A novel flagellar sheath protein, FcpA, determines filament coiling, translational motility and virulence for the *Leptospira* spirochete

Elsio A. Wunder Jr., Cláudio P. Figueira, Nadia Benaroudj, Bo Hu, Brian A. Tong, Felipe Trajtenberg, Jun Liu, Mitermayer G. Reis, Nyles W. Charon, Alejandro Buschiazzo, Mathieu Picardeau, and Albert I. Ko.

Supplemental tables

Table S1. LD_{50} of wild-type, *fcpA*⁻ mutant and complemented strains of *L*. *interrogans* in the hamster model of leptospirosis^{*}

Bacterial Strains	LD ⁵⁰
motile Fiocruz LV2756 [#]	4.64 leptospires
motility-deficient Fiocruz LV2756 *	>10 ⁸ leptospires [¶]
Fiocruz LV2756 fcpA ^{-/+ §} 策	4.64 leptospires
Fiocruz L1-130 WT [#]	<10 leptospires*
Fiocruz L1-130 <i>fcpA</i> ^{-★}	>10 ⁸ leptospires [¶]
Fiocruz L1-130 <i>fcpA</i> ^{-/+ §} #	10 leptospires

* Results are shown for one representative experiment of a total of two, which were performed. Groups of 04 animals were inoculated intraperitoneally and followed for 21 days after infection.

¶ All the animals inoculated with 10^8 leptospires survived.

§ Strains were genetically complemented with *fcpA* gene.

♦ All the animals inoculated with 10 leptospires died.

Animals were inoculated with 10^1 , 10^2 and 10^3 bacteria.

 \star Animals were inoculated with 10⁶, 10⁷ and 10⁸ bacteria

Primer	Sequence (5'- 3')
FcpA_FlkAF	CGGGATCCCGGATTTCTTGGGTCATTTCTT
FcpA_FlkAR	GCTCTAGAGCTTCTCTTTCAATGGTATTAG
FcpA_FlkBF	CCCAAGCTTGGGCGTTCACCTTTTGAGAGCGA
FcpA_FlkBR	GGACTAGTCCGCTTCAATCGACCGTTTCCA
Spc_Xba5	GCTCTAGAAACGCGTCCCGAGC
Spc_Hind3	CCCAAGCTTAACGCGTAAAGTAAGCACC
FcpA_AscF	GGCGCGCCTGGATCATTGAATAGTCTAT
FcpA_AscR	GGCGCGCCAAGGATCTTGGTTCGTAAAA
LipL32-45F	AAGCATTACCGCTTGTGGTG
LiL32-286R	GAACTCCCATTTCAGCGATT
LipL32-189p	[6-FAM] [*] AAAGCCAGGACAAGCGCCG [BHQ1a-Q] [¶]
GAPDH_R	GGTTCACACCCATCACAAACAT
GAPDH_F	GGTGGAGCCAAGAGGGTCAT
GAPDH_P	[6-FAM] ATCTCCGCACCTTCTGCTGATGCC [BHQ1a-Q]
LipL32-45F LiL32-286R LipL32-189p GAPDH_R GAPDH_F GAPDH_P	AAGCATTACCGCTTGTGGTG GAACTCCCATTTCAGCGATT [6-FAM] [*] AAAGCCAGGACAAGCGCCG [BHQ1a-Q] [¶] GGTTCACACCCATCACAAACAT GGTGGAGCCAAGAGGGTCAT [6-FAM] ATCTCCGCACCTTCTGCTGATGCC [BHQ1a-Q]

Table S2. Sequence of primers used in this study

* 6-Carboxyfluorescein fluorescent dye

¶ Black Hole Quencher™ 1

Supplemental Figure 1

Fig S1. Translocation of motile, motility-deficient and complemented *Leptospira interrogans* strains across polarized MDCK cell monolayers. Motile Fiocruz LV 2756, Motility-deficient LV 2756, and Fiocruz LV 2756 *fcpA*^{-/+} strains were inoculated with a multiplicity of infection of 100 in the upper chamber of a MDCK cell monolayer transwell system. We measured percent recovery of leptospires by counting bacteria in the lower chamber at 2, 4, and 6 hours after inoculation. Results are shown as mean and standard deviation of assay values, which were performed in triplicate. Left Y axis shows TEER measurements.

