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Abstract

Leptospira is a highly heterogeneous bacterial genus that can be divided into three evolu-

tionary lineages and >300 serovars. The causative agents of leptospirosis are responsible

of an emerging zoonotic disease worldwide. To advance our understanding of the biodiver-

sity of Leptospira strains at the global level, we evaluated the performance of whole-genome

sequencing (WGS) as a genus-wide strain classification and genotyping tool. Herein we pro-

pose a set of 545 highly conserved loci as a core genome MLST (cgMLST) genotyping

scheme applicable to the entire Leptospira genus, including non-pathogenic species. Evalu-

ation of cgMLST genotyping was undertaken with 509 genomes, including 327 newly

sequenced genomes, from diverse species, sources and geographical locations. Phyloge-

netic analysis showed that cgMLST defines species, clades, subclades, clonal groups and

cgMLST sequence types (cgST), with high precision and robustness to missing data. Novel

Leptospira species, including a novel subclade named S2 (saprophytes 2), were identified.

We defined clonal groups (CG) optimally using a single-linkage clustering threshold of 40

allelic mismatches. While some CGs such as L. interrogans CG6 (serogroup Icterohaemor-

rhagiae) are globally distributed, others are geographically restricted. cgMLST was congru-

ent with classical MLST schemes, but had greatly improved resolution and broader

applicability. Single nucleotide polymorphisms within single cgST groups was limited to <30

SNPs, underlining a potential role for cgMLST in epidemiological surveillance. Finally,

cgMLST allowed identification of serogroups and closely related serovars. In conclusion,

the proposed cgMLST strategy allows high-resolution genotyping of Leptospira isolates

across the phylogenetic breadth of the genus. The unified genomic taxonomy of Leptospira

strains, available publicly at http://bigsdb.pasteur.fr/leptospira, will facilitate global harmoni-

zation of Leptospira genotyping, strain emergence follow-up and novel collaborative studies

of the epidemiology and evolution of this emerging pathogen.
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Author summary

Leptospirosis, caused by pathogenic Leptospira strains, is an emerging bacterial zoonotic

disease mostly affecting humans in tropical countries. Despite its public health impor-

tance, little is known about the strains that are circulating worldwide due to the lack of a

universal common language on strain types. In this work we describe a new strain geno-

typing and classification system that is highly standardized, thus facilitating global collab-

oration, and that can discriminate all members of the Leptospira genus at high resolution.

We then examine the genetic diversity of Leptospira strains from different origins. This

study provides a framework for optimizing diagnostic methods and epidemiological sur-

veillance of leptospirosis.

Introduction

Spirochetes constitute an evolutionarily and morphologically unique group of bacteria [1].

Pathogenic members of this phylum are the causative agents of several important diseases

including leptospirosis, an emerging zoonotic disease with more than one million severe cases

and 60,000 deaths every year worldwide, mostly in the tropical countries [2]. Pathogenic Lep-
tospira species can cause a wide range of diseases in human, ranging from mild flu-like symp-

toms to severe complications, such as Weil’s disease and pulmonary hemorrhagic syndrome,

in which the case fatality rate can reach 40% [3]. Leptospirosis is expected to become more

prominent worldwide due to climate change and the growing urban population living in

slums. In addition, infections with pathogenic species can lead to major economic losses in

livestock, as animal infections include e.g., abortion and loss of milk production [4].

The high public health and economic importance of Leptospira calls for better control of

the infections the bacteria cause to both humans and animals. However, the control of Leptos-
pira transmission is challenging for several reasons. First, the life cycle of pathogenic Leptos-
pira is complex. Pathogenic leptospires are excreted through the urine of a wide range of

animals including rodents which are asymptomatic reservoirs and livestock. Transmission to

susceptible hosts usually occurs through contact with water contaminated with the urine of

infected animals [5]. Therefore, multiple environmental sources of exposures, linked to multi-

ple animal species, must be considered as possibilities.

Further complicated matters, the genus Leptospira is genetically highly heterogeneous and

knowledge of its biodiversity remains largely incomplete. Taxonomically, the genus is cur-

rently subdivided into 35 species [6]. These species are ordered into three major evolutionary

clades named according to their virulence status: pathogens, intermediates and saprophytes

[1]. The agents of leptospirosis belong to two subclades, the pathogens (13 species) and the

intermediates (11 species). The pathogenic species are responsible of the most severe infections

in both human and animals, yet we know little about which component of the spirochete are

critical for virulence. The species of the intermediates subclade are widely distributed in the

environment [6–10] and they may be responsible for mild infections in both human and ani-

mals [11–19]. Intermediates possess most of the virulence factors found in the pathogens [1,

20]. In turn, the saprophytes form a single clade containing eleven species that are regarded as

non-pathogenic environmental bacteria [1]. Saprophytes are relatively fast-growing in vitro
when compared to the pathogens and lack the virulence factors described in infectious strains

[1]. Classification into the three main clades has been typically performed using housekeeping

and 16S rRNA genes sequencing [20].
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Yet another barrier against leptospirosis control is the difficulty in isolating and cultivating

Leptospira, which hinders optimal diagnostics of infections as well as laboratory identification,

and hampers the constitution and maintenance of strain culture collections that are needed for

microbiological studies and diagnostic or vaccine development purposes.

Finally, there is a lack of efficient strain typing methods that would allow tracking Leptos-
pira strains (i) from their environmental or animal sources to their infected hosts and (ii) as

they spread across time and space. Serotyping, which relies on the use of specific monoclonal

antibodies, has led to the distinction of>300 serovars based on the structural heterogeneity of

the surface-exposed lipopolysaccharides (LPS). This method has demonstrated an association

of serovars with some animal reservoir hosts [21], even though the mechanisms that have

allowed the adaptation of pathogenic Leptospira to various hosts are still unknown. However,

serovar identification is currently performed by only two reference laboratories worldwide

and is fastidious and time-consuming [22]. Furthermore, correlation between serotypes and

genomic background is not always accurate, as the LPS biosynthetic locus (rfb) can be horizon-

tally transferred between Leptospira species [23–25].

Molecular typing methods include pulsed-field gel electrophoresis (PFGE) [26, 27], and

multilocus variable-number tandem-repeat analysis (MLVA) [28], but both methods have

important practical limitations. Thus, PFGE [26] is not widely used and laborious, and only

the most common serovars are typeable. More recently, multilocus sequence typing (MLST)

was developed [29–31], but unfortunately three distinct MLST schemes have been proposed

and applied to distinct collections of isolates, resulting in fragmentation of Leptospira epidemi-

ological knowledge. Further, given the heterogeneity of Leptospira, the above methods are not

universally applicable to all clades and species. In particular, MLST schemes are mainly

focused on pathogens. As a consequence, current knowledge on the biodiversity and epidemi-

ology of Leptospira is limited, and there is a critical need for a consensus Leptospira genotyping

method that would be inclusive for its entire biodiversity, would facilitate fine-level strain dis-

crimination for epidemiological purposes, and would reach high standardization allowing

comparison of data from laboratories globally.

