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Mouse APOBEC1 cytidine deaminase can
induce somatic mutations in chromosomal
DNA
Vincent Caval1* , Wenjuan Jiao1,2, Noémie Berry1,3, Pierre Khalfi1,3, Emmanuelle Pitré1,3, Valérie Thiers1,
Jean-Pierre Vartanian1, Simon Wain-Hobson1 and Rodolphe Suspène1

Abstract

Background: APOBEC1 (A1) enzymes are cytidine deaminases involved in RNA editing. In addition to this activity, a
few A1 enzymes have been shown to be active on single stranded DNA. As two human ssDNA cytidine deaminases
APOBEC3A (A3A), APOBEC3B (A3B) and related enzymes across the spectrum of placental mammals have been shown
to introduce somatic mutations into nuclear DNA of cancer genomes, we explored the mutagenic threat of A1
cytidine deaminases to chromosomal DNA.

Results: Molecular cloning and expression of various A1 enzymes reveal that the cow, pig, dog, rabbit and mouse A1
have an intracellular ssDNA substrate specificity. However, among all the enzymes studied, mouse A1 appears to be
singular, being able to introduce somatic mutations into nuclear DNA with a clear 5’TpC editing context, and to
deaminate 5-methylcytidine substituted DNA which are characteristic features of the cancer related mammalian A3A
and A3B enzymes. However, mouse A1 activity fails to elicit formation of double stranded DNA breaks, suggesting that
mouse A1 possess an attenuated nuclear DNA mutator phenotype reminiscent of human A3B.

Conclusions: At an experimental level mouse APOBEC1 is remarkable among 12 mammalian A1 enzymes in that it
represents a source of somatic mutations in mouse genome, potentially fueling oncogenesis. While the order Rodentia
is bereft of A3A and A3B like enzymes it seems that APOBEC1 may well substitute for it, albeit remaining much less
active. This modifies the paradigm that APOBEC3 and AID enzymes are the sole endogenous mutator enzymes giving
rise to off-target editing of mammalian genomes.

Keywords: APOBEC1, Cytidine deaminase, Somatic mutations, Nuclear DNA, Cancer

Background
Apolipoprotein B mRNA editing enzyme catalytic sub-
unit 1, APOBEC1 (A1), is a polynucleotide cytidine de-
aminase mediating the conversion of cytidine to uridine
in RNA. This enzyme was initially described as part of
an RNA editing complex involved in the deamination of
apolipoprotein B transcript, leading to the production of
ApoB48, a triglyceride carrier, from the mRNA encoding
ApoB100, a cholesterol carrier [1–3]. This activity, cen-
tral to lipid metabolism, is restricted to gastrointestinal
tissues and requires the APOBEC1 complementation

factor ACF for precise targeting of ApoB mRNA [4, 5].
Off-target editing of ApoB mRNA and other mRNAs is
also known [6–9]. In addition to this RNA editing activity,
A1 enzymes from some species have been shown to act as
DNA mutators in vitro [10] as well as on bacterial DNA
[11] and even to restrict some retroviruses [12–15], DNA
viruses [16–18] and retroelements [19–21] functions
otherwise physiologically performed by APOBEC3 family
cytidine deaminases.
The APOBEC3 (A3) locus, delineated by two con-

served genes, chromobox 6 and 7 (CBX6 and CBX7), is
present in all placental mammals and encodes a diverse
repertoire of single stranded DNA cytidine deaminases
[22–24]. These enzymes are involved in the restriction
of many retroviruses [25–28], DNA viruses [29–31], as
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well as endogenous retroelements and retrotransposons
[32–34]. As a consequence of extensive gene duplica-
tions and functionalization in the context of a virus-host
arms race the A3 locus is extremely variable among
mammals [23, 24, 35, 36]. Phylogenetically, A3 enzymes
are made up of three related, but distinct zinc coordin-
ation domains referred to as Z1, Z2 and Z3 that can be
traced back to the genome of the last common ancestor
of placental mammals [24, 36]. It has recently emerged
that two human A3 cytidine deaminases, APOBEC3A
(A3A) and APOBEC3B (A3B) are capable of introducing
numerous somatic mutations in genomic DNA. These
observations are supported by experimental data [37, 38]
and a posteriori analyses of many cancer genomes, dis-
playing far more mutations and rearrangements than
hitherto imagined, where the CG ➔ TA transitions ap-
pear to be the dominant mutations [39–41].
Discussion still persists regarding the relative contribu-

