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Abstract

We describe here a method to identify potential binding sites
in ensembles of protein structures as obtained by molecular
dynamics simulations. This is a highly important task in the
context of structure based drug discovery, and many meth-
ods exist for the much simpler case of static structures. How-
ever, during molecular dynamics, the cavities and grooves
that are used to define binding sites merge, split, appear
and disappear, and cover a large volume. Combined with the
large number of sites (∼105 and more) these characteristics
hamper a consistent and comprehensive definition of binding
sites. Our method is based on the calculation of instanta-
neous cavities and of the pockets delineating them. Classifi-
cation of the pockets over the structure ensemble generates
consensus pockets, which define sites. Sites are reported as
lists of atoms or residues. This avoids the pitfalls of the clas-
sification of cavities by spatial overlap, used in most existing
methods, which is bound to fail on non-ordered or unaligned
ensembles, or as soon as significant molecular motions are
involved. To achieve a robust and consistent classification
we thoroughly optimized and benchmarked the method. For
this we assembled from the literature a set of reference sites
on systems involving significant functional molecular mo-
tions. We tested different descriptors, metrics and clustering
methods. The resulting method is able to perform a global
analysis of potential sites efficiently. Tests on examples show
that our approach can make predictions of potential sites on
the whole surface of a protein, and identify novel sites absent
from static structures.

1 Introduction

1.1 Role of Cavities and their Dynamics in Protein
Function

The function of a protein directly relies on its interactions
with its substrates and/or partner.1 Its conformation, the
spatial arrangement of its atoms, is essential to establish
these interactions. Noticeably, to ensure good affinity and
specificity, a protein has to form a sufficient number of in-
teractions with its ligand(s).2 Gathering interacting residues
on the boundary of a concave hole is a favorable way to reach
a relevant number. Hence, substrates are mostly found in
cavities, inside or at the surface of the protein.3 Therefore,
the ligand binding “site” can be advantageously identified by

the “cavity” it forms and the amino-acids delineating it, the
“pocket”.

Identification of functionally relevant sites can be impor-
tant to understand the protein mechanism of action, to eval-
uate its spectrum of substrates or to identify means to affect
its function through, for instance, drug design.4,5 Such sites
are classically ascribed in two categories: orthosteric or pri-
mary binding site, often the active site of an enzyme; and
allosteric sites, usually binding effectors inducing a change
in the protein conformation and thus modulating the func-
tion.6–8

In either case, due to thermal motions and/or various ac-
tivation processes, the protein conformation fluctuates and
evolves in time. These evolutions can be essential for the
function, either because only a subset of conformations is rel-
evant for ligand binding or because the function of the pro-
tein indeed involves essential conformational changes that
can be quite radical.9 Many examples of holo and apo struc-
tures show such subtle or radical conformations changes de-
pending on the trapped functional state.10

1.2 Ambiguous Nature of Site Definition: the
Static Case

There is an inherent ambiguity in site definition. Sites are
classically defined by ligands, but different ligands may lead
to significantly different definitions.11 The difficulty is even
more fundamental when scouting for previously unknown
sites for which there is no reference ligand.12–14

In the latter case, we have to use geometry and often com-
position criteria to identify a site forming favorable interac-
tions. There might be different definitions, in particular for
the boundary between the bulk solvent and the volume en-
gulfed in grooves. They can also be somewhat subjective,
which adds up to the intricacy.

1.3 Ambiguous Nature of Site Definition: the Dy-
namic Case

In addition, sites, in particular allosteric or cryptic ones can
have an intrinsically dynamic nature. In highly dynami-
cal systems, the relevant conformations may vary widely,
and identification of binding site(s) becomes even more in-
tricate and ambiguous due to appearance – disappearance
(Figure 1.a), and fusion – splitting events (Figure 1.b). This
may lead to drastic changes with wide merging or complete
site dismantling.
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Figure 1: Examples of Events Hampering Consistent Site Defi-
nition. a. Appearance/disappearance of a cavity when its ge-
ometry reaches a threshold, for example, defining minimum vol-
ume or bulk solvent. b. Division/fusion of cavities triggered by
thresholding on the median part. c. Cavities appear mobile and
ubiquitous during molecular dynamics evolution (cavities domain
of definition displayed by red spheres on a grid).

The wide mobility and ubiquity of cavities creates fur-
ther difficulties. They can appear almost anywhere in the
protein volume during molecular dynamics evolution (Fig-
ure 1.c). With protein motions, cavity identification is likely
to face irreconcilable situations if it relies exclusively on spa-
tial overlaps from one conformation to another.15

Hence, large relative domain motions appear an obvious
source of failure, irrespective of the geometrical cavity de-
scriptors, cubes, spheres, cylinders or any other. As a result,
no global referential can be relevant in general for systems
involving large relative domain motions.

1.4 Other Factors Hampering Site Identification

The total number of cavities in long trajectories can be up to
millions, way beyond what is manually tractable. This ob-
scures the process of consistent cavity or site identification,
and following a particular cavity across multiple different
conformations becomes a real challenge.

