyme involved in the 378 

biosynthesis of the lipopolysaccharide core oligosaccharide in A. pleuropneumoniae 379 
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(Ramjeet et al., 2008). Further, the wecABD operon and the genes encoding proteins 380 

involved in the biosynthesis of lipopolysaccharide O antigen are induced in a mature 381 

biofilm (Tremblay et al., 2013a). 382 

 383 

Recently, it was demonstrated that the absence of the O antigen markedly reduces the 384 

ability of A. pleuropneumoniae to form a mature biofilm. This decrease is associated with a 385 

reduction in pgaA expression and, consequently, PGA production (Hathroubi et al., 2016a). 386 

Interestingly, LPS and O-antigen truncated LPS specifically bind PGA suggesting that 387 

interactions between LPS and PGA may help bacterial cells attached to the biofilm matrix. 388 

Taken together, these observations reinforce the idea that LPS may play a role in biofilm 389 

formation of A. pleuropneumoniae. Several studies have shown the importance of O chains 390 

in biofilm formation by other Gram negative such as Stenotrophomonas maltophilia 391 

(Huang et al., 2006), Xanthomonas citri ssp. citri (Li and Wang, 2011), Xanthomonas 392 

oryzae pv. oryzicola (Wang et al., 2013), and Xylella fastidiosa (Clifford et al., 2013). 393 

Although LPS may have a key role in biofilm formation, the capsule polysaccharides do 394 

not appear to affect biofilm formation despite an increase in adherence to epithelial cells 395 

and polystyrene by a capsule mutant (Rioux et al., 2000; Hathroubi et al., 2016a). The 396 

capsule may mask critical adhesion factors such as adhesins. Several surface proteins have 397 

been associated with biofilm formation in A. pleuropneumoniae. For example, deletion of 398 

the autotransporter serine protease, AasP, results in increased adherence and biofilm 399 

formation (Tegetmeyer et al., 2009). The outer membrane protein VacJ is also involved in 400 

biofilm formation and outer membrane integrity (Xie et al., 2016a); deletion of this gene 401 

reduces the ability of A. pleuropneumoniae to form biofilms. Interestingly outer membrane 402 
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efflux proteins, such as TolC or a TolC-like homologue, have also been associated with 403 

biofilm formation. Moreover, it has been observed that the deletion of tolC1 causes a 404 

reduction in surface adherence, auto-aggregation and biofilm production but the second 405 

tolC homologue, tolC2, does not have any effect on biofilm formation (Li et al., 2016a; Li 406 

et al., 2016b). The cell hydrophobicity is also changed in the tolC1 deletion mutant and 407 

pgaA and cpxR expression is down-regulated in the mutant (Li et al., 2016a). As a side 408 

note, the tolC2 gene is up-regulated in dispersing biofilms and it has been suggested that 409 

this protein with MacAB-like proteins could mediate secretion of a dispersal signal 410 

(Tremblay et al., 2013a). Interestingly, the efflux pump inhibitor, phenylalanine-arginine 411 

beta-naphthylamide (PAN), is able to repress biofilm formation of A. pleuropneumoniae 412 

and enhance the inhibitory effect of several antibiotics on pre-established biofilms (Li et 413 

al., 2016b). 414 

 415 

Two trimeric autotransporter adhesins, Apa1 and Apa2, are also involved in 416 

autoaggregation and biofilm formation of A. pleuropneumoniae (Xiao et al., 2012; Wang et 417 

al., 2016). In the case of Apa1, the adhesion functional domain located at the head of the 418 

protein is required for autoaggregation, biofilm formation and adherence to SJPL (Wang et 419 

al., 2015). Apa1 is a Hsf-like trimeric autotransporter adhesin that has been identified to be 420 

differentially regulated under several conditions. For example, Apa1, also identified as 421 

APL_0443, is up-regulated when A. pleuropneumoniae is cultured in a growth medium 422 

favoring biofilm formation (Labrie et al., 2010), in the presence of norepinephrine (Li et 423 

al., 2012) and in the presence of porcine bronchoalveolar lavage fluid (Lone et al., 2009) 424 

while it is down-regulated in A. pleuropneumoniae attached to SJPL cells (Auger et al., 425 
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2009), in a maturing biofilm (Tremblay et al., 2013a) and in the presence of epinephrine (Li 426 

et al., 2012). Based on these observations, it was suggested that APL_0443 is involved in 427 

the early reversible attachment step during biofilm formation of A. pleuropneumoniae 428 