tion of A3A and A3B enzymes to oncogenesis. A3A is cer-
tainly the more active of the two in experimental settings
as judged by the genesis of point mutations and double
stranded DNA breaks (DSBs) [38, 42–44]. Moreover, can-
cers can emerge on a A3B−/− background at a slightly
greater frequency [45–47] and cancer genomes analysis
reveal 2× more mutations with the A3A specific signature
(YTCA) over A3B specific mutations (RTCA) [48–50].
Interestingly, this strong mutagenic feature of A3A has
been conserved among most placental mammals, with
many A3A related A3Z1 cytidine deaminases demon-
strated to elicit nuclear DNA editing and DNA damage
[51–53], indicating that the role of those enzymes in in-
nate immunity and DNA catabolism [54, 55] far exceeds
the mutagenic threat to self-DNA in evolutionary terms.
Despite this, a few mammals such as opossums, pigs,

cats and the entire rodent order have lost the A3Z1 gene
during evolution [23, 24]. However, these animals develop
cancer, with notable examples being vaccine associated fe-
line fibrosarcoma and murine lymphoma. Although the
sources of mutations driving oncogenesis can be many,
the aim of the study was to explore the contribution of
APOBEC1 cytidine deaminase to the large number of
point mutations and rearrangements evidenced in many
cancer genomes. Three lines of evidence suggest APO-
BEC1 enzymes as a possible candidate. Firstly, the afore
mentioned DNA substrate specificity for some mamma-
lian A1 enzymes. Secondly, mouse A1 has recently been
shown to exhibit in vitro 5-methylcytidine deaminase ac-
tivity [56], which is a hallmark of nuclear DNA editing en-
zymes such as A3A and A3B [38, 57]. Finally, transgenic
mice and rabbits engineered to express rabbit A1 under a
hepatotropic promoter developed hepatocellular carcin-
omas [58]. In the present study, twelve mammalian A1 en-
zymes were studied, with some exhibiting DNA mutator
activity on both plasmid and cytoplasmic DNA. Despite

this, only mouse A1 was a potent mutator of genomic
DNA. These findings show that even if the mouse is de-
void of bona fide A3Z1 gene, mouse A1 can introduce
somatic mutations in nuclear DNA, putting the genome at
risk of APOBEC fueled oncogenesis.

Results
Synthesis and expression of mammalian APOBEC1
sequences
Mammalian A1 cDNA sequences from several species
were retrieved by data mining and synthesized (Fig. 1a,
Additional file 1: Table S1). Among them, A1 cDNAs
from animals possessing a functional A3Z1 gene were
selected, such as the armadillo, cow, dog, hedgehog, hu-
man, macaque, marmoset and rabbit, as well as some
from animals known to have lost the A3Z1 gene during
evolution, such as the cat, mouse, pig, and opossum [23,
24, 59]. All harbored the His-X-Glu-X23–28-Pro-Cys-X2–

4-Cys cytidine deaminase domain involved in zinc coord-
ination and enzymatic activity [60] (Fig. 1a, highlighted
in red). A phylogenetic analysis of the protein sequences
using mouse activation induced deaminase (mAID) as
outlier, revealed sub-clustering among mammalian or-
ders Primates (human, macaque and marmoset), Cetar-
tiodactyla (cow, pig), Carnivora (cat, dog) indicating the
robustness of the tree (Fig. 1b). Interestingly, the tree
suggests that mouse A1 appears to be an outlier to the
rest of the A1 sequences.
To assess functionality, A1 cDNAs were cloned in

pcDNA3.1 V5-tag encoding expression vector, as well as
in a dual promoter vector simultaneously encoding Ba-
cillus subtilis phage uracil-DNA glycosylase inhibitor
(UGI) gene under a PGK promoter. Expression was then
analyzed in quail QT6 cells, as birds are devoid of APO-
BEC1 gene and APOBEC3 locus [61] and are free of any
APOBEC editing background [62]. Western-blot analysis
reveal that all twelve A1 proteins were expressed with
both armadillo A1 and cow A1 being expressed at con-
sistently lower levels compared to the other ten A1s. By
contrast the levels of feline A1 were always the highest
(Fig. 1c). Confocal microscopy was performed to assess
the localization of V5-tagged molecules. All A1 enzymes
displayed a nucleocytoplasmic distribution with a strong
nuclear localization (Fig. 2). These data are in agreement
with A1 nuclear shuttling with the conservation of resi-
dues responsible for nuclear addressing (Fig. 1a, orange)
and nuclear export (Fig. 1a, blue) [63, 64].