With a large number of cavity, and the fusion – split-
ting events between two or more cavities (see Figure 1.b),
making consistent delineation of individual sites is difficult.
Although, the user could decide the delineation of a site for
a limited number of intermediates, when a large number of
conformations are analyzed, it is likely to become rapidly
impracticable. It could also be useful to limit the user’s
bias. Automation requires the identification of relevant cri-
teria/thresholds to group or divide cavities from each inter-
mediate conformation into sites, but proper benchmark is
necessary to establish them.

1.5 Importance and Application of Dynamic Cav-
ity Analysis

Dynamic analysis of cavities can unveil transient cavities,
absent from the crystallographic structures, but which can
be important for the protein function.16 An archetypical ex-
ample for functional cavity dynamics is given in oxygen re-
lease from myoglobin.17–19 It supports the need for such an
analysis to explain how “breathing” is associated with the
kinetics of internal ligand diffusion.17,20–26

Interestingly, cavity geometry has a crucial impact on lig-
and binding3,27,28 and virtual screening on multiple confor-
mations is also developing to improve results.29–31 But this
approach has not been applied systematically so far.

Another application is in the identification of functionally
relevant sites for drug design such as allosteric sites.32 This
requires a consistent site delineation to reliably correlate the
cavity geometry and the different functional states of the
protein, and estimate the impact that a ligand could have
on the function.

1.6 Consistent Site Identification in Conformation
Ensembles: Approach and Objectives

Identification of relevant sites for ensemble of conformations
is important, but relevant tools are needed. In effect, cur-
rently, cavity analyses are performed mostly on single or few
structures, or focus on a predefined locus (see33,34 for recent
reviews).

In this article, we propose an approach to identify rel-
evant sites in conformation ensembles. For this, cavities
are detected for each conformation, the list of residues or
atoms that engulf each of them, the “pockets” is determined
and those pockets are classified consistently to define po-
tential binding site. This overcomes the weakness of a spa-
tial/geometrical approaches: spatial alignment of proteint
conformations is not needed and large relative motions can
be handled.

Cavity pockets vary greatly in the course of a protein
molecular dynamics, and making self-consistent and relevant
clusters required thorough optimization. Hence, we system-
atically tested different internal definitions, methods, and
parameters. To overcome the ambiguities and subjective
perception, we selected a set of 15 “reference” sites previ-
ously described in the literature to challenge the approach.

A consensus set of parameters proved applicable to most
systems. Other combinations with similar performance are
also documented and listed. Comparison with existing meth-
ods shows only one comparable method.16 However it ap-
peared far less efficient and accurate, supporting the novelty
and genuine contribution of the approach presented here.

2 Materials and Methods

2.1 Cavity Tracking Methods and Definitions

Instantaneous Cavity Detection Any cavity detection
tool providing a spatial descriptor of the cavities allowing
the identification of the pockets can be used. We used an
in-house program, mkgridXf, for performance and better in-
tegration with the clustering. It is based on the principle
of molecular surface35,36 with a grid based implementation.
The details of the method and its implementation are given
in Supporting Information).

2

Page 2 of 15

ACS Paragon Plus Environment

Journal of Chemical Information and Modeling

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Protein sequence (of residues or atoms)!

a.!

b.!

c.!

conf. 1!

conf. 2!

…!

footprint 2!
footprint 3!
      …!

footprint 1!

d.!

Figure 2: Schematic View of Cavity Descriptor Generation and
Clustering. a. Three cavities, marked by green, read and cyan
volumes respectively, are surrounded by protein atoms/residues
shown in sticks and ribbons with the corresponding color for one
of the conformation of the protein sampling ensemble. The rest
of the protein (Dengue E protein), is shown with white ribbons.
b. Fingerprints for each of the cavities (arrow of same color as
in top panel) report the delineating atoms/residues in the protein
sequence. c. View of the ensemble of footprints calculated for
each cavity (footprint 1, 2, 3, ...) of each conformation (conf. 1,
conf. 2, ...). d. Schematic view of the clustering of the footprint,
grouping cavities having the same or similar protein environment.

Pocket Descriptor: Footprint The “footprint” of an in-
stantaneous cavity is a descriptor recording the atoms or
groups of atoms of the protein delineating the cavity: the
pocket (Figure 2). Implementation allows the user to make
this delineation at different levels of details with groups ei-
ther composed of single atoms, atoms, residues, residues, or
2 groups per residue: its backbone and its sidechain parts,
B.S.. Then, the footprints are defined as vectors indexed
over all the groups composing the protein. Hence all the
instantaneous cavities have a footprint of the same length,
either the number of atoms, the number of residues or twice
the latter.

Let c be a cavity composed of voxels, which centers are
called v; g a group of the protein composed of atoms a, the
distance (not in the mathematical sense) between c and g is
given by:

δ(c, g) = min
v ∈ c, a ∈ g

(d(v, a)− rad(a)), (1)

where d(v, a) is the Euclidean distance between v and a,
and rad(a) the van der Waals radius of atom a.