Whole-genome sequencing (WGS) has emerged as a powerful tool for bacterial strain clas-

sification and epidemiological typing [32]. The core genome MLST (cgMLST) approach,

which extends the MLST concepts to the core genome, was demonstrated to be a useful high-

resolution typing method in other bacterial species [33–36].

Taking advantage of the unique strain collection of the Reference Center for Leptospirosis

in charge of the leptospirosis surveillance in mainland France and French overseas territories,

our objectives were (i) First, to define based on genomic sequencing, the phylogenetic diversity

of Leptospira, and its links with ecology and geography. In particular, our purpose was to shed

light on the saprophyte and intermediate clusters, which have been scarcely studied thus far,

and to include potentially novel species in this analysis. (ii) Second, we aimed to devise a geno-

mic sequence-based genotyping method that is simultaneously universally applicable across

the entire Leptospira genus and highly discriminatory at the strain level, and to propose a

genomic taxonomy of Leptospira strains.

Methods

Leptospira strains

We sequenced 327 genomes from the collection of the National Reference Centre for Leptospi-

rosis (Institut Pasteur, Paris, France), which is a globally representative strain collection of iso-

lates from environmental, animal, and human samples gathered in the last 50 years. All strains

and genome sequences used here are listed in S1 Table. Leptospira strains were grown at 30˚C
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in liquid Ellinghausen, McCullough, Johnson and Harris (EMJH) medium. Species identifica-

tion and serovar typing were performed at the National Reference Centre for Leptospirosis

(Institut Pasteur, Paris, France) as previously described [37–39].

Ethics statement

Collection of the strains was conducted according to the Declaration of Helsinki. A written

informed consent from patients was not required as the study was conducted as part of routine

surveillance of the national reference center and no additional clinical specimens were col-

lected for the purpose of the study. Cultures originating from human samples were anon-

ymized. Approval for bacterial isolation from soil and water was not required as the study was

conducted as part of investigations into leptospirosis outbreaks. For New Caledonia, approval

for bacterial isolation from the natural environment was obtained from the South Province

(reference 1689–2017) and North Province (reference 60912-2002-2017).

Whole-genome sequencing and assembly

Bacterial genomic DNA was purified using MagNA Pure 96 Instrument (Roche). Next-genera-

tion sequencing was performed by the Mutualized Platform for Microbiology (P2M) at Institut

Pasteur, using the Nextera XT DNA Library Preparation kit (Illumina), the NextSeq 500

sequencing systems (Illumina), and the CLC Genomics Workbench 9 software (Qiagen) for

analysis. Draft genomes with 50x minimum coverage, a total size < 5.3 Mb, and a minimum

N50 of 10,000 nt were used for subsequent analysis. All raw reads generated and/ or contig

sequences were submitted to NCBI under the project number PRJEB29877 and are available

under genome accession numbers ERR3047203 to ERR3047514.

We also downloaded 182 assembled genome sequences from the NCBI and PATRIC (www.

patricbrc.org) databases, including reference strains of previously described species [20] and

representative isolates for each clade (S1 Table).

cgMLST scheme definition, phylogenetic analysis and comparaison with

MLST schemes

To determine a core gene set, 103 high-quality genome sequences of Leptospira covering the

whole diversity of the Leptospira genus, i.e., representative isolates from the three clusters (50%

from the pathogens, 12% from the intermediates, and 38% from the saprophytes) were selected

(S1 Table); 50% of the genomes were downloaded from NCBI, the others were sequenced as

described above.

From this set we inferred the genus core genome using the CoreGeneBuilder pipeline [40]

and L. interrogans serovar Copenhageni strain Fiocruz L1-130 (GCF_000007685) as a refer-

ence. The pipeline’s first step relies on the eCAMBer software [41], which consists of a de novo
annotation of the genomes (except the reference) using Prodigal [42] and the harmonization

of the positions of the stop and start codons. In the next step, the core genome is inferred with

a bidirectional best hits (BBH) approach as previously described by Touchon et al. [43]. We

used CoreGeneBuilder default settings except for the synteny parameters (options–R and–S)

both of which were set to 1. A gene was considered as part of the core genome if found in at

least 90% of our genomes. Genes were not requested to be present in all genomes, as this strin-

gent definition of a core genome would have resulted in too few genes given the diversity of

Leptospira. Instead, the set of genes defined using the relaxed requirement of 90% presence

can be viewed as a “soft core genome”. This resulted in an initial core genome containing 764

genes. We then filtered out some genes based on the following criteria. (i) First, we removed

potential paralogs. Indeed, the presence of paralogs inside a typing scheme can lead to

cgMLST scheme for Leptospira
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ambiguities, as a candidate gene might be attributable to two different core gene loci. To detect

those potential paralogs, we compared each allele of each locus against all the alleles of all the

other loci using the software BLAT [44]. If a single hit was found between two different loci

(more than 70% protein identity between two alleles), we removed both. (ii) Second, we also

removed genes that belong to one of the 3 existing Leptospira MLST schemes [29, 45, 46] and

the ribosomal genes, so that they can be analyzed independently. (iii) Third, we also removed

loci whose length varies too much among alleles, which is useful in reduceing ambiguities dur-

ing the genotyping process. We aligned the protein sequences and removed those for which

the alignment contained more than 10% of gaps (total number of gaps compared to the total

number of characters). (iv) We removed loci containing ambiguous characters. (v) Finally, to

avoid redundancy in the information contained within the cgMLST scheme, we removed loci

that were overlapping in the reference genome using the definition of Prodigal [42]: a mini-

mum of 60 bp of overlap if genes are on the same strand, and of 200 bp if genes are on different

strands. The analysis resulted in the selection of 545 core genes listed in S2 Table and this

cgMLST scheme was then used to analyze the presence of genes and to call alleles in 509

genomes (S1 Table), including the 103 genomes used for core genome definition. The allele

and profiles definitions of the Leptospira cgMLST scheme were made publicly available

through an Internet-accessible genotyping platform at https://bigsdb.pasteur.fr/leptospira/.

To derive a phylogenetic tree based on cgMLST gene loci, the allelic sequences of each locus

were extracted and aligned as protein sequences using MAFFT v7 [47]. The concatenation of

all loci yielded to a supermatrix of characters. IQ-TREE v1.5.4 [48] was used to infer a phyloge-

netic tree from this supermatrix of characters with an LG+G evolutionary model. Branch sup-

ports were assessed with both bootstrap (1,000 replicates) and aLRT-SH methods [49]. All

trees were drawn using the iTOL webserver [50].

To evaluate classical MLST against the newly defined cgMLST scheme, all available Leptos-
pira STs were downloaded from the Oxford University MLST database at https://pubmlst.org/

leptospira/ [51] which comprises schemes 1, 2, and 3 developped by Boonsilp et al. [45], Varni

et al. [46] and Ahmed et al. [29], respectively (S1 Table). MLST alleles derived from our WGS

data were compared to the MLST database to determine the ST of our genome assemblies.

Simpson index of discrimination and Wallace or Rand indices of concordance among parti-

tions were computed using the web site http://www.comparingpartitions.info [52, 53].