APOBEC1 DNA cytidine deaminase activity
To asses A1 enzymatic activity, QT6 cells were trans-
fected with the different A1 expression plasmids. Total
cellular DNA was extracted and DNA editing was
assessed on plasmid DNA as well as cytoplasmic mito-
chondrial DNA, using differential DNA denaturation
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PCR, 3DPCR. This method exploits the fact that A3-
edited DNA is richer in AT, reducing the energy needed
to separate DNA strands, allowing PCR amplification of
mutated DNA with lower denaturation temperatures
compared to reference sequence (Additional file 1:
Figure S1). Modulation of the PCR denaturation
temperature allows selective amplification of AT-rich
DNA, sometimes by up to 104 fold [29]. With primers
specific to the kanamycin resistance gene, 3DPCR recov-
ered DNA below the restrictive denaturation
temperature of 85.7 °C - obtained with mock plasmid
transfection or the mouse A1 catalytic inactive mutant
mA1 C93S - for mouse, dog, cow, rabbit and pig A1
constructs with denaturation temperatures between
81.5–84.6 °C (Fig. 3a). To preserve sequence diversity,
3DPCR products obtained at 84.6 °C, just below the re-
strictive temperature of 85.7 °C were cloned and se-
quenced. Extensively mutated sequences peppered with
C ➔ T and G ➔ A substitutions were identified

(Additional file 1: Figure S2A). Dinucleotide context
analysis revealed a strong preference for deamination in
the 5’TpC dinucleotide context over values “expected”
with a random distribution of mutations, where C is the
edited base, for all functional A1s (Fig. 3b). This sub-
strate preference for A1s is in keeping with previous
work [15, 65]. By analogy with what is known for other
APOBEC family members, this deamination preference
might be dictated by a previously described hotspot rec-
ognition loop present in many polynucleotide cytidine
deaminases [66] and may also involve other residues.
Similar mutational patterns were obtained using cyto-
plasmic cytochrome c mitochondrial DNA as target.
Once again, only the same five A1 enzymes from mouse,
dog, cow, rabbit and pig (Fig. 3c) resulted in editing of
target ssDNA. Analysis of 3DPCR products obtained at
82.3 °C again revealed C ➔ T and G ➔ A mutations
(Additional file 1: Figure S2B) and a strong preference
for the 5’TpC dinucleotide (Fig. 3d). While ssDNA

Fig. 1 Comparison of APOBEC1 cytidine deaminases. a CLUSTALW alignment of A1 protein sequences. Residues involved in zinc coordination are
depicted in red. Residues in orange are part of A1 bipartite nuclear localization signal while those involved in nuclear export of A1 are
represented in blue. b Phylogenetic tree of A1 protein sequences constructed using the Neighbor-joining method with the CLC Main Workbench
7.0.2 software. Mouse AID was used to root the tree. Numbers correspond to bootstrap values inferred from 100,000 replicates. c Western blot
analysis of V5-tagged A31 proteins in quail QT6 cells. β-actin probing was used as loading control

Caval et al. BMC Genomics          (2019) 20:858 Page 3 of 12



mutator activity has been previously described for
both human [11, 16, 19] and opossum A1 enzymes
[21] these studies were performed either in E. coli or
inside hepatitis B virus capsids where the enzyme
concentration heavily favors DNA editing [62]. This
discrepancy suggests that their activity in a more
physiological setting is but modest, and may not edit
cytoplasmic DNA sufficiently to be detected by
3DPCR [29].