(Tremblay et al., 2013a). 429 

 430 

6) Other factors identified 431 

Factors involved in biofilm formation are not limited to regulators and structures at the 432 

bacteria-surface interface; the periplasm and cytoplasm have also been identified as the 433 

location of key processes for biofilm formation. For example, ClpP, a protease of the CLP 434 

(caseinolytic protease) family, plays an important role in biofilm formation of A. 435 

pleuropneumoniae. Indeed, a clpP deletion mutant has been shown to have a defect in 436 

biofilm production (Xie et al., 2013). Other proteases also influence biofilm formation by 437 

A. pleuropneumoniae. Specifically, two homologues of the Lon proteases, LonA and LonC, 438 

have been identified but only the deletion of LonA results in decrease biofilm production 439 

(Xie et al., 2016b). The Lon proteases belong to a family of ATP-dependent proteases 440 

involved in the degradation of abnormal proteins created when bacteria are exposed to 441 

environmental stresses. 442 

 443 

Furthermore, mutations in genes such potD2, a dihydrouridine tRNA that binds 444 

polyamine/spermidine, and rpmF, a ribosomal L32 protein, caused a decrease in the 445 

production of A. pleuropneumoniae biofilm (Grasteau et al., 2011). Homologues of these 446 

genes have been associated with Pseudomonas aeruginosa biofilm and their mutations 447 

decrease biofilm production (Musken et al., 2010). Other genes such pyrF (decarboxylase 448 

orotidine-5-phosphate), ptsI (phosphotransferase) and ribA (synthesis of riboflavin), are 449 
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also associated with a decrease in biofilm formation in A. pleuropneumoniae (Grasteau et 450 

al., 2011). Also, riboflavin synthesis appears to be an important element in biofilm 451 

formation since the expression of certain genes in this pathway are modulated during 452 

biofilm formation (Tremblay et al., 2013a). 453 

 454 

BIOFILMS: ADVANTAGES AND BENEFITS FOR A. PLEUROPNEUMONIAE  455 

It is recognized that biofilms provide various advantages to bacteria including survival in 456 

harsh environments and resistance to stresses such as the presence of antibiotics or 457 

disinfectants (Jefferson, 2004; Nadell et al., 2015; Olsen, 2015; Hathroubi et al., 2017). For 458 

example, A. pleuropneumoniae gown as a biofilm is less sensitive to antibiotics and 459 

concentrations 100 to 30 000 times higher than the minimal inhibitory concentrations 460 

(MIC) required to kill planktonic cells (Archambault et al., 2012) are needed to kill biofilm 461 

cells. This decrease in sensitivity has been observed with antibiotics frequently used on pig 462 

farms including ampicillin, florfenicol, tiamulin and tilmicosin (Archambault et al., 2012). 463 

It has been suggested that a decrease in sensitivity to antibiotics is due to the sequestration 464 

of antibiotics by extracellular matrix components such as PGA which is found in the 465 

biofilm matrix of A. pleuropneumoniae (Nadell et al., 2015; Olsen, 2015; Hathroubi et al., 466 

2017). Indeed, pretreatment of biofilms with dispersin B increases the sensitivity of A. 467 

pleuropneumoniae cells to ampicillin suggesting that PGA can limit the diffusion of this 468 

antibiotic (Izano et al., 2007). In addition to decreasing antibiotic sensitivity, biofilms can 469 

also protect against the immune response or decrease the inflammatory response. With A. 470 

pleuropneumoniae, pro-inflammatory genes are down-regulated in porcine pulmonary 471 

alveolar macrophages exposed to biofilm cells when compared to planktonic cells 472 

(Hathroubi et al., 2016b). Furthermore, biofilm bacteria reduce the proliferation of porcine 473 
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peripheral blood mononuclear cells. Interestingly, biofilm cells modify their lipid A 474 

structures, and these modifications are absent in planktonic cells. Overall, the immune 475 

response towards cells isolated from A. pleuropneumoniae biofilms is weaker and this 476 

change could be partially driven by lipid A modification (Hathroubi et al., 2016b). 477 