Results

Leptospira isolates and genomes

A total of 327 Leptospira isolates were sequenced, covering the diversity of the Leptospira
genus. A complementary set of 182 genome sequences of Leptospira strains, mostly reference

strains from the Leptospira Genome project [20], was downloaded from GenBank and

PATRIC (S1 Table). The total set of 509 genomes contained representatives of most Leptospira
species currently described. The clusters of pathogens, intermediates and saprophytes were

represented by 402, 31, and 76 genomes, respectively. Geographically, the dataset was highly

diverse: strains were isolated from different geographical areas (Africa: 19, East Asia: 17, Carib-

bean: 13, Central America: 7, Europe: 73, Indian Ocean: 123, Middle East: 4, North America:

24, Oceania: 11, Pacific Ocean: 14, South America: 101, Southeast Asia: 97). The ecological

sources of the strains were also diverse: 111 were from the environment, 226 were from

humans, while the remaining isolates were from various animal hosts, such as rodents, cows,

dogs, and pigs (S1 Table). The strains corresponded to 42 species including 15 novel species

isolated from the environment in Japan, Mayotte, France, Malaysia, Algeria, and New Caledo-

nia [54]. There were 26 serogroups and 73 serovars in the dataset (S1 Table). The strains

cgMLST scheme for Leptospira
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selected for this study are therefore highly diverse geographically, ecologically and

taxonomically.

The general features of the 509 genomes are reported in S1 Table and summarized in S1

Fig. Genomic assembly sizes ranged from 3,450,639 to 5,267,227 base pairs. Pathogens had a

heterogeneous genome size, which was larger on average than the genome size of intermedi-

ates, which in turn had a larger genome than saprophytes (p< 0.001 for both comparisons).

The genomic assemblies of pathogens were more fragmented (average contig number, 222)

than those of the two other clusters (52 and 47 for the saprophytes and intermediates, respec-

tively), which may reflect the high number of mobile elements in the pathogens [55]. The gua-

nine+cytosine content (G+C%) of genomes was higher in the intermediates (42.39%) than in

the saprophytes (38.27%, p< 1e-7) and in the pathogens (38.83%, p< 1e-7). Saprophytes

were more homogeneous in their G+C% content than the two other clusters (S1 Fig).

Genome-based phylogeny of the genus Leptospira
To define the phylogenetic diversity of the dataset, 545 selected genes (see Methods, section

cgMLST definition) were translated, aligned and then concatenated (S2 Table). The resulting

phylogenetic tree is shown in S2 Fig. ANI analysis [54] revealed 42 species defined using the

95% ANI cutoff [56, 57], including 15 novel species for which a formal description was pro-

posed elsewhere [54]. The phylogenetic tree with representatives of each species (Fig 1) is con-

sistent with previous data [1] showing two major clades, the “saprophytes” containing species

isolated in the natural environment and not responsible for infections and “pathogens” con-

taining all the species responsible for infections in both humans and animals, plus environ-

mental species for which the virulence status is not clearly established. This latter clade is

further subdivided in two subclades that we named P1 (formerly described as the pathogen

group) and P2 (formerly described as the intermediate group). Note that two strains previously

assigned to the saprophytes (strains 201400974 and E30 isolated from the natural environment

in Algeria and Japan, respectively) were clearly distinct from the other saprophytes and repre-

sent new species, named L. ilyithenensis and L. kobayashii, of a novel subclade within the clade

of saprophytes. We named this new subclade S2 for convenience, in comparison to S1 which is

constituted by species formerly described as the saprophyte group [54]. The basal position of

the saprophyte clade with respect to P1 and P2 subclades is concordant with previous studies

[58, 59]. The mean genetic distances among the three main subclades S1, P1 and P2 (S3 Fig)

ranged between 0.33 substitutions per site (pathogens P1- intermediates P2) and 0.47 substitu-

tions per site (intermediates P2- saprophytes S1), underlining the fact that these subclades are

separated by large evolutionary distances. In contrast, mean intra-subclade genetic distances

were 0.13 (saprophytes S1), 0.12 (pathogens P1) and 0.17 substitutions per site (intermediates

P2), reflecting the higher heterogeneity and deeper phylogenetic branching of the intermedi-

ates P2 subclade. The distance between the new subclade S2 and saprophytes S1 was 0.29,

showing that it lies close the P1-P2 inter-subclade distance.

We found that all species were monophyletic (S2 and S4 Fig). Furthermore, as expected, the

intra-species distances were much lower than the inter-species. For example, L. borgpetersenii
isolates formed a tight cluster with a maximum genetic divergence of 0.179 substitutions per

site. Similarly, L. interrogans isolates showed high genetic relatedness, with a maximum dis-

tance of 0.033. This is remarkable given that both species are distributed worldwide (Fig 2). L.

mayottensis, which is confined to the islands of Mayotte and Madagascar, showed a level of

diversity of 0.008.

The phylogenetic analysis (Fig 1) revealed some structuration and led us to recognize sev-

eral subgroups of species within subclades. Regarding the subclade P1, species L. interrogans,

cgMLST scheme for Leptospira
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Fig 1. Phylogeny of representative strains of 42 Leptospira species. The phylogenetic tree was obtained from the

concatenation of 545 amino-acid sequence alignments using IQ-TREE [48] and the maximum likelihood criterion. In

addition to previously described Leptospira species, new species (S1 Table) from subclades S2 (L. ilyithenensis and L.

kobayashii), S1 (L. bouyouniensis, L. kemamanensis, L. jelokensis, L. bandrabouensis, L. mtsangambouensis, L.

perdikensis, L. congkakensis), P2 (L. sarikeiensis, L. dzoumogneensis, L. selangorensis), and P1 (L. putramalaysiae and L.

dzianensis) are included. Species are grouped into subgroups (numbers within blocks in the column on the right)

within each subclade (colors of blocks; see key).

https://doi.org/10.1371/journal.pntd.0007374.g001
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L. noguchi and L. kirschneri clustered into one subgroup (P1-1), whereas L. borgpeterseni, L.

alexanderi, L. weilii, L. mayottensis, and L. santarosai formed a second subgroup (P1-2). Two

other subgroups are constituted by L. alstonii (P1-3) and L. kmetyi, L. barantonii from New

Caledonia [60] and L. dzianensis isolated from the environment in Mayotte (P1-4). Finally,

subgroup P1-5 comprised L. adleri, L. putramalaysiae from the environment in Malaysia and

L. typperaryensis. These subgroups are consistent with previous studies [20, 59, 61, 62].

To improve resolution, separate trees were constructed for the saprophytes S1 and the

intermediates P2 (S4 Fig), showing the high level of genetic diversity among environmental

isolates. The saprophytes were grouped into two subgroups. Subgroup 1 (S1-1) comprised L.

vanthielli, L. brenneri, L. wolbachii; two new species: L. perdikensis and L. congkakensis from

Malaysia; L. meyeri, L. harrisiae and the new species L. mtsangambouenesis and L. bandra-
bouensis isolated from Mayotte. Subgroup 2 (S1-2) comprised L. biflexa and three new species,

L. bouyouniensis, L. kemamanensis, and L. jelokensis, isolated from Mayotte and Malaysia; and

L. levetti and the new species L. ellinghausenii isolated from soil in Japan.

Among the intermediates P2, three subgroups were recognizable: subgroup P2-1 with L. fai-
nei, L. broomi, and L. inadai; subgroup P2-2 with L. wolffii; and subgroup P2-3 with L. vene-
zuelensis, L. licerasiae, L. saintgironsiae and four new species, named L. dzoumogneensis, L.

johnsonii, L. selangorensis, and L. sarikeiensis, isolated from soils in Malaysia, Japan, and

Mayotte (Figs 1, S2 and S4). A scheme for classifying Leptospira strains is proposed in S3

Table.