APOBEC1 deaminase activity on nuclear DNA
As all the A1 enzymes displayed a strong nuclear
localization (Fig. 2), we next sought to demonstrate
whether some of the A1 enzymes could edit chromo-
somal DNA, a property so far only demonstrated for
A3Z1 domain containing APOBEC3 cytidine deami-
nases typified by APOBEC3A [37, 38, 52, 53, 67]. Ac-
cordingly, QT6 cells were co-transfected with
plasmids encoding both the A1 and UGI genes from

Fig. 2 Cellular localization of APOBEC1 cytidine deaminases. Confocal microscopy analysis of V5-tagged A1 proteins in QT6 cells, 24 h post
transfection. Nuclei are stained with DAPI

Caval et al. BMC Genomics          (2019) 20:858 Page 4 of 12



Bacillus subtilis to prevent the very efficient removal
of uracil bases in nuDNA by UNG that hampers ex-
perimental detection of somatic mutations. NuDNA
editing was investigated using the 3DPCR technique,
that if originally designed to study A3 hyperedited
viral genomes can be used to identify sequences with
lower mutation frequencies when properly used [68].
Specific 3DPCR amplification of the CMYC gene
allowed consistent recovery of DNA below the re-
strictive temperature of Td = 90.2 °C only for mouse
A1/UGI transfected cells (Fig. 4a). Molecular cloning
and sequencing of PCR products obtained at Td =
89.4 °C confirmed the accumulation of monotonous C
➔ T mutations (Fig. 4b and Additional file 1: Figure
S2C), with a deamination preference for 5’TpC and
5’CpC dinucleotide context (Fig. 4c), demonstrating
for the first time that mouse A1 can generate somatic
mutations in nuclear DNA.

Genomic DNA deamination results in DNA peppered
with uracil, that in turn activates base excision repair
(BER). Uracil is then removed by UNG and apurinic/
apyrimidinic endonucleases cleave the DNA strand for
repair or degradation. As a consequence, DSBs can be
generated during repair of clustered mutations, when
cleavage happens in close proximity on opposite
strands [69]. To assess DSB formation following A1
transfection, H2AX histone phosphorylation (γH2AX)
in V5 positive cells was quantified by flow cytometry.
γH2AX staining of A1 transfected QT6 cells failed to
show evidence of DSB formation on a par with the hu-
man A3A C106S inactive catalytic mutant. By contrast
human A3A (hA3A) expression induced significant
DSBs in 25% of hA3A-V5 positive cells (Fig. 4d). To
further confirm that DSB formation results from APO-
BEC mutations processing by UNG, the experiment
was repeated by transfecting A3A and mouse A1

Fig. 3 APOBEC1 cytidine deaminase activity on plasmid and cytosolic mitochondrial DNA. a Graphical representation of plasmid DNA editing by
A1 proteins. The temperature of the DNA products recovered at the lowest Td by kanamycin specific 3DPCR amplification are represented on the
gradient. b Dinucleotide analysis of the deamination context performed on plasmid DNA for PCR products retrieved at 84.6 °C. c Graphical
representation of cytochrome c mtDNA editing by A1 proteins. The last retrieved bands by cytochrome c specific 3DPCR amplification are
represented on the gradient. d Dinucleotide analysis of the deamination context performed on mtDNA for PCR products retrieved at 82.3 °C.
Dinucleotide context expected values, based on the dinucleotide composition of DNA sequences are represented by white histograms. *
Significant deviation from expected values (χ2-test, P < 0.05)
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expression plasmids co-encoding the UGI UNG inhibi-
tor, abolishing DSB formation (Additional file 1: Figure
S3).
This phenotype, somatic mutation in nuclear DNA yet

no evidence of DSB formation, is reminiscent of the A3B
attenuated activity of human (Fig. 4d) [38, 44], suggest-
ing that both enzymes are not efficient enough to elic-
ited the critical level of mutations triggering DSB
formation. One prediction of an attenuated nuclear
DNA editing phenotype would be expression in multiple
tissues unlike human A3A where basal levels are ex-
tremely low [70]. Murine A1 expression profiles from
multiple tissues from 3 mice are given in Fig. 4e. Re-
markably, A1 transcripts were detected in almost every
organ tested with a marked expression in liver as well as
lymphoid organs such as spleen and lymph nodes (Fig.
4e), independently of the reference gene (RPL13A, TBP
or HPRT) used to normalize RTqPCR data (Fig. 4e and

Additional file 1: Figure S4). The observation that A1 is
widely expressed is interesting as it suggests that this
mutator enzyme is present in many cell types, and could
therefore participate to the introduction of somatic mu-
tations in the genome of cells from many tissues.