Three types of footprints, fp, are defined depending on
how the delineating groups are encoded:
- Real,

fpreal
g (c) =

{
σ − δ(c, g) if δ(c, g) < σ

0 otherwise,
(2)

where the cutoff, σ, is 5 Å.
- Boolean,

fpbool
g (c) =

{
1 if δ(c, g) < σ

0 otherwise,
(3)

- Local Boolean,

fplc−bool
g (c) =


1 if ∃ v ∈ c / av ∈ g and

d(v, av)− rad(av) < σ

0 otherwise,
(4)

where av is the atom at the smallest Euclidean distance from
v. In the unlikely event where there is more than one atom
at the same closest distance, the first one is taken.

Footprints are independent from the protein orientation
within round-off variations. Real footprints were intended
to keep some depth information in the pocket definition.
Boolean definition appeared simple and consensual. Local
Boolean was designed to define the minimal and essential
pocket delineating the cavity and are used for splitting.

Distance between Footprints Distances (not in the
mathematical sense) between footprints a and b are calcu-
lated with different dissimilarity measures depending on the
footprint nature.
- Euclidean Distance, for real footprints:

d(a, b) = ‖ a− b ‖ =
√

(a− b)2 (5)

- Cosine dissimilarity, for real footprints:

dcos(a, b) = 1− a · b
‖a‖‖b‖ (6)

- Jaccard dissimilarity, for Boolean footprints

djac(a, b) = 1− |a ∩ b||a ∪ b| , (7)

it is noted djac−loc when applied on Local-Boolean foot-
prints.

Footprint Clustering Different methods were used, in-
cluding hierarchical clustering (UPGMA, Complete), Spec-
tral clustering, DBSCAN, and MeanShift.

Jaccard and Cosine distances are between 0 and 1 and the
distance clustering threshold can either be specified as a fix
value (from 0.05 to 0.95 by 0.05 increments) or by a ratio
comparing distances between intra and inter conformation
footprint distances histograms (ratio: .01, .05, 0.1, 0.3, 0.5,
0.7, 0.9, .95, .99). Real distances do not have an upper limit,
and only threshold by ratio was considered. See in Support-
ing Information for details and implementation. When the
number of footprint is too large, clustering can be performed
on a subset, followed by reassignment.

Mean Footprint / Consensus Pocket For a cluster of
footprints (i.e. transverse pocket) the mean-footprint is cal-
culated to define a consensus pocket. Hence, the pocket
is composed of groups with weighted occupancy. The user
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can apply a truncation with an appropriate cutoff value to
make a Boolean selection when required for a practical us-
age. Value of σ/2 for real footprint, or 1/2 for Boolean ones,
appeared relevant when a representative pocket is sought
(see SI, Table S4).

Reassignment and Splitting When unassigned instan-
taneous cavities exist, reassignment consists in assigning in-
stantaneous pockets/cavity to the transverse pockets having
either the closest consensus pocket (“mean” assignment) or
to the transverse pocket containing the closest instantaneous
pocket (“min” assignment) (see SI-M&M for details).

When cavity splitting is requested, cavity voxels are re-
assigned to the most appropriate transverse pocket by best
matching their atomic environment. This process is per-
formed in two passes and has been tuned to avoid inconsis-
tent repartition of the cavities voxels between two or more
transverse pockets (see SI-M&M for details).

2.2 Implementation

Two implementations were made.
- The first in Python, PyCAV, incorporates all the options,
methods, complementary analyses, as well as trajectory ma-
nipulation and geometry analysis of cavities.20,37

- The second, in C, mkgridXf, implements the options that
proved practical as well as a fast cavity detection module
and the ability to perform cavity splitting at the voxel level.
Output: All the data structures can be exported from Py-

CAV in binary format with a consistent indexation scheme
allowing reimportation for further analysis. mkgridXf can
export a concise data structure composed of the cavity grid
points for each instantaneous cavity for each frame of the
trajectory, or if the site identification is performed, for each
transverse cavity. In the latter case, the mean-footprint for
each identified site is also given. It can be read for further
analysis by a small companion software, mkread.

2.3 Method Assessment

To overcome the fundamental ambiguities in site definition,
especially in a dynamical context, we selected “Reference
Cavities” to guide the algorithmic choices and to calibrate
the method. The assessment was performed by systematic
testing of the combinations of options and thresholds imple-
mented in PyCAV.

2.3.1 Reference Sites

We chose protein systems with different sizes and involving
different types of functional motions and for which main and
accessory binding sites had been described.

Among the 12 sites (15 with symmetry), selected on 4 pro-
teins, 10 were defined by crystallographic co-complex struc-
tures: 1J52 for Myoglobin; 2HZI and 3K5V for Abl1 kinase;
1OKE for Dengue E protein (short name DENV) and 1K90
for EF anthrax toxin. The other sites were defined from
residues listed in the literature (see Results).

Molecular dynamics trajectories for myoglobin20 (120ns),
Abl1 (200ns), Dengue E protein (10ns), and EF anthrax
Toxin32,38 (10ns in inactive form and 10ns in activated form)
were used to analyze cavity evolution. For the first three,
1000 frames evenly distributed were extracted. For EF, the
two trajectories (inactive/active) were concatenated, and
2000 frames were extracted (see SI-M&M for details).