The phylogenetic structuration reflects a strong contrast between inter- and intra-species

distances, which makes it possible to assign isolates at the species level based on their genome

sequence-derived phylogenetic position. This led us to re-identify some isolates. For example,

Fig 2. Geographic origins of the most frequent pathogenic Leptospira species. Each pie chart corresponds to a given world region. From left to right: Pacific

Ocean, North America, Central America, Caribbean, South America, Europe, Africa, Middle East, Indian Ocean, Asia, Southeast Asia, Oceania. The size of the pie

charts is proportional to the number of isolates (see key). The ‘Others’ category includes all pathogenic species not individualized in the key. The figure has been

generated using R and the package "rworldmap", which is free under the GPL-2 and GPL-3 licenses (https://cran.r-project.org/web/packages/rworldmap/index.

html).

https://doi.org/10.1371/journal.pntd.0007374.g002
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strain GWTS assigned to pathogen L. alstonii based on the 16S rRNA and secY genes [63, 64]

did not cluster with the L. alstonii reference strain and formed a distinct branch in our phylo-

genetic tree (S2 Fig). Based on ANI values with representative species, including new species

described in this study, it represents a new pathogenic species that we named L. tipperaryensis
(S1 Table) [54]. Similarly, strains of serovar Rushan were previously identified as belonging to

L. noguchi [65] but were phylogenetically clustered with L. alstonii (Figs 1 and S2) and had

ANI values of 99.29% compared with the type strain of L. alstonii. These strains therefore

appear to be new members of L. alstonii. Interestingly, the L. alstonii reference strain, of sero-

var Sichuan, was isolated from a frog [66], as were the strains from serovar Rushan, suggesting

a tropism of this species for frogs.

Geographical distribution of Leptospira species and L. interrogans
sublineages

Species of the saprophytes and intermediates subclades were represented by few strains. In

contrast, some species of pathogens subclade P1 were represented by multiple isolates (e.g.,

160 for L. interrogans, 76 for L. borgpetersenii, 52 for L. kirschneri, 27 for L. santarosai, 27 for L.

noguchi and 23 for L. mayottensis). Based on the present sample of Leptospira genomes, the

geographic distribution of these species showed clear differences (Fig 2). L. interrogans, L.

borgpetersenii and L. kirschneri were found in all world regions, even though L. kirschneri
appeared more rarely in Asian and American samples than in Europe and Mayotte. In con-

trast, in our dataset, L. santarosai was only sampled from the American continent and the

Caribbean islands and L. noguchi was found predominantly in the Americas and rarely in

Asia. So far, L. mayottensis has been only isolated from the Indian Ocean islands (Fig 2).

We analyzed in more details the geographic distribution of the diversity of L. interrogans,
the most common Leptospira species from human infections around the world, and which was

the most represented in our dataset. S5 Fig presents a phylogenetic tree of the 152 L. interro-
gans isolates for which the geographic source was known; these were from 32 countries in all

world regions. The data reveal extensive geographical spread of L. interrogans sublineages.

Although some sublineages were sampled in a single world region (e.g., the sublineage contain-

ing serovars Szwajizak, Wewak, and Hawain originated in Oceania), it is clear that most subli-

neages are geographically widespread (S5 Fig). This is true even for genetically homogenous

subgroups, which have limited phylogenetic depth and have therefore emerged recently. These

data demonstrate the rapid spread of L. interrogans sublineages over large geographic

distances.

High-resolution cgMLST genotyping for Leptospira isolates

To develop a standardized subtyping strategy for Leptospira, we analyzed genome sequences

using a gene-by-gene approach [34], based on the 545 genes that were highly conserved across

the genus (S1 and S2 Tables). We define this set of gene loci as a core genome MLST (cgMLST)

scheme [33, 34] for Leptospira; note that due to occasional absence of a few genes in some

genomes, strictly speaking this set of genes is a ‘soft core genome’. The majority of cgMLST

genes (527 loci per isolate on average, 96.7%) were called successfully (i.e., an allele was

defined), including in the saprophytes S1 and intermediates P2 (S1 Table). The number of suc-

cessfully called alleles per isolate ranged from 436 to 545 depending on the gene (S1 Table).

Hence, this cgMLST scheme allows genotyping of all Leptospira genomes, with only a few

missing data points.

For high-resolution subtyping, we defined cgMLST sequence types (cgST) as groups of

cgMLST allelic profiles that are identical at all loci except for missing data, which are ignored

cgMLST scheme for Leptospira
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in pairwise comparisons of allelic profiles (S1 Table). Considering the 509 genomes, there

were 463 distinct profiles (defined by their cgST identifier, S1 Table), i.e., most genomes could

be identified by a unique allelic profile. The discriminatory power of cgST classification (Simp-

son’s index) was 99.9%, much higher than that of MLST: for genomes that were typeable by

cgMLST and the three MLST schemes [29, 45, 46], the Simpson indices of discrimination were

0.999 (confidence interval: 0.998–1.000), 0.793 (0.735–0.851), 0.787 (0.730–0.845) and 0.787

(0.730–0.845) for cgST, MLST1, MLST2 and MLST3, respectively. Hence, as expected, the use

of 545 genes instead of 7 cgMLST largely improves our ability to distinguish among Leptospira
isolates.

To assess the reproducibility and stability of cgST subtyping, sequencing replicates were

performed for three isolates: L. licerasiae strain VAR010, L. meyeri strain Veldrat, and L. inter-
rogans strain L495. The two replicates of the same isolate shared the same cgST, indicating

high reproducibility of cgST classification. We next analyzed a culture-attenuated strain of L.

interrogans serovar Lai that had accumulated mutations (insertions, deletions, and single-

nucleotide variations) in 101 genes after serial in vitro passages over several years [67]. The

derived strain (cgST20) was clearly distinct from the virulent parental strain (cgST23, differing

by 15 loci). Nevertheless, these subcultures were grouped together in the phylogenetic tree (S2

Fig). Similarly, a virulence-attenuated isolate of L. interrogans serovar Manilae passaged 67

times was sequenced [68] and compared with the corresponding parental virulent culture. The

cgMLST analysis classified the 2 cultures as cgST31 and cgST32, differing by only 2 alleles out

of 545 genes. These results illustrate the high resolutive power of cgMLST, which can distin-

guish genomes of isolates that evolved in-vitro over several generations.