Mouse APOBEC1 is the only mouse APOBEC enzyme
capable of mutating nuclear DNA
To date, mouse APOBEC2 (A2) is devoid of catalytic ac-
tivity while mouse APOBEC3 (A3) can restrict some ret-
roviruses [15] and edit cytoplasmic mitochondrial DNA
[37]. When overexpressed mouse A2 displayed a clas-
sical nucleocytoplasmic distribution while A3 was
strictly cytoplasmic (Fig. 5a, b). However, only mouse A1
was able to introduce somatic mutations in nuclear
DNA using CMYC specific 3DPCR (Fig. 5c). In keeping
with the lack of cytidine deaminase activity on nuclear
DNA, mouse A2 and A3 both failed to elicit DSBs or

Fig. 4 APOBEC1 mediated nuclear DNA editing and damage. a Graphical representation of nuclear DNA editing by A1 proteins. The last positive
3DPCR bands retrieved bands by CMYC specific 3DPCR amplification are represented on the gradient. b Selection of hypermutated CMYC
sequences after mouse A1-UGI transfection in QT6 cells for PCR products retrieved at 89.4 °C. c Dinucleotide analysis of mouse A1 deamination
context performed on nuclear DNA for PCR products retrieved at 89.4 °C. Dinucleotide context expected values, based on the dinucleotide
composition of DNA sequences are represented by white histograms. * Significant deviation from expected values (χ2-test, P < 0.05). d Double
strand breaks formation upon A1 transfection in QT6 cells by flow cytometry analysis of γH2AX staining in V5 transfected cells 48 h post-
transfection. Human APOBEC3A (hA3A) was used as positive control. Error bars represent the standard deviations from three independent
transfections. Differences compared to human APOBEC3A catalytic mutant hA3A C106S were calculated using student t test (** p < 0.01). e
APOBEC1 expression in 3 C57/BL6 mice tissues normalized on TBP reference genes
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apoptosis following transfection, just like mouse A1
(Figs. 5d, e).

Mouse APOBEC1 can deaminate 5-methylcytidine
containing ssDNA
To date, only A3 Z1 domain enzymes that edit chromo-
somal DNA also deaminate 5-methylcytidine residues on
ssDNA [38, 52, 53, 57]. As one report demonstrates an
in vitro 5Me-dC deamination activity of an oligonucleo-
tide by mouse A1 [56] we explored 5Me-dC deamination
in cellulo using a protocol previously described for hu-
man A3A and A3B [38, 57]. Fully 5Me-dC substituted
PCR fragments were made and transfected into QT6
cells. 3DPCR recovered DNA down to Td = 79.7 °C,
with mouse A1 transfection, below the restrictive de-
naturation temperature of Td = 82.8 °C, while mouse
A2 and A3 both failed to edit either 5’TpC or

5’Tp5MedC DNA (Fig. 5f). Sequencing of cloned prod-
ucts revealed CG ➔ TA hypermutations (Additional file
1: Figure S2D) with a strong 5’TpC / 5’Tp5MedC de-
amination bias after A1 transfection (Fig. 5g). As 5Me-
dC deamination results in thymidine, which is proc-
essed by mismatch repair mechanisms far less efficient
than one involving uracil removal by UNG, 5Me-dC de-
amination by mouse A1 could contribute to the numer-
ous 5MeCpG deamination hotspots evidenced in many
genes associated with cancer [39, 71]. On top of that
5Me-dC deamination could be involved in removing
epigenetic marks [72], with documented consequences
in cancer formation [73].