Then, in all cases, the instantaneous cavity corresponding
to the site was identified manually in the crystallographic
structure, and its Local_Boolean - residue footprint was
used to define the reference pocket.

Reference assignment and Reference cavity trajectory def-
initions are given in the M&M of SI and Figure S1.

2.3.2 Score of Clustering Assignment

To score assignment, reference site assignment and cluster-
ing results are encoded in vectors, one vector element per
instantaneous cavity c. Cavities of each step are aggregated
to the previous ones, irrespective of their number per step
(identifier and step origin is kept for later analysis). Hence,
the reference assignment for reference site, site, is given by
the Boolean vector, P site, which is 1 if c is in site and 0
otherwise.

For a given combination of options, the result of the
footprint clustering is encoded in a vector P , defined by
P (c) = k, where k is the cluster number assigned to each
cavity c (the total number of clusters is K).

For each cluster k, we defined the Boolean vector Pk by
Pk(c) = 1 when P (c) = k, and 0 otherwise. Since those
vectors are sparse (mostly zeros) and we focus on the actual
detection of site cavities, we used the F1-score to compare
Pk and P site:

F1(P site, Pk) =
2TP

2TP + FP + FN
with, (8)

TP = P site.Pk, FP = |Pk| −TP , and FN = |P site| −TP .
The clustering score for one site site is given by the score

of the best cluster based on the overall-F1_score:39

F1site(P
site, P ) = maxk∈[1;K]F1(P site, Pk) (9)

Finally, we compute an F1 score averaging the scores of the
different sites ∈ Sites(prot) studied in the current protein:

F1prot =

∑
site ∈ Sites(prot) |P

site| × F1site(P
site, P )∑

site ∈ Sites(prot) |P site| (10)

2.3.3 Geometrical Assessment of the Transverse
Cavities

Beyond the assignment in transverse cavities, the method
returns the cavity grid points labeled accordingly for each
frame of the trajectory. Transverse cavities and reference
cavities can be compared through their volumes (summing
the respective voxels volumes). The geometry can be as-
sessed more precisely with a distance dGeo (not in a mathe-
matical sense) inspired by Hausdorff.40 For two non-empty
cavities C1 and C2 made of voxels of center, v with zero
radius (rad(v) = 0), it is given by:

dGeo(C1, C2)=

√∑
v∈C1

δ2(v, C2) +
∑

v∈C2
δ2(v, C1)

|C1 ∪ C2|
, (11)

dGeo(C1, ∅) = dGeo(∅, C1) = 2 · dGeo(C1, g1) , (12)

where ∅ is the empty cavity, and g1 is the geometric center
of C1 with rad(g1) = 0, and finally,

dGeo(∅, ∅) = 0. (13)

4

Page 4 of 15

ACS Paragon Plus Environment

Journal of Chemical Information and Modeling

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Table 1: Cavities Analysis in Molecular Dynamics Trajectories. Volumes, and domains of definition are calculated as explained in M&M.
*EF-Cam trajectory includes 1000 steps of inactive form (2.07 Å RMSD), 1000 steps of active form (2.3 Å RMSD), which when assembled
yield 6.17 Å global RMSD. Additional data on the fluctuations along the trajectory are given in SI Results, Figure S2&S3. aProtein
Envelope, bvolume of cavity domain of definition as a percentage of the mean volume of the protein envelope

System Traj. mean Mean Cavities/fr. Mean Mean volume per frame (Å3) Domain of definition (Å3)
Steps RMSD (std/min/max) Volume per —————————————– ——————————————————–

(Å) cavity, Å3 Cavities Protein Env.a (%) Cavities Protein Env.a (%) (% cd/mpeb)
Myoglobin 1000 1.29 11.9 (2.4/6/20) 37 438 21,576 (2.0) 7,803 43,589 (17.9) (36.2)
Abl1 1000 3.32 27.3 (4.3/12/40) 86 2,354 37,725 (6.2) 33,462 98,981 (33.8) (88.7)
EF-CaM 2000 * 36.3 (4.8/22/54) 104 3,788 63,903 (5.9) 56,872 188,303 (30.2) (89.0)
Dengue E p. 1000 2.63 58.4 (5.3/42/83) 75 4,365 107,622 (4.1) 51,630 186,858 (27.6) (48.0)

3 Results

Site identification performed on sets of structures, e.g. pro-
tein molecular dynamics, appeared ambiguous and compu-
tationally demanding. We present here a method that effi-
ciently and consistently performs this task.