To evaluate the genetic diversity among isolates classified into the same cgST (or groups of

cgSTs differing only by missing data in some isolates), we analyzed the three most numerous

ones (highlighted with colors in S1 Table, column cgST) using a whole-genome single nucleo-

tide polymorphisms (SNP) approach. First, cgST128 and its related cgST123 and cgST308

comprised eight L. borgpetersenii isolates from Mayotte. These differed by a maximum of 16

SNPs, and five isolates had only up to 2 SNPs among themselves. Second, cgST262 and related

cgSTs (cgST130, cgST321 and cgST396) comprised 11 isolates, also of L. borgpetersenii from

Mayotte. These isolates differed among themselves by up to 23 SNPs. Finally, cgST482 and

related cgST484 comprised seven L. interrogans isolates from cows in Uruguay; all these iso-

lates were identical (no SNP) except one, which differed by only three SNPs from the others.

These results show that isolates sharing the same cgST, or cgSTs that are identical except for

missing data, are very closely related also based on whole-genome SNPs, and include levels of

whole-genome SNPs that are compatible with the isolates being part of recent chains of trans-

missions [69, 70].

A genomic taxonomy for Leptospira strains

To define groups of Leptospira strains based on cgMLST, we first explored the distribution of

pairwise distances among all cgMLST profiles (S6 Fig). We also evaluated the quality of clus-

tering, using the Silhouette index [71], resulting from the use of all possible threshold values

(from 1 to 544) in single-linkage clustering (S7 Fig), revealing a plateau of maximal clustering

quality between 40 and 300 allelic mismatches. Based on the above analyses, a threshold of 40

allelic differences was chosen as the cut-off value to define clonal groups (CG). In other words,

a CG is defined as a group of cgMLST allelic profiles differing by no more than 40 allelic mis-

matches, out of 545 gene loci, from at least one other member of the group. This definition

resulted in the identification of 237 CGs (S1 Table). To evaluate this choice as compared to

alternative thresholds, we compared using the adjusted rand coefficient [72] the partitions (i.e.,

cgMLST scheme for Leptospira
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groups of isolates classified into the same CG) obtained using thresholds of 20, 30, 50, 60, 150,

200 and 300 mismatches (S7 Fig). Interestingly, confidence intervals overlapped with those of

threshold 40 within a wide range of possible cutoff values (20 to 150). Hence, a choice of alter-

native thresholds in that range would have a limited impact on the resulting clusters. Finally,

the effect of missing data (uncalled cgMLST alleles) on the clustering results was evaluated in-
silico by introducing increasing amounts of missing data and assessing the resulting clusters of

isolates as compared to their initial cluster (S8 Fig). This simulation showed that cluster assign-

ment is robust to even high amounts of missing data (affecting up to 400 loci out of 545).

The clusters created at the 40-mismatch level represent a potentially useful genome-based

taxonomy of Leptospira strains. To evaluate this classification system in comparison with pre-

vious Leptospira strain classifications, we first compared them to the 6- or 7-gene MLST classi-

fications currently in use [29, 45, 46]. The three MLST classifications (S1 Table) were mapped

onto the phylogenetic tree and their concordance with cgMLST was analyzed (Fig 3). A total

of 260, 106, and 143 Leptospira STs are currently defined for MLST schemes 1, 2, and 3, respec-

tively (April 2018; https://pubmlst.org/leptospira/). These MLST schemes were developed for

strain typing of the main pathogenic Leptospira species but not for the saprophytes and inter-

mediates [29, 30, 45, 46, 73]. As expected, saprophytes and most intermediates were not type-

able by the three classical MLST schemes, whereas by design, all strains were typeable by

cgMLST (Fig 3). Therefore, the typeability of the proposed cgMLST scheme appears greatly

enhanced as compared with classical MLST.

We also assessed the concordance among assignments produced by the three MLST

schemes and the cgMLST clustering into CGs, using Sankey diagrams (S9 Fig) and adjusted

Rand and Wallace coefficients [72]. The adjusted Rand index of concordance of MLST with

cgMLST was 0.86, 0.89 and 0.89 for MLST1 [45], MLST2 [46] and MLST3 [29], respectively.

Wallace indices are not symmetrical, and thus produce two values: one for the comparison of

MLST versus cgMLST clustering (i.e., how well MLST identity predicts CG identity), and one

for the reciprocal comparison. The results were 0.86 and 0.86 for MLST1, 0.82 and 0.97 for

MLST2, and 0.83 and 0.96 for MLST3. Hence, the CG accurately predicts with high accuracy

the STs of MLST2 and MLST3. Only 4, 1 and 2 cgMLST clusters matched more than one

MLST ST for scheme 1, 2 and 3, respectively (S9 Fig). Reciprocally, 26, 9 and 13 STs for

MLST1, MLST2 and MLST3, respectively, were subdivided into more than one CG. In other

words, despite accepting 40 mismatches within members of the groups, CG classification is

still more discriminatory than each of the classical MLST systems. Note that although the low-

and high-passage strains (see above) of L. interrogans serovar Lai and L. interrogans serovar

Manilae were distinguishable at the level of cgST subtypes, they were classified into the same

CG (CG16 and CG23, respectively), consistent with their recent evolutionary link.

To provide access to the cgMLST allele and profiles nomenclature, allowing for comparison

and sharing of typing results among laboratories worldwide, a database was set-up and was

made publicly accessible online (https://bigsdb.pasteur.fr/leptospira/). This database is based

on the software framework Bacterial Isolate Genome Sequence Database (BIGSdb) [33, 34,

74].

Phylogenetic distribution of serovars and correspondence with clonal

groups

The distribution of serovars and serogroups along the phylogeny showed that most serogroups

had a polyphyletic distribution. The fact that phylogenies can be in disagreement with serotyp-

ing was previously reported, and some serovars or related serovars from a same serogroup

may belong to different species [21]. Thus, isolates from the same serogroup can be distributed
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in different species or sublineages within species. For example, L. interrogans strains of ser-

ogroup Australis or of serogroup Pyrogenes did not all cluster together in the phylogenetic

tree (S2 Fig).

We investigated the correspondence of cgMLST groups with serovars. Serogroups (sg) were

usually sub-divided into several CGs (S1 Table). For example, the 29 isolates of sg Australis

Fig 3. Comparison of cgMLST clustering with sequence types of the three classical MLST schemes currently in use. The inner colors

overlaying the strain names represent the species (see colour key). The 4 outer circles represent ST and cgMLST clonal groups (CG)

classifications (S1 Table), with alternating shades as the identifiers change along the circle. Yellow circle, scheme MLST1 [45]; green circle:

scheme MLST2 [46]; blue circle: scheme MLST3 [29]. The red circle corresponds to the clonal group (CG) cgMLST classification. Clonal

groups are defined as groups of allelic profiles differing by no more than 40 allelic mismatches out of 545 loci from any other member of the

group. The numbers in the four circles correspond to the main STs/CGs (with more than 3 representative genomes) of the corresponding

sector. Red numbers correspond to STs for which all genomes are part of the subclade but whose subclade also contain at least one member of

another ST (i.e., paraphyletic STs). Red numbers separated by commas correspond to multiple main STs mixed together.