Discussion
The data presented here indicates that among all 12
APOBEC1 enzymes tested, only five - cow, pig, dog,

Fig. 5 APOBEC1 is the only mouse APOBEC cytidine deaminase capable of mutating nuclear and 5-methylcytidine containing DNA. a Western
blot analysis of V5-tagged mouse APOBEC cytidine deaminases in quail QT6 cells. β-actin probing was used as loading control. b Confocal
microscopy analysis of V5-tagged mouse APOBEC cytidine deaminases in QT6 cells, 24 h post transfection. Nuclei are stained with DAPI. c
Graphical representation of nuclear DNA editing by mouse APOBEC cytidine deaminases. The last retrieved bands by CMYC specific 3DPCR
amplification are represented on the gradient. d Double strand breaks formation upon mouse APOBEC cytidine deaminases transfection in QT6
cells by flow cytometry analysis of γH2AX staining in V5 transfected cells 48 h post-transfection. Human APOBEC3A (hA3A) was used as positive
control. Error bars represent the standard deviations of three independent transfections. Differences compared to human APOBEC3A catalytic
mutant hA3A C106S were calculated using student t test (** P < 0.01). e Annexin V staining of apoptosis upon mouse APOBEC cytidine
deaminases transfection in HeLa cells by flow cytometry analysis in V5 transfected cells 36 h post-transfection. Differences compared to human
APOBEC3A catalytic mutant hA3A C106S were calculated using student t test (** P < 0.01). f Graphical representation of HIV-1 V1 V2 specific 3D-
PCR amplification after QT6 transfections with APOBEC cytidine deaminases plasmids along with a cytidine (dC) or 5-methylcytidine (5Me-dC)
containing HIV-1 env DNA. g Dinucleotide analysis of mouse A1 deamination context performed on HIV-1 V1 V2 sequences obtained at 81.2 °C
from DNA containing either cytidine (dC) or 5-methylcytidine (5Me-dC). Dinucleotide context expected values, based on the dinucleotide
composition of DNA sequences are represented by white histograms. * Significant deviation from expected values (χ2-test, P < 0.05)
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rabbit and mouse - were found to exhibit DNA mutator
activity, introducing hypermutations in several DNA tar-
gets in vivo. Among them, opossum A1, pig A1 and
mouse A1 originate from species devoid of a functional
APOBEC3 Z1 cytidine deaminase, known to put the nu-
clear genome at risk of somatic mutations. Further ana-
lysis revealed that among all the A1 tested, mouse A1
singularly displayed a nuclear DNA mutator activity as-
sociated with deamination of 5Me-dC containing DNA
which was up to now a hallmark of APOBEC3 Z1 cata-
lytic domain [38, 51, 57].
However, if mouse A1 consistently edited nuclear

DNA, its activity appears to be moderate, failing to gen-
erate DSBs. In this respect, it is similar to the hypomuta-
tor phenotype of its human A3B counterpart [38, 44].
Unlike human A3B, mouse A1 expression doesn’t result
in apoptosis [38] (Fig. 5e), further indicating that its mu-
tagenic activity is modest. However, this hypomutator
phenotype should not be underestimated as a source of
somatic mutations in cancer formation as it is suggested
that mismatch repair machinery efficiency is limited to
several hundred mutations in a single event [74]. If only
few genomics studies of murine cancers have been
performed, it appears that the dominant mutations are
CG ➔ TA transitions [75], some of them presenting the
characteristic mutational signatures 2 and 13 associated
with APOBEC3 deamination [76]. Noteworthy, mice
harboring A1−/− deficiency present a decreased gastro-
intestinal tumor burden [77], further stressing the puta-
tive link between mouse A1 expression and cancer
onset.
If in our study only mouse A1 was demonstrated to in-

duce hypermutation in nuDNA, one cannot exclude that
other A1 may also induce mutations in chromosomal
DNA, albeit below the experimental detection of 3DPCR
threshold which is in the order of 2–4 substitutions per
kb− 1 [29, 68]. Indeed, a growing number of studies also
points to human A1 expression being associated with
GC ➔ TA somatic mutations peppering many cancer
genomes. A strong association between human APO-
BEC1 expression and the APOBEC mutational signature
was found in esophageal adenocarcinomas [78] and
APOBEC1 expression was also correlated with indel mu-
tations in many tumor genomes [79]. Moreover, a fine
analysis of mutational footprints was able to extract a
specific APOBEC1 mutational motif that can be found
in many human cancer genomes [80]. Similarly, although
rabbit A1 was found inactive on nuclear DNA in our ex-
perimental setup, over-expression of rabbit A1 in trans-
genic animals results in hepatocellular carcinoma [58],
suggesting that the enzyme may under some conditions
contribute to tumorigenesis. Thus, the same can be true
for other A1 deaminases in vivo, when the complex and
poorly understood regulation of cytidine deaminase

activity fails. Future genomic analyses of mammalian
cancer genomes will certainly help unravel signatures
and shed light on the etiological agents [41, 81].