3.1 Instantaneous Cavities

Analysis of the trajectories of our model systems revealed
a total number of instantaneous cavities that varied from
11863 for Myoglobin to 72507 in the EF system (Table 1). In
agreement with previous studies,41–43 the number of cavities
by frame, as well as their total volume, is roughly propor-
tional to the average volume of the protein envelope (see Fig-
ure 3). The mean volume ratio between the cavity and the
protein was low, between 2% and 6%. By contrast, the vol-
ume covered by cavities during the whole dynamics (domain
of definition) was more than 10 times the mean cavity vol-
ume, representing up to 34% of the protein envelope domain
of definition volume (Abl1), and up to 89% of the average
protein volume (Abl1). Thus, cavities appeared numerous
and they covered a large portion of the protein volume. This
illustrates the difficulty of the identification in the dynamics
context.
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Figure 3: Number of Cavity by Frame (×) and Mean Cavity
Volume (+) as a Function of Protein Volume. Linear regressions
are respectively shown with dashed and straight lines.

This difficulty is confirmed by the lack of success in the
attempts to perform cavity identification by spatial overlap-
ping (see SI Results, Table S1 and Figure S4).

3.2 Architecture and Definitions of the Method

The method we found to effectively perform consistent site
identification is based on the classification of instantaneous
pockets. Its general organization and definitions are the fol-
lowing.

Instantaneous cavities

Cavity detection

Protein trajectory

Pockets delineation

Clustering

Pockets

Reassignment / Splitting

Transverse pockets
Consensus pockets

Transverse cavities

Sites

Figure 4: Workflow of the Site Identification/Cavity Tracking Al-
gorithm. Routines are represented by orange boxes, data by blue
parallelograms. Plain arrows represent the flow of data. Double
line arrows convey Site definition (green ellipse).

Instantaneous Cavity Connected piece of volume be-
tween protein atoms, that is accessible to solvent, but not
to the bulk solvent. An instantaneous cavity can be buried
or at the protein surface (groove).

Instantaneous Pocket Groups of atoms of the protein
delineating an instantaneous cavity (can either be listed as
residues, individual atoms, or other groupments).

Transverse Pocket A set of pockets from different pro-
tein conformations that are clustered together based on the
similarity of their list of groups of atoms.

Consensus Pocket A pocket defined by the average of
the pockets descriptors found in a transverse pocket.

Transverse Cavity The ensemble of instantaneous cavi-
ties from different protein conformations that are delineated
by the same transverse pocket.

Site Refers to a transverse pocket and its associated trans-
verse cavity.
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Catalytic!

SABC!
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Reference Site Residues
Myoglobin
Distal Pocket L29 L32 F43 H64 V68 I107
Xe1 L89 A90 H93 L104 F138 I142 Y146
Xe2 L72 L104 I107 S108 L135 F138 R139
Xe3 W7 I75 L76 K79 G80 H82 A134 L135 L137 F138
Xe4 G25 I28 L29 G65 V68 L69 L72 I107 I111
Dengue E protein
Site1 P39 T40 H144 S145 G146 E147 Y178 L294 K295 T353 V354 N355 P356 I357 T359 S363 V365
Site2 chain-A: D98 R99 G100 G102 N103 K246

chain-B: R2 I4 G5 I6 G152 D154
βOG T48 E49 A50 P53 K128 V130 L135 G190 L191 F193 L198 Q200 A205 L207 T268 I270 Q271

L277 F279 T280 G281
Abl1
Catalytic L248 G249 Y253 V256 A269 V270 K271 E286 M290 V299 I313 T315 E316 F317 M318 G321

N322 L370 A380 D381 F382
GNF-2 A337 L340 L341 A344 L429 I432 A433 Y435 E462 G463 C464 P465 V468 F493
EF
SABC A496 P499 I538 E539 P542 S544 S550 W552 Q553 T579 Q581 L625 Y626 Y627 N629 N709
Catalytic R329 K346 H351 S354 K372 D491 D493 H577 N583

Figure 5: Reference Sites Definition. Pockets are displayed on respective crystal structures: Myoglobin, PDB:1J52; Dengue E protein,
PDB:1OKE; Abl1, PDB:2HZI; EF, PDB:1K8T; EF+Cam PDB:1K93 (calmodulin not shown). The cavity volumes are displayed as
solid volumes for the first 3 systems. The distal pocket of myoglobin is labeled D.P. Dengue E system is symmetric and each site has 2
instances. Their reference pockets, also symmetric, are listed once only. Sites 2 of Dengue E protein are found at the interface between
chain A and B.

Cavity Tracking Workflow The general workflow of the
cavity tracking is presented in Figure 4. A molecular tra-
jectory (desolvated) is taken as input. It can be aligned to
facilitate subsequent analysis and visualization. The algo-
rithm calculates instantaneous cavities and associated pock-
ets, then clusters the latter to group the cavities, yielding
an exhaustive enumeration of the protein potential binding
site along the trajectory.

3.3 Reference Pockets/Sites to Benchmark the
Method

Although this method rapidly gave promising results, in-
consistencies remained, and no clear clustering approach
emerged to reach full consistency (see SI, section “Classifi-
cation of cavities by protein environment in dynamics lacks
self-evident parameters”, Figure S5). Therefore, it appeared
necessary to use reference cavities or sites to benchmark the
method and establish relevant settings.