 478 

The advantages conferred by biofilm formation might not be limited to stress resistance. 479 

During an infection or colonization, biofilms are generally formed as mixed population of 480 

several microorganisms resulting in competitve and/or mutualistic relationships (Peters, et 481 

al., 2012; Willems et al., 2016). In some cases, polymicrobial interactions in mixed 482 

biofilms can provide fertile ground for the exchange of resistance genes and/or increase 483 

survival and persistence (Harriott and Noverr, 2009; De Brucker et al., 2015; Hathroubi et 484 

al., 2017). Recently, it was demonstrated that A. pleuropneumoniae is able to form mixed 485 

biofilms with other swine pathogens such as S. suis, Bordetella bronchiseptica and P. 486 

multocida (Loera-Muro et al., 2016). In this situation, A. pleuropneumoniae does not 487 

require the addition of the essential co-factor NAD to the medium for growth and biofilm 488 

formation. Furthermore, S. suis, Bordetella bronchiseptica and P. multocida form a weak 489 

biofilm that is at near the detection limit of the assay in BHI and in the absence of A. 490 

pleuropneumoniae. The association of A. pleuropneumoniae with other swine pathogens 491 

appears to benefit both partners. The swine pathogens provide an essential co-factor to A. 492 

pleuropneumoniae and, in exchange, A. pleuropneumoniae could provide components for 493 

the biofilm structure (e.g., PGA, eDNA, proteins, lipids) (Loera-Muro et al., 2016).  494 

  495 

The benefits of biofilm formation may not be limited to the host environment. Indeed, as an 496 

obligate parasite of the porcine respiratory tract, A. pleuropneumoniae can only survive for 497 
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a very short period of time outside its host and is unable to survive in the farm 498 

environment. However, a recent study detected A. pleuropneumoniae in biofilms from the 499 

drinking water found on swine farms in Mexico (Loera-Muro et al., 2013).   500 

A. pleuropneumoniae biofilms may also be advantageous for other microorganisms such as 501 

important viral pathogens of pigs. Recently, it was demonstrated that the porcine 502 

reproductive and respiratory syndrome virus and type 2 porcine circovirus can persist inside 503 

an A. pleuropneumoniae biofilm for several days (Jacques et al., 2015).  504 

 505 

On a final thought, biofilm may be a contributing factor, to some extent, to the high 506 

prevalence of A. pleuropneumoniae in both Canadian domestic pigs (70%) (MacInnes et 507 

al., 2008) and feral pigs in the United States (69.7%) by favoring persistent infections 508 

(Baroch et al., 2015).  509 

 510 

MANAGEMENT OF A. PLEUROPNEUMONIAE OUTBREAKS 511 

A wide variety of antimicrobial agents are used to treat A. pleuropneumoniae: β-lactams 512 

(amoxicillin, penicillin, ampicillin, and ceftiofur), tetracyclines (tetracycline and 513 

doxycycline), florfenicol, trimethoprim/sulfamethoxazole, tiamulin, 514 

lincomycin/spectinomycin, fluoroquinolones (danofloxacin and enrofloxacin) and 515 

gentamicin (Dayao et al., 2014; Dayao et al., 2016). In recent years, isolates with different 516 

levels of antibiotics resistance have started to arise worldwide (Archambault et al., 2011; 517 

Bossé et al., 2015; Dayao et al., 2014).  518 

 519 

The direct link between biofilm formation and levels of antibiotic resistance in A. 520 

pleuropneumoniae is still unclear. However, it is worth mentioning that sub-MIC of 521 
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penicillin G may enhance biofilm production via the induction of PGA expression 522 