https://doi.org/10.1371/journal.pntd.0007374.g003
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were subdivided into 14 CGs, the 42 isolates of sg Grippotyphosa fell into 16 CGs, and the 20

isolates of sg Pyrogenes were grouped into 12 CGs. At the serovar level, highly related strains

belonged to the same clonal group (S1 Table). This was the case for the 19 isolates from sero-

vars Copenhageni and Icterohaemorrhagiae, which were clustered together in CG6, and for

serovars Ratnupura and Vanderhoedeni (CG185, L. kirschneri sg Grippotyphosa) and Bajan

and Barbudensis (CG179, L. noguchii sg Australis). However, some serovars were genetically

more heterogeneous and were themselves sub-divided into different cgMLST clonal groups

(e.g. L. kirschneri and L. interrogans sv Grippotyphosa: 6 CGs; L. interrogans sv Lai, 3 CGs; L.

interrogans sv Pyrogenes: 8 CGs) (S1 Table). Therefore, cgMLST groups represent a useful

classification system that is genome sequence-based and is complementary to serogroup and

serovar classification, which are based on surface antigens.

cgMLST and Leptospira epidemiology

To explore the links between cgMLST classifications and the epidemiology of Leptospira
strains, we first analyzed the correspondence of cgMLST groups with hosts. It is well estab-

lished that serovars are usually associated with a specific animal reservoir; for example, rats

usually carry serovars of the Icterohaemorrhagiae serogroup; and serovar Canicola is associ-

ated with dogs [21]. Here, the most frequent cgMLST clonal groups of subclade P1 contained

isolates obtained from both human and animals (except in Mayotte where few isolates have

been isolated from animals). Thus, isolates of L. interrogans sg Pyrogenes (CG23), L. borgpeter-
senii sg Ballum (CG15) and L. borgpetersenii sg Javanica (CG25), associated with human lepto-

spirosis, were clustered by cgMLST with rodent isolates, suggesting that these serogroups are

maintained in rodents and that these animals represent reservoirs of human infections (S1

Table). Similarly, CG19 corresponding to serovar Sejroe comprised human and cattle isolates

(S1 Table). Some CGs were found in an even larger range of hosts. For example, the 37 isolates

belonging to CG5 (serovar Pomona) were obtained from humans, dogs and cows from seven

countries. Likewise, CG28 contained isolates from dogs, rodents, pigs, and humans, indicating

that some CGs or serotypes are not always restricted to specific hosts and may have a more

generalist ecology. The environmental strains from our study were usually not grouped with

animal or human isolates, as they formed distincts CGs.

We next analyzed 90 clinical isolates collected in the island of Mayotte (Indian Ocean) over

a period of 10 years (2007–2017). cgMLST separated them into 10 CGs, which were highly

congruent with their serotypes and species (S1 Table). Serogroup Mini was predominant

(60%) and subdivided into five CGs, which agreed with their species assignments (CG63,

CG83 and CG84 for L. kirschneri, CG78 for L. borgpetersenii, and CG79 for L. mayottensis).
The most frequent CG was CG78, corresponding to 39 isolates, which were distributed into 25

cgSTs and were isolated over the 10-year period. Isolates belonging to L. mayottensis were sub-

divided into two CGs, CG79 (n = 7, 5 cgSTs) and CG82 (n = 16, 14 cgSTs) (S1 Table). These

two groups were previously recognized by PFGE, MLST and serotyping [37, 75]. Isolates from

the island of Mayotte belonged to cgMLST groups that were not found in other world regions,

consistent with the unique epidemiology of leptospirosis in this insular ecosystem [37, 39]. In

contrast, multiple CGs were observed in different geographical locations around the world (S1

Table). The wide geographic distribution of CGs indicates that geographic spread of Leptospira
strains is faster than their genetic evolution into distinct CGs.

We next analyzed the geographic distribution of the high-resolution cgMLST types (cgST).

One of the most represented cgSTs (cgST482) in our dataset is constituted by L. interrogans
serovar Pomona strains (n = 6) isolated from cattle in Uruguay [76] (S1 Table). Although five

out of six of these strains have been isolated from the same farm and were undistinguishable
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by SNP analysis, one isolate from another region of the country differed from the group of five

isolates by 3 SNPs. This shows that cgST classification could possibly inform on the epidemio-

logical links among Leptospira isolates.

Discussion

Until now, a consensus approach to characterize and compare Leptospira isolates has been

lacking, limiting our understanding of the biology and epidemiology of strains within this

important genus and impeding progress in establishing appropriate control and prevention

measures. Advanced knowledge on the diversity and distribution of Leptospira strains is also

essential for the design and evaluation of the efficacy of new vaccines and diagnostic tools.

This study lays a foundation for a comprehensive understanding of the biodiversity of Lep-
tospira and for the epidemiological surveillance of medically important Leptospira pathogens.

The availability of high-throughput sequencing technologies and the reduction of their costs

makes genome sequencing a viable option as the new gold standard for Leptospira genotyping

and taxonomy. Recently, 14 new species were identified based on genomic comparisons and a

high degree of biodiversity of Leptospira species in soils and water was recently uncovered [6,

17, 75]. Besides, there is growing evidence that “intermediate” species are responsible for mild

infections in humans [6, 8, 11–17, 19, 77, 78]. Novel genotyping methods should therefore

encompass the entire genus, including both potentially pathogenic and non-pathogenic

strains, in order to provide universal Leptospira strain characterization systems.

The classical MLST schemes were developped using six or seven genes with a focus on path-

ogenic Leptospira species [29, 45, 73]. More recently, a new MLST scheme was proposed and

applied to a wider collection of strains, including a few intermediate species [46, 62]. However,

none of these MLST methods enables the inclusion of all major Leptospira lineages, including

saprophytic strains. Here we sought to develop a cgMLST strategy, which is an extension of

conventional MLST at genome scale [34]. Our comparative genome analyses resulted in the

identification of 764 genus-wide core genes, including 545 that were deemed suitable for use

in cgMLST genotyping. This is in accordance with previous estimates of 700 to 1,000 Leptopira
core genes [6, 20, 59]. Importantly, our cgMLST scheme was developed using genomes repre-

senting the entire breadth of the phylogenetic diversity of the genus and was validated using

Leptospira strains from diverse sources and geographical locations.

The cgMLST scheme was used to construct amino-acid sequence-based phylogenetic trees

that were consistent with previous work and current species designations. In addition, this

work revealed the existence of novel Leptospira species isolated from soils and water across a

wide geographic range (Algeria, Mayotte, Japan, New Caledonia and Malaysia), including spe-

cies from the new subclade S2 that is phylogenetically related to the previously known sapro-

phytes S1. This work confirms the high diversity of Leptospira species in the natural

environment [6, 60], and the novel taxa were described more formally elsewhere [54]. Further,

cgMLST-based phylogenetic analysis provides high-level resolution, allowing discrimination

among closely related species and strains.