Reference sites were selected among systems for which one
or more binding pockets were described in the literature. We
chose four systems with diverse size, function, and involving
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Table 2: Evaluation of the Performance of Clustering Option Combinations. All the combinations are ranked by F1prot on each protein
system. Then, the ranks on the 4 systems of each combination are summed (RSum). The combinations having the lowest RSum are
ranked best. Clustering options, Group, Dist., Clust., Thr. are described in Figure 6. Thresholds are given in percentage. Assignment,
Ass., is applied when necessary. F1prot scores are given for the different proteins. The average, Aver., and the worst, Worst, scores are
also given. *Spectral clustering for Abl1 using all footprints failed due to memory errors, and a sampling of 1/10 was used in that case.

Rank RSum Group Dist. Clust. %Thr. Ass. Myo EF DENV Abl1 Aver. Worst
1 112 byatom cosine upgma 50 min 0.958 0.797 0.901 0.735 0.848 0.735
2 124 byatom cosine upgma 50 mean 0.958 0.779 0.902 0.735 0.843 0.735
3 213 byatom cosine upgma 55 min 0.958 0.779 0.872 0.728 0.834 0.728
4 225 byatom cosine upgma 55 mean 0.958 0.762 0.878 0.728 0.831 0.728
5 269 byatom cosine upgma 60 mean 0.923 0.764 0.867 0.728 0.820 0.728
6 270 byatom cosine upgma 60 min 0.923 0.779 0.860 0.728 0.822 0.728
7 272 byatom jaccard upgma 65 mean 0.955 0.665 0.889 0.754 0.816 0.665
8 285 byatom jaccard upgma 75 mean 0.895 0.668 0.918 0.744 0.806 0.668
9 308 byatom jaccard upgma 65 min 0.955 0.659 0.902 0.754 0.818 0.659

10 322 byatom jaccard upgma 60 min 0.957 0.659 0.907 0.739 0.815 0.659
11 322 byres jaccard upgma 60 mean 0.931 0.659 0.921 0.738 0.813 0.659

... 14 337 byres cosine upgma 45 mean 0.899 0.662 0.913 0.745 0.805 0.662
15 339 B.S. jac-loc upgma 75 min 0.914 0.799 0.851 0.720 0.821 0.720

... 20 397 byres cosine upgma 50 mean 0.875 0.749 0.885 0.721 0.808 0.721

... 30 443 B.S. cosine upgma 55 mean 0.885 0.739 0.858 0.727 0.802 0.727

... 47 507 byres cosine upgma 35 min 0.963 0.657 0.834 0.745 0.800 0.657

... 61 567 B.S. cosine upgma 50 mean 0.895 0.645 0.894 0.725 0.790 0.645

... 66 590 B.S. cosine complete 90 min 0.845 0.751 0.823 0.829 0.812 0.751
... 104 746 B.S. jaccard *spectral 70 mean 0.867 0.641 0.846 0.733 0.772 0.641
... 124 860 byres jaccard upgma 75 mean 0.797 0.764 0.821 0.771 0.788 0.764
... 198 1127 byres jac-loc complete 95 min 0.815 0.825 0.756 0.706 0.776 0.706
... 248 1311 byres euclid. meanshift auto-05 min 0.921 0.514 0.879 0.558 0.718 0.514
... 270 1418 B.S. jaccard dbscan 20 mean 0.840 0.573 0.733 0.736 0.721 0.573
... 764 3184 byres jaccard dbscan 25 min 0.368 0.665 0.924 0.105 0.515 0.105
... 779 3232 byres jaccard upgma auto-01 min 0.903 0.110 0.150 0.865 0.507 0.110

... ... ... ... ... ... ... ... ... ... ... ... ...
2189 8694 byres jaccard complete auto-99 min 0.055 0.061 0.044 0.008 0.042 0.008

Figure 6: Options Combined in the Method. B.S.: Backbone-
Sidechain.

small to large structural transitions. Hence, Myoglobin is
relatively static (Table 1) while the protein E of Dengue
and Abl1 kinase present larger fluctuations. Finally the EF
component of Anthrax toxin was studied on two sets of con-
formations, one in the inactive and one on the active states,
which are about 10 Å RMS distance from one another.

Binding pockets were defined as described in Materials
and Methods starting either from co-crystallized ligand or
from pocket delineation given in the literature. The lining
residues used in the validation of the method are summarized
in Figure 5.

In Myoglobin, they were marked by CO (distal Pocket)
and Xenon atoms (Figure 5, Myoglobin). β-Octyl-Glucoside

marked the βOG site in the Dengue E protein (44,45) (Fig-
ure 5, Dengue E protein). PD18097046 and GNF-247

marked respectively the catalytic and allosteric sites in the
Abl1 tyrosine-kinase (Figure 5, Abl1). Finally, 3’dATP
marked the catalytic site of EF.48

Additionally, we also used the so-called site 1 and site 2 of
the Dengue E protein given in Refs.13,49 They are putative
binding sites discovered by cavity analysis (from pre/post
fusion crystallographic states comparison or molecular dy-
namic simulation). Their definitions (list of residues) dif-
fered in the two publications. Site1 is formed of two adja-
cent cavities in the crystallographic structure (PDB:1OKE)
according to the list of residues given in.49 In both cases,
we choose the definition given in Ref.49 as it delineated the
binding sites with a smaller and more focused list of residues.