Supplemental Figure 2

Fig S2. Range of leptospiral cell mean velocities of motile and motility-deficient

stains. The mean velocity of Motile Fiocruz LV 2756 and Motility-deficient LV 2756strains were measured using the tracking module of AxioVision 4.8.2 software (Carl Zeiss). (A) Box-and whisker plot showing the range of leptospiral cell mean velocity. (B)Representative color tracks showing the path of individual leptospires tracked over 10 seconds.

Supplemental Videos

Video S1. Dark-field video microscopy of motile Fiocruz LV2756 strain. Video was generated using a Zeiss AxioImager.M2 microscope outfitted with an AxioCam MRm camera and analyzed images using the AxioVision 4.8.2 software (Carl Zeiss Microscopy LLC). Cells were diluted in 0.5% solution of methylcellulose (MP Biomedicals, LLC) in PBS. The time lapse was recorded and exported at 14 fps.

Video S2. Dark-field video microscopy of motility-deficient Fiocruz LV2756 strain. Video was generated using a Zeiss AxioImager.M2 microscope outfitted with an AxioCam MRm camera and analyzed images using the AxioVision 4.8.2 software (Carl Zeiss Microscopy LLC). Cells were diluted in 0.5% solution of methylcellulose (MP Biomedicals, LLC) in PBS. The time lapse was recorded and exported at 14 fps.

Video S3. Dark-field video microscopy of wild-type Fiocruz L1-130 strain. Video was generated using a Zeiss AxioImager.M2 microscope outfitted with an AxioCam MRm camera and analyzed images using the AxioVision 4.8.2 software (Carl Zeiss Microscopy LLC). Cells were diluted in 0.5% solution of methylcellulose (MP Biomedicals, LLC) in PBS. The time lapse was recorded and exported at 14 fps.

Video S4. Dark-field video microscopy of Fiocruz L1-130 *fcpA*⁻ **strain.** Video was generated using a Zeiss AxioImager.M2 microscope outfitted with an AxioCam MRm

camera and analyzed images using the AxioVision 4.8.2 software (Carl Zeiss Microscopy LLC). Cells were diluted in 0.5% solution of methylcellulose (MP Biomedicals, LLC) in PBS. The time lapse was recorded and exported at 14 fps.

Video S5. Dark-field video microscopy of complemented Fiocruz LV2756 fcpA^{-/+}

strain. Video was generated using a Zeiss AxioImager.M2 microscope outfitted with an AxioCam MRm camera and analyzed images using the AxioVision 4.8.2 software (Carl Zeiss Microscopy LLC). Cells were diluted in 0.5% solution of methylcellulose (MP Biomedicals, LLC) in PBS. The time lapse was recorded and exported at 14 fps.

Video S6. Dark-field video microscopy of complemented Fiocruz L1-130 *fcpA*^{-/+} **strain.** Video was generated using a Zeiss AxioImager.M2 microscope outfitted with an AxioCam MRm camera and analyzed images using the AxioVision 4.8.2 software (Carl Zeiss Microscopy LLC). Cells were diluted in 0.5% solution of methylcellulose (MP Biomedicals, LLC) in PBS. The time lapse was recorded and exported at 14 fps.

Video S7. Three-dimensional reconstruction of mutant Fiocruz L1-130 *fcpA⁻* **strain, shown in Figure 4.** Reconstruction of cells were segmented using 3D modeling software Amira (Visage Imaging), as described in Experimental Procedures.

Video S8. Three-dimensional reconstruction of complemented Fiocruz L1-130 *fcpA*^{-/+} **strain, shown in Figure 4.** Reconstruction of cells were segmented using 3D modeling software Amira (Visage Imaging), as described in Experimental Procedures.