Much like classical MLST data, cgMLST data can be used to devise a classification of isolates

using the single linkage algorithm [79]. Here we defined clonal groups based on cgMLST with

a 40 allelic mismatches cut-off value. In order to optimize discrimination among groups, this

threshold was chosen as the smallest threshold within the range of thresholds that maximized

the quality of clustering. We demonstrated the robustness of CG classification to missing data

and to threshold choice, and therefore propose that CG identifiers will become a practical and

highly stable genomic taxonomy system for Leptospira strains. However, it must be underlined

that clonal groups are broad classification categories that are of limited use for transmission
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studies, as illustrated by the wide geographical and temporal distribution of isolates from single

clonal groups. Isolates belonging to the same clonal group always belonged to the same ser-

ogroup. Conversely, strains of a given serogroup can fall into phylogenetically unrelated clonal

groups, suggesting that some Leptospira serogroups are derived from multiple independent

ancestors. Further, strains belonging to the same serovar were not always clustered together by

cgMLST, indicating that serovars can also be polyphyletic. In contrast, genetically related sero-

vars were sometimes conflated by cgMLST clustering. These observations underline the com-

plementarity of cgMLST clonal groups with previous classifications based on serotyping.

cgMLST allows assigning Leptospira isolates both at the species and serogroup levels, and in

most cases at the serovar level as well. With the increasing description of novel species and the

continuous recording of strain diversity within species by surveillance networks and microbi-

ology laboratories, a precise understanding of the biodiversity of Leptospira strains is needed.

cgMLST might represent a useful standard for classification and nomenclature, and would

advantageously replace the current classical MLST nomenclatures, which are incomplete, and

the serotyping nomenclature, which is complex and does not always reflects phylogenetic rela-

tionships, as is the case for other pathogens [80].

Although many CGs were found in distinct geographic regions, the island of Mayotte was a

notable exception in that its CGs were endemic. The lack of dissemination of CGs from

Mayotte, or of colonization of Mayotte by cosmopolitan CGs such as those of Icterohaemor-

rhagiae, illustrates the unique ecosystem of this island [81]. However, whether the distribution

of species or CGs reported here reflects strong endemicity, or is due to currently limited sam-

pling, will be subject of future studies. As an example of our sampling limitations, L. santarosai
is not only found in America as shown in Fig 2 but also in Taiwan where this species is the

most frequently encountered species in patients [82]. Isolation of additional strains from both

humans and animals will also be required to evaluate whether or not environmental strains

belonging to subclades P1 and P2 have the ability to cause infections.

We propose a high-resolution classification of Leptospira strains into cgSTs, which corre-

spond to groups of isolates with total sequence identity at the 545 cgMLST genes, with a toler-

ance of missing data. We showed that this level of discrimination is able to distinguish among

in-vitro evolved cultures. Due to the occurrence of missing data, the cgMLST profiles of some

isolates can match several distinct cgSTs. Isolates with identical cgST or belonging to groups of

related cgSTs (defined as matching single isolates’ profiles) were shown to differ at the whole-

genome scale by less than ~30 SNPs. This level of divergence is indicative that they share a

very recent common ancestor and might be part of an ongoing transmission chain [69, 70],

even though genomic epidemiology applications to Leptospira remain to be evaluated taking

into account its specific mutation rate and transmission dynamics.

L. interrogans and L. borgpetersenii are ubiquitous pathogenic species. This is probably due

to the fact that rodents are major reservoir hosts for these species [45]. Thus, L. interrogans
strains belonging to serovars Copenhageni and Icterohaemorrhagiae share the same CG

regardless of their geographic origin. This limited genetic diversity and broad geographic dis-

tribution (S5 Fig) is consistent with recent evolution/expansion following extensive migration

of rodents, the main reservoir of serovars Copenhageni and Icterohaemorrhagiae, and multi-

ple introductions due to modern global transport, in particular long-range, ship-based travel

and trade. Due to this rapid geographic diffusion, little phylogeographic signal was present in

the dataset, rendering challenging the reconstruction of the geographic origins of L. interro-
gans and its sublineages with confidence. By contrast, species such as L. noguchi, L. kirschneri,
and L. mayottensis are not associated with rats and are largely confined in specific geographical

areas. The pathogen L. mayottensis may have been introduced into Mayotte from Madagascar

via the tenrec, a small terrestrial mammal [83].
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This work provides a framework for the definition of Leptospira clades, subclades, sub-

groups, species, as well as strains at two levels of resolution (S3 Table). The possibility for labo-

ratories around the world to identify the same strains using a unified nomenclature and a

centralised genotyping database will facilitate the sharing and dissemination of knowledge on

circulating Leptospira genotypes, worldwide. The cgMLST scheme will also enable early detec-

tion of new genotypes being introduced into locations where they are not usually found. The

links between genotypes and their pathogenic potential and virulence will be an important

subject for future studies. For yet unknown reasons, a limited number of Leptospira serovars

are much more likely to cause severe disease than others [84–87]. The role of phages, plasmids,

and horizontal transfer in the acquisition of virulence factors also remains to be determined.

The molecular basis of host specificity is also largely unknown. Future dedicated studies will

be needed to characterize the gene content of subclades, species and strains, and their associa-

tion with the clinical presentation and outcome of Leptospira infections.
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Céline Lorioux, for cultures and typing of Leptospira strains, and Evelyne Bégaud and Chantal
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plored Leptospira diversity from soils uncovers genomic evolution to virulence. Microb Genom 2018;4.

7. Lall C, Kumar KV, Raj RV, Vedhagiri K, Vijayachari P. Prevalence and Diversity of Leptospires in Differ-

ent Ecological Niches of Urban and Rural Areas of South Andaman Island. Microbes Environ 2016;

31:79–82. https://doi.org/10.1264/jsme2.ME15149 PMID: 26936796

8. Masuzawa T, Sakakibara K, Saito M, Hidaka Y, Villanueva SYAM, Yanagihara Y, et al. Characterization

of Leptospira species isolated from soil collected in Japan. Microbiol Immunol 2018; 62:55–9. https://

doi.org/10.1111/1348-0421.12551 PMID: 29105847

9. Chaiwattanarungruengpaisan S, Suwanpakdee S, Sangkachai N, Chamsai T, Taruyanon K, Thongdee

M. Potential pathogenic Leptospira species isolated from waterfall in Thailand. Jpn J Infect Dis 2018;

71:65–7. https://doi.org/10.7883/yoken.JJID.2017.363 PMID: 29093324

10. Thaipadungpanit J, Wuthiekanun V, Chantratita N, Yimsamran S, Amornchai P, Boonsilp S, et al. Lep-

tospira species in floodwater during the 2011 floods in the Bangkok Metropolitan Region, Thailand. Am

J Trop Med Hyg. 2013;(89):794–6.

11. Tsuboi M, Koizumi N, Hayakawa K, Kanagawa S, Ohmagari N, Kato Y. Imported Leptospira licerasiae

infection in traveler returning to Japan from Brazil. Emerg Infect Dis. 2017;23.