We used the definition given in Ref.32 for the EF SABC
site, which was discovered by transition path calculation be-
tween active/inactive states.

3.4 Clustering Options for Consistent Site Identi-
fication

As seen, clustering settings strongly impact the results.
Hence, to identify the most consistent site delineation op-
tions, we tested the 2286 clustering combinations implied
by Figure 6 on each reference protein system (see M&M).
2189 completed for all sites and could be evaluated with the
F1prot score.

Depending on the objective (best performing, most ro-
bust, etc...), scores can be combined in different ways. Here,
to identify combinations that best preform globally, but also
do not under-perform on “difficult” sites, we computed the
average site scores per system, rank those scores among the
methods, summed the ranks (

∑
rank(F1prot): RSum), and

ordered from smaller (the better) to larger, Table 2.
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Table 3: Evaluation of Clustering Performance without Ambiguous Sites. Hence, Abl1 scores correspond to catalytic site only, and EF
scores to the combination of SABC site in frames 1 to 1000, and catalytic site for frames 1001 to 2000. Same quantity definitions as in
Table 2.

Rank RSum Group Dist. Clust. %Thr. Ass. Myo EF DENV Abl1 Aver. Worst
1 200 byatom jaccard upgma 55 min 0.890 0.979 0.904 0.896 0.917 0.890
2 258 byatom cosine upgma 50 mean 0.958 0.966 0.902 0.898 0.931 0.898
3 280 byatom cosine upgma 50 min 0.958 0.965 0.901 0.898 0.930 0.898
4 294 byatom cosine upgma 45 mean 0.926 0.965 0.896 0.898 0.921 0.896
5 300 byres cosine upgma 30 min 0.925 0.977 0.835 0.897 0.908 0.835
6 305 byatom cosine upgma 45 min 0.926 0.963 0.903 0.898 0.922 0.898
7 355 byatom jaccard upgma 55 mean 0.890 0.974 0.881 0.896 0.910 0.881
8 355 byatom jaccard upgma 65 mean 0.955 0.959 0.889 0.906 0.927 0.889
9 363 byres cosine upgma 30 mean 0.925 0.976 0.828 0.897 0.906 0.828

10 397 byatom jaccard upgma 60 min 0.957 0.954 0.907 0.906 0.931 0.906
... 16 432 B.S. cosine upgma 30 min 0.891 0.975 0.858 0.886 0.902 0.858

Noticeably, the best two methods, only differing in the
assignment of remaining footprints, had an RSum about half
the following ones. The best combination happened to be:
UPGMA/cosine dis./real footprints/by atoms/dth=0.5/min.
It was also the combination yielding the best average score
(1/4

∑
F1prot; “Aver.” in Table 2).

The first occurrence for various groups, distance metrics
and clustering are given in Table 2). Clustering methods
respectively appeared: complete (66th), Spectral (104th),
MeanShift (248th) and DBSCAN (270th).

In the top ranking combinations (Table 2), myoglobin and
E protein consistently had high scores, while EF and Abl1
yielded moderate scores, below 0.8. To understand why, we
analyzed the scores site by site.

3.5 Accuracy for Individual Sites
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Figure 7: Distribution of the Best 100 F1site Scores among all
the Combinations for Each Site. Proteins are abbreviated by A.,
D., M. and EF. for Abl1, Dengue E protein, Myoglobin, and EF
respectively. Boxplots display: min, 1st quartile, median, 3rd

quartile and max values. On the right, F1site are calculated ether
on the first 1000 steps “Inact.”, or steps 1000-2000, and “Act.” of
the trajectory for the SABC and Catalytic sites of EF.

The F1site score distribution for the 100 best scoring set-
tings are depicted by boxplots for each site in Figure 7.
Myoglobin sites are consistently well assigned (mean scores
> 0.95 for all sites, except for Xe2, ' 0.92). The two copies
of Site2 and βOG of the Dengue E protein scored better
than the Site1 ones. Interestingly, symmetric sites of the
Dengue system had similar scores. No method could pre-
dict the SABC site of EF with better scores than 0.8 and
the top-100 average score was relatively low (0.70). GNF-2
site of Abl1 scored the worst with a top-100 average at 0.63.
Thus, the latter two sites appeared as intrinsically difficult
to identify consistently.

Noticeably, the EF trajectory is composed of two halves.
The protein is in an inactive form in the first 1000 steps,
and in an active form in the last 1000 steps. We analyzed
the F1site scores independently in the two phases (Figure 7,
right). Following the activation mechanism, the catalytic
site is better formed in the second half. Conversely, the
SABC site is well formed in the first half, but split in the
second half as expected from previous study.32 Accordingly,
SABC was well identified in the first phase and the catalytic
site in the second one (' 0.96 or more), while they were
poorly delineated in the other respective parts (' 0.65).