(Hathroubi et al., 2015). Since antibiotics are often used in North America at sub-523 

therapeutic doses for growth promotion and prevention, and A. pleuropneumoniae biofilms 524 

are more tolerant to antibiotics (Archambault et al., 2012), the judicious use of antibiotic in 525 

pig production is highly advised.  526 

 527 

Currently, antibiotics represent the most effective measure for controlling A. 528 

pleuropneumoniae outbreaks (Gottschalk, 2015). A. pleuropneumoniae biofilm should be 529 

taken into consideration for the development of new effective treatment strategies. These 530 

strategies should combine antimicrobials with anti-biofilm molecules such as zinc (Wu et 531 

al., 2013) or PAN (Li et al., 2016b) to overcome persistent infections and reduce the cost 532 

of treatment.  533 

 534 

PREVENTION AND VACCINE STRATEGIES AGAINST A. 535 

PLEUROPNEUMONIAE 536 

In the last decade, several vaccines have been developed to protect against A. 537 

pleuropneumoniae infections. Most of vaccines are based on recombinant Apx toxins and 538 

membrane proteins (such as OMP and type 4 fimbrial proteins) and provide protection 539 

against some but not all serotypes (Shao et al. 2010; Lu et al., 2011; Shin et al. 2011; 540 

Sadilkova et al. 2012; Li et al., 2013; Hur and Lee, 2014; Yang et al., 2014; Hur et al., 541 

2016; Kim et al., 2016; Li et al., 2016c; To et al., 2016). Inactivated/whole A. 542 

pleuropneumoniae cell based vaccines are also used in many countries to prevent porcine 543 

pleuropneumonia (Shao et al., 2010; Lu et al., 2011; Lee et al., 2014; Lopez-Bermudez et 544 
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al., 2014). These vaccines are widely distributed. However, these vaccines do not provide 545 

complete protection against all serotypes of A. pleuropneumoniae.  546 

 547 

Bacterins are typically prepared from bacteria grown as planktonic cells. Since biofilm cells 548 

are known to exhibit phenotypes that are different than their planktonic counterparts 549 

(Stewart and Franklin, 2008; O’May et al., 2009) and A. pleuropneumoniae form biofilm 550 

aggregates during an infection (Tremblay et al., 2017), the vaccines described above may 551 

not provide a full protection against A. pleuropneumoniae infections. Bacterins may help 552 

the vaccinated pig developed a significant memory response against the planktonic form of 553 

A. pleuropneumoniae but the antigenic nature of some targets are modified during growth 554 

as biofilms. For example, the A. pleuropneumoniae lipid A molecular structure is modified 555 

according to the mode of growth (Hathroubi et al., 2016b). Indeed, cells grown as a biofilm 556 

have unique lipid A structures that are absent in planktonic cells including an increase in 557 

higher molecular weight lipid A entities (Hathroubi et al., 2016b). Accordingly, it would 558 

likely be best to create bacterins using both planktonic and biofilm cultures to provide a 559 

better protection against A. pleuropneumoniae infections by presenting a larger set of 560 

antigens that could be biologically relevant.  561 

 562 

As with bacterins, commercially available recombinant vaccines based on Apx toxins 563 

and/or other proteins have failed to provide a complete protection against every A. 564 

pleuropneumoniae isolates (Del Pozo-Sacristán et al. 2014; Sjölund et al. 2010). The 565 

development of new vaccines based on antigens specifically associated with A. 566 

pleuropneumoniae biofilms in combination with the Apx toxins and other antigens could 567 
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help improve the protection but further investigations are required to identify relevant 568 

molecules expressed in biofilms and during infection. 569 

 570 

Such strategies have been successful for the development of new vaccines against other 571 

pathogens. For example, a proteomic analysis of Bordetella pertussis biofilm and 572 

planktonic cells identified a biofilm-derived membrane protein called BipA as a potential 573 

vaccine antigen (de Gouw et al., 2014). Vaccination of mice with this antigen showed 574 

promising results that included induction of a specific antibodies response and a significant 575 

reduction in the colonization of lungs by B. pertusis (de Gouw et al., 2014). Moreover, 576 

anti-BipA antibodies have been detected in the serum of convalescent whooping cough 577 

patients (de Gouw et al., 2014). In another example, Gil et al. (2014) performed an 578 

intradermal administration of an exoproteome extract derived from an exopolysaccharide-579 

dependent biofilm to develop an efficient antibiofilm vaccine against Staphylococcus 580 

aureus. The biofilm exoproteome induced a humoral immune response and elicited the 581 

production of interleukin (IL) 10 and IL-17 in mice. Furthermore, vaccination with the 582 

exoproteome extract significantly reduced the number of bacteria within biofilms and 583 

surrounding tissue in in vivo mesh-associated biofilm infection model (Gil et al., 2014).  584 