12. Chiriboga J, Barragan VA, Arroyo G, Sosa A, Birdsell DN, España K, et al. High Prevalence of Interme-

diate Leptospira spp. DNA in Febrile Humans from Urban and Rural Ecuador. Emerg Infect Dis. 2015;

21:2141–7. https://doi.org/10.3201/eid2112.140659 PMID: 26583534

13. Matthias MA, Ricaldi JN, Cespedes M, Diaz MM, Galloway RL, Saito M, et al. Human leptospirosis

caused by a new, antigenically unique leptospira associated with a Rattus species reservoir in the peru-

vian Amazon. PLoS Negl Trop Dis. 2008; 2:e213. https://doi.org/10.1371/journal.pntd.0000213 PMID:

18382606

14. Slack AT, Kalambaheti T, Symonds ML, Dohnt MF, Galloway RL, Steigerwalt AG, et al. Leptospira wolf-

fii sp. nov., isolated from a human with suspected leptospirosis in Thailand. Int J Syst Evol Microbiol.

2008; 58:2305–8. https://doi.org/10.1099/ijs.0.64947-0 PMID: 18842846

15. Levett PN, Morey RE, Galloway RL, Steigerwalt AG. Leptospira broomii sp. nov., isolated from humans

with leptospirosis. Int J Syst Evol Microbiol. 2006; 56:671–3. https://doi.org/10.1099/ijs.0.63783-0

PMID: 16514048

16. Schmid GP, Steere AC, Kornblatt AN, Kaufmann AF, Moss CW, Johnson RC, et al. Newly recognized

Leptospira species ("Leptospira inadai" serovar lyme) isolated from human skin. J Clin Microbiol 1986;

24:484–6. PMID: 3760144

17. Puche R, Ferrés I, Caraballo L, Rangel Y, Picardeau M, Takiff H, et al. Leptospira venezuelensis sp.

nov., a new member of the intermediate group isolated from rodents, cattle and humans. Int J Syst Evol

Microbiol. 2018; 68:513–7. https://doi.org/10.1099/ijsem.0.002528 PMID: 29239713

18. Balamurugan V, Gangadhar NL, Mohandoss N, Thirumalesh SR, Dhar M, Shome R, et al. Characteri-

zation of Leptospira isolates from animals and humans: phylogenetic analysis identifies the prevalence

of intermediate species in India. Springerplus. 2013; 2:362. https://doi.org/10.1186/2193-1801-2-362

PMID: 23961424

19. Petersen AM, Boye K, Blom J, Schlichting P, Krogfelt KA. First isolation of Leptospira fainei serovar

Hurstbridge from two human patients with Weil’s syndrome. J Med Microbiol 2001; 50:96–100. https://

doi.org/10.1099/0022-1317-50-1-96 PMID: 11192512

20. Fouts DE, Matthias MA, Adhikarla H, Adler B, Berg DE, Bulach D, et al. What Makes a Bacterial Species

Pathogenic?: Comparative Genomic Analysis of the Genus Leptospira. PLoS Negl Trop Dis. 2016; 10:

e0004403. https://doi.org/10.1371/journal.pntd.0004403 PMID: 26890609

21. Levett PN. Leptospirosis. Clin Microbiol Rev. 2001; 14:296–326. https://doi.org/10.1128/CMR.14.2.

296-326.2001 PMID: 11292640

22. Hartskeerl RA, Smythe LD. The role of leptospirosis reference laboratories. Curr Top Microbiol Immu-

nol. 2015; 387:273–88. https://doi.org/10.1007/978-3-662-45059-8_11 PMID: 25388139

23. De la Peña-Moctezuma A, Bulach DM, Kalambaheti T, Adler B. Comparative analysis of the LPS bio-

synthetic loci of the genetic subtypes of serovar Hardjo: Leptospira interrogans subtype Hardjoprajitno

and Leptospira borgpetersenii subtype Hardjobovis. FEMS Microbiol Lett 1999; 177:319–26. https://doi.

org/10.1111/j.1574-6968.1999.tb13749.x PMID: 10474199

cgMLST scheme for Leptospira

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0007374 April 26, 2019 19 / 23

https://doi.org/10.1038/nrmicro2208
http://www.ncbi.nlm.nih.gov/pubmed/19756012
https://doi.org/10.1264/jsme2.ME15149
http://www.ncbi.nlm.nih.gov/pubmed/26936796
https://doi.org/10.1111/1348-0421.12551
https://doi.org/10.1111/1348-0421.12551
http://www.ncbi.nlm.nih.gov/pubmed/29105847
https://doi.org/10.7883/yoken.JJID.2017.363
http://www.ncbi.nlm.nih.gov/pubmed/29093324
https://doi.org/10.3201/eid2112.140659
http://www.ncbi.nlm.nih.gov/pubmed/26583534
https://doi.org/10.1371/journal.pntd.0000213
http://www.ncbi.nlm.nih.gov/pubmed/18382606
https://doi.org/10.1099/ijs.0.64947-0
http://www.ncbi.nlm.nih.gov/pubmed/18842846
https://doi.org/10.1099/ijs.0.63783-0
http://www.ncbi.nlm.nih.gov/pubmed/16514048
http://www.ncbi.nlm.nih.gov/pubmed/3760144
https://doi.org/10.1099/ijsem.0.002528
http://www.ncbi.nlm.nih.gov/pubmed/29239713
https://doi.org/10.1186/2193-1801-2-362
http://www.ncbi.nlm.nih.gov/pubmed/23961424
https://doi.org/10.1099/0022-1317-50-1-96
https://doi.org/10.1099/0022-1317-50-1-96
http://www.ncbi.nlm.nih.gov/pubmed/11192512
https://doi.org/10.1371/journal.pntd.0004403
http://www.ncbi.nlm.nih.gov/pubmed/26890609
https://doi.org/10.1128/CMR.14.2.296-326.2001
https://doi.org/10.1128/CMR.14.2.296-326.2001
http://www.ncbi.nlm.nih.gov/pubmed/11292640
https://doi.org/10.1007/978-3-662-45059-8_11
http://www.ncbi.nlm.nih.gov/pubmed/25388139
https://doi.org/10.1111/j.1574-6968.1999.tb13749.x
https://doi.org/10.1111/j.1574-6968.1999.tb13749.x
http://www.ncbi.nlm.nih.gov/pubmed/10474199
https://doi.org/10.1371/journal.pntd.0007374


24. DelaPeña-Moctezuma A, Bulach DM, Kalambaheti T, Adler B. Genetic differences among the LPS bio-

synthetic loci of serovars of Leptospira interrogans and Leptospira borgpetersenii. FEMS Immunol

Med. 2001; 31:73–81.

25. Llanes A, Restrepo CM, Rajeev S. Whole Genome Sequencing Allows Better Understanding of the

Evolutionary History of Leptospira interrogans Serovar Hardjo. PLos One. 2016; 11:e0159387. https://

doi.org/10.1371/journal.pone.0159387 PMID: 27442015

26. Galloway RL, Levett PN. Application and Validation of PFGE for Serovar Identification of Leptospira

Clinical Isolates. PLos Neglected Tropical Diseases. 2010:e824. https://doi.org/10.1371/journal.pntd.

0000824 PMID: 20856859

27. Herrmann JL, Bellenger E, Perolat P, Baranton G, Saint Girons I. Pulsed-field gel electrophoresis of

NotI digests of leptospiral DNA: a new rapid method of serovar identification. J Clin Microbiol. 1992;

30:1696–702. PMID: 1629323
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