Conclusions
At an experimental level mouse APOBEC1 is remarkable
among 12 mammalian A1 enzymes in that it represents
a source of somatic mutations in mouse genome, poten-
tially fueling oncogenesis. While the Rodentia order is
bereft of A3A and A3B like enzymes it seems that APO-
BEC1 may well substitute for it, albeit remaining much
less active. This modifies the paradigm that APOBEC3
and AID enzymes are the sole endogenous mutator en-
zymes giving rise to off-target editing of mammalian
genomes.

Methods
Plasmids
Mammalian APOBEC1 cDNAs, from armadillo, cat,
cow, dog, hedgehog, human, macaque, marmoset,
mouse, opossum, pig and rabbit were synthesized (Gene-
Cust), amplified by PCR and cloned into pcDNA3.1D/
V5-His-TOPO vector (Life Technologies) (Additional
file 1: Table S1). Mouse A1 C93S inactive catalytic mu-
tant was obtained by site directed mutagenesis using
standard protocol (GeneArt Site-Directed Mutagenesis
System, Life Technologies) (Additional file 1: Table S2).
Human APOBEC3A and APOBEC3A C106S, mouse
APOBEC2 and mouse APOBEC3 plasmids were previ-
ously described [15, 37]. Dual promoter vector encoding
uracil-DNA glycosylase inhibitor UGI from Bacillus sub-
tilis phage, was generated using BamHI/NheI restriction
sites to substitute PGK driven GFP sequence from pSF-
CMV-PGK-daGFP vector (Sigma) by UGI sequence
cloned into pcDNA3.1 vector. APOBEC1 coding se-
quences were cut from pcDNA3.1D/V5-His-TOPO vec-
tors using HindIII and PmeI and cloned into pSF-CMV-
PGK-UGI using HindIII and EcoRV restriction sites. All
constructs were grown in E. coli TOP10 cells (Life Tech-
nologies) and verified by sequencing.

Cell lines
Japanese quail embryonic fibroblast QT6 cells (ATCC
CRL 1708) were obtained commercially from LGC
STANDARDS and maintained in Ham’s medium supple-
mented with 1% chicken serum, 10% fetal bovine serum,
5% tryptose phosphate, 2 mM L-glutamine, 50 U/ml
penicillin and 50 mg/ml streptomycin. Human HeLa
cells (ATCC CCL2) were obtained commercially from
LGC STANDARDS and were maintained in DMEM glu-
tamax medium (Life Technologies) supplemented with
10% FCS, 50 U/ml penicillin and 50 mg/ml streptomycin.
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Transfections
Plasmid transfections were performed with 2 μg of DNA
for 8 × 105 of QT6 cells using Fugene HD (Promega)
and harvested after 48 h. For immunofluorescence label-
ing, 5 × 104 cells grown on chamber slides (LabTek)
were transfected with 1 μg of expression plasmids using
Fugene HD (Promega) following manufacturer’s
recommendations.

Western blotting
Transfected cells were resuspended in lysis buffer (0.5%
Nonidet P-40, 20 mM Tris-HCl pH 7.4, 120 mM NaCl
and 1mM EDTA) supplemented with Complete Prote-
ase Inhibitor Mixture (Roche Applied Science). Cell ly-
sates were clarified by centrifugation at 14,000×g for 10
min and Western blot analysis on cell lysates was carried
out as previously described [38].

Immunofluorescence
After PBS washings, transfected cells grown on cham-
ber slides were fixed and permeabilized, and immuno-
fluorescence V5 staining was performed as previously
described [44].

FACS analysis of double strand breaks
At 48 h after transfection, FACS analysis of double
strand breaks in V5 positive cells was performed using
γH2AX staining as described in [44].