 585 

The strategy of using biofilm-specific antigen is not limited to B. pertussis and S. aureus; 586 

others have begun to use similar strategies against bacterial pathogens of importance in 587 

veterinary and human health. These pathogens include: S. aureus (Speziale et al., 2014; 588 

Gogoi-Tiwari et al., 2015), Campylobacter jejuni (Theoret et al., 2012), Mycobacterium 589 

tuberculosis-complex (Flores-Valdez, 2016), Streptococcus mutans (Huang et al., 2013), 590 

Staphylococcus epidermidis (Shahrooei et al., 2012; Speziale et al., 2014), Bacillus subtilis 591 
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(Vogt et al., 2016), Acinetobacter baumannii (Fattahian et al., 2011), and Streptococcus 592 

equi ssp. zooepidemicus (Yi et al., 2016) (Table 1). 593 

 594 

In the context of biofilm infections, two different types of antigens exist: bacterial cells 595 

within the biofilm and the biofilm matrix. The biofilm matrix may be composed of 596 

polysaccharides, proteins, and extracellular DNA and the composition of the matrix is 597 

dependent on the bacterial genera, species, and strains (Harro et al., 2010). Different studies 598 

have focused on identifying antigens from the bacteria, the matrix or both as the best 599 

strategy for the development of effective vaccines (Table 1). 600 

 601 

Another factor that must be considered is that biofilm consortia typically exist as 602 

communities of bacteria, viruses, protozoans, and fungi and the overall biofilm architecture 603 

is affected by specific intermicrobial and host interactions (Harro et al., 2010). These 604 

consortia can allow colonization and subsequent infection by opportunistic pathogens that 605 

exploit unique niches found in these polymicrobial environments resulting in the 606 

development of polymicrobial infections. 607 

 608 

Finally, vaccine research and design should take advantage of new techniques such as RNA 609 

sequencing, bioinformatics, proteomics, and lipidomics to identify molecules specifically 610 

expressed and/or secreted during biofilm formation. In our opinion, this should greatly 611 

improve the efficacy of future vaccines and ensure better protection of pigs against A. 612 

pleuropneumoniae. 613 

 614 

CONCLUSION AND FUTURE CHALLENGES 615 
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Despite different strategies and years of prevention and control, A. pleuropneumoniae 616 

remains one of the main respiratory pathogens of pigs and is responsible for great economic 617 

loses to the worldwide pork industry. Although some countries such as the USA and 618 

Canada can manage A. pleuropneumoniae, this pathogen remains present in farms and, 619 

thus, resurgence in new outbreaks are always possible. These new outbreaks could emerge 620 

from isolates with increase resistance to antibiotics. Great efforts have been made to 621 

prevent infections with this pathogen through optimal farm management and through major 622 

investments in research and development of new and better vaccines. However, neither 623 

management nor vaccines have been 100% effective at controlling A. pleuropneumoniae 624 

infections. Fortunately, new research is shedding light on the pathogenesis of A. 625 

pleuropneumoniae and it is improving our understanding of this old acquaintance. 626 

Importantly, recent studies have revealed that A. pleuropneumoniae forms biofilm 627 

aggregates in the lung (Tremblay et al., 2017) and can form multi-species biofilms with 628 

other respiratory pathogens (Loera-Muro et al., 2016). Using these new findings, it will be 629 

possible to identify novel vaccine candidates to improve the next generation of vaccines 630 

and to develop better strategies to control A. pleuropneumoniae.  These new developments 631 

could hopefully help prevent the persistent problems cause by this pathogen in the 632 

worldwide production of pigs for the last 50 years. 633 
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Figure 1 Confocal laser scanning microscopy image of A. pleuropneumoniae 4074 biofilm 1087 

stained with WGA-Oregon Green 488. 1088 
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 1094 

 1095 

Figure 2 Coupon with A. pleuropneumoniae 4074 biofilm from Drip flow system. 1096 

 1097 

 1098 



 49 

Table 1. Examples of vaccines based on biofilm-specific antigens produced by pathogenic bacteria of importance in veterinary and 

human health. 

 

Bacterial species Disease Antigens Reference 

Acinetobacter 

baumannii 

Nosocomial pathogen and causes 

severe infections such as 

bacteremia, pneumonia, meningitis, 

urinary tract and wound infections. 

Biofilm associated protein (Bap), a 371 

amino acid subunit. 

Fattahian et al., 2011. 

Acinetobacter 

baumannii 

Nosocomial pathogen and causes 

severe infections such as 

bacteremia, pneumonia, meningitis, 

urinary tract and wound infections. 

Bap with Outer Membrane Vesicles 

(without lipid A or Outer Membrane Protein 

A). 

Badmasti et al., 2015. 

Bordetella pertussis Whooping cough or pertussis. Bordetella intermediate protein A (BipA). de Gouw et al., 2014. 

 

Burkholderia 

pseudomallei 

The causative agent of melioidosis 

(category B select agent). 

mAbs namely BURK24 and BURK37.* Peddayelachagiri et al., 

2014. 

Campylobacter jejuni Food-borne bacterial 

gastroenteritis. 

Oral vaccination with a recombinant 

attenuated Salmonella enterica strain 

synthesizing the C. jejuni Dps protein. 

Theoret et al., 2012. 

Enterococcus faecalis Cause catheter-associated urinary 

tract infections. 

Heteropolymeric surface long hair-like fiber 

known as the endocarditis-and biofilm-

Flores-Mireles et al., 

2014. 
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associated pilus (Ebp). 

Staphylococcus 

aureus and 

Staphylococcus 

epidermidis 

Associated with biofilm-mediated 

infections (endocarditis, 

osteomyelitis, medical devices, 

etc.). 

Phosphonate ABC transporter substrate 

binding protein (PhnD). 

Lam et al., 2014 

Staphylococcus 

aureus and 

Staphylococcus 

epidermidis 

Associated with biofilm-mediated 

infections (endocarditis, 

osteomyelitis, medical devices, 

etc.). 

The Major amidase (Atl-AM, amulti-

functional non-covalently cell wall 

associated protein involved in biofilm 

formation). 

Nair et al., 2015. 

Staphylococcus 

aureus 

Associated with biofilm-mediated 

infections (endocarditis, 

osteomyelitis, medical devices, 

etc.). 

Exoproteome extract of an 

exopolysaccharide-dependent biofilm. 

 

Gil et al., 2014. 

 

Staphylococcus 

aureus 

Persistent and chronic forms of 

mastitis in cows. 

Formalin killed whole cell vaccine of S. 

aureus in a biofilm state. 

Gogoi-Tiwari et al., 

2015. 

 

Staphylococcus 

aureus 

Persistent and chronic forms of 

mastitis in cows. 

Protein A (in biofilm formation contributing 

to the severity of S. aureus associated 

infections). 

Gogoi-Tiwari et al., 

2016. 

 

Staphylococcus 

epidermidis 

Medical implants associated 

infections. 

Accumulation associated protein (Aap) C-

terminal single B-repeat construct followed 

Hu et al., 2011. 
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by the 79-aa half repeat (AapBrpt1.5). 

Staphylococcus 

epidermidis 

Medical implants associated 

infections.  

Vaccination with a recombinant truncated 

SesC (hypothetical LPXTG motif-

containing proteins). 

Shahrooei et al., 2012. 

 

Staphylococcus 

epidermidis 

Medical implants associated 

infections. 

Accumulation associated protein (Aap). Yan et al., 2014 

Streptococcus mutans Predominant microorganism in the 

etiology and pathogenesis of dental 

caries. 

DNA vaccine-induced salivary secretory 

immunoglobulin A (S-IgA) antibodies 

(DNA vaccine pGJA-P/VAX). 

Huang et al., 2013. 

 

Streptococcus equi 

ssp. zooepidemicus 

Opportunistic pathogen infecting a 

wide variety of animals and human. 

Recombinant chaperonin GroEL protein.  Yi et al., 2016. 

 

* Murine Monoclonal Antibodies (mAbs) against Burkholderia pseudomallei biofilms. 

 