3.6 Assessment for Unambiguous Sites

To check whether the “optimal” settings for all sites would
also best predict consensual sites, we calculated the ranks
without ambiguous sites. Hence, the allosteric site of Abl1
was removed, the SABC site of EF was used on the first half
of the trajectory only and the catalytic site of EF was used
on the second half (see Table 3). As a result, Abl1 and EF
scores improved greatly. Here, discrimination with RSum
proved uneasy as scores are close to their maximum. Our
previous combination, byatom-cosine-UPGMA-50, ranked
second and was outperform by byatom-jaccard-UGPMA-55
due to improved score for EF. However, byatom-cosine-
UPGMA-50 was better for average score (0.931) and worst
score of (0.898). The 10th ranking method, byatom-jaccard-
ugpma-60 appeared better for those indexes (0.931/0.906),
but it performs much worse on the “all systems” benchmark
(also 10th in Table 2). byres and backbone-sidechain foot-
prints appeared in the top 10 options with similar meth-
ods and thresholds, which showed their suitability for cavity
tracking.

From now on, the byatom-cosine-UPGMA-50 combina-
tion, which appeared the most robust is considered.

3.7 Correct Location and Delineation of Predicted
Sites

Modest F1site scores (e.g. Abl1 GNF-2 site or SABC of EF
in active form, Figure 7) could either be caused by wrong
assignment for some time steps, which would be a flaw,
or by instantaneous protein deformation inherently altering
cavity delineation and, thus, close matching with the refer-
ence, which would then be acceptable. This was tested (SI,
“Correct location of predicted sites”, Table S2). Actual mis-
assignment never occurred in unambiguous sites and only
occurred rarely in “difficult” ones (1 % of the time for GNF-
2 site of Abl1, an unstable bundle of helices, and 9 % the
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   Conformation      PDB:1OKE       Frame 31                    Frame 790            Frame 777!
      Volume (Å")            227              572                                  13                          177!
       # of sections             1                1                                       1                            #2 !

!OG pocket !
Figure 8: Geometry Diversity of the Reference Cavity of the βOG Site (light gray volume) Along the Trajectory (chain A of Dengue
E protein). The βOG molecule is shown in sticks in 1OKE structure (cavity in transparency). The volume and number of pieces are
displayed. An example of fusion with a neighboring cavity is given in Frame 31. The extension of the instantaneous cavity beyond the
reference cavity is displayed in transparent blue volume.

time for SABC site, when it is scattered at different locations
in the activated form).

Further testing was made to check if the method predicted
the correct pockets (lists of atoms or residues). This was
done by comparing the consensus pocket and its reference.
For most of the sites, delineations closely matched (see SI,
Table S3). However, some sites had average matches. To
distinguish if this was due to a weakness of the method or
simply because better match is not possible due to the intri-
cacy of the benchmark, we made the following comparison.
We assembled the best possible set of cavities along the pro-
tein trajectory by selecting instantaneous cavities located
in the reference pocket. We calculated their instantaneous
pockets and the resulting consensus pocket. Finally, we com-
pared that consensus pocket with the reference one. This
gave surprisingly similar results (Table S3). Hence, cavity
delineation appeared to be as good as it could be, given the
intrinsic variability introduced by the dynamics.

3.8 Mapping Cavities to Reference Sites Requires
Splitting

The cavity found in the reference site did not always match
the reference pocket, for example, due to fusion with a neigh-
boring cavity. In an attempt to quantify and solve this point,
we computed reference cavities tightly mapping the reference
pocket definition for each reference site as explained in SI.
Statistics on their volume, number of segments and presence
show relatively large variance (see SI, Table S4). Noticeably,
the cavity geometry varied largely as can be seen for exam-
ples on the βOG pocket in Figure 8.

We compared the reference cavities with the best match-
ing transverse cavity using the volume and the geometric
distance, dGeo. An example is given in Figure 9 for an in-
terval of the βOG (chainB) site trajectory. Volumes are
close most of the time, but in some instances the cavity
vanishes (31/1000 intermediates) or it is bigger than the
reference cavity (by more than 200Å3 24 times in 1000).
dGeo largely increases on these instances (purple bars on
Figure 9). Closer inspection revealed large cavities covering
multiple sites, as for example, in Frame 31 of Figure 8. In
these cases, assignment of the instantaneous cavity to a sin-
gle transverse cavity did not appear relevant. This led to
introduce cavity splitting (see M&M).

Applying splitting reduced discrepancies (Figure 9).
Worst volume difference for the βOG (chainB), 670 Å3,
was reduced down to 21 Å3. The mean volume difference
along the whole trajectory decreased from 31Å3 to 9Å3.
Overall, cavity volumes fit more closely to the reference
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Figure 9: Volume and Geometry Comparison of the Reference
and Predicted Cavity for the Dengue E Protein βOG Site, chain
B, Given for an Illustrative Time Interval. Top: volume mon-
itoring; “+”, reference; purple, predicted; green, predicted with
splitting. Bottom: Geometric distance dgeo between the refer-
ence cavity and the predicted one, without splitting: purple, and
with splitting, green.

cavity trajectory for all the systems (see SI, Figure S6