DNA extraction and 3DPCR amplification
Total DNA from transfected cells was extracted, all PCR
amplification were performed as previously described
[38] with the cycling conditions and primers are pre-
sented in Additional file 1: Table S3. PCR products were
cloned into TOPO 2.1 vector (Life Technologies) and se-
quencing outsourced to Eurofins. Expected values are
derived from the base composition of the target se-
quence assuming no dinucleotide bias (% of NpC = num-
bers of NpC/numbers of Cs) × 100).

RNA extraction and real time PCR amplification
C57BL/6 Mouse tissues were incubated in RNA later
stabilization reagent, and mechanically disrupted before
extraction of total RNA using RNeasy® lipid tissue mini kit
(Qiagen) according to the manufacturer’s protocol.
Corresponding cDNAs were synthetized using QuantiTect
reverse transcription kit (Qiagen). Quantification was per-
formed by TaqMan using Takyon Rox probe mastermix
dTTP blue (Eurogentec). Sequences of specific primers
and probes used are detailed in Additional file 1: Table S4.
Cycling conditions were as follows: first step of denatur-
ation at 95 °C during 10 min. Followed by 40 cycles of
amplification (95 °C 15 s., 58 °C 15 s. and 68 °C 15 s.).
Fluorescence was measured during the 68 °C step

incubation using a Realplex2 Mastercycler (Eppendorf).
The specificity of the PCR products was verified by se-
quencing. Messenger RNA expression levels were normal-
ized based on the RPL13A, TBP and HPRT reporter genes.

Flow-cytometry analysis of apoptosis
Transfected HeLa cells were harvested, incubated at
37 °C in DMEM complete medium, for 30 min. After
PBS washings, cells were resuspended in binding buffer
and stained with Annexin-eFluor 450 following Annexin
V Apoptosis Detection Kit eFluor™ (ThermoFischer)
standard protocol. After fixation in 2% ice-cold parafor-
maldehyde (Electron Microscopy Sciences) for 10 min
and permeabilization in 90% ice-cold methanol (Sigma)
for 30 min, cells were incubated 1 hour with 1:100 di-
luted Alexa Fluor 488-conjugated mouse monoclonal
anti-V5 antibody (AbD Serotec) on ice. After PBS wash-
ings stained samples were acquired on a MACSQuant
Analyser (Miltenyi Biotech). Data were analyzed with
FlowJo software (Tree Star Inc. version 8.7.1).

Additional file

Additional file 1: Figure S1. Differential DNA denaturation 3DPCR. A)
APOBEC cytidine deaminases deaminate cytidine into uridine in single
stranded DNA. B) APOBEC activity leads to the. Accumulation of GC à AT
mutations. C) As GC basepairs with 3 hydrogen bonds and AT with 2
hydrogen bonds, AT rich DNA. requiers less energy for denaturation
allowing PCR amplification at lower denaturation Td/°C D) PCR
amplification with a gradient. of denaturation temperatures allows to
pickup AT rich APOBEC mutated DNA below the restrictive temperature
of non mutated. DNA, represented by the yellow dotted line. Figure S2.
Mutation matrices of APOBEC1 mutated sequences. Figure S3. Double
strand breaks formation upon APOBEC transfection requires UNG. Double
strand breaks formation upon A1 transfection in QT6 cells by flow
cytometry analysis of γH2AX staining in V5 transfected cells 48. hours
post-transfection. Human APOBEC3A (hA3A) was used as positive control.
Circles represent data from γH2AX staining upon.transfection with
pcDNA3.1 APOBEC plasmids while squares represent γH2AX staining
upon transfection with a dual promoter vector coexpressing. APOBEC se-
quences along with the UGI UNG inhibitor. Error bars represent the
standard deviations from three independent transfections. Differences be-
tween pcDNA3.1 and pSF-UGI transfections were calculated using stu-
dent t test (** p < 0.01). Figure S4. Expression profile of APOBEC1.
APOBEC1 expression in 3 C57/BL6 mice tissues normalized on RPL13A,
TBP, and HPRT reference genes. Table S1. Compendium of primers used
for APOBEC1 amplification and cloning. Table S2. Primers used for muta-
genesis. Table S3. Compendium of primers and PCR conditions used for
Nested PCR/3DPCR amplifications. Table S4. Compendium of primers
and UPL probes used for mouse transcriptome analysis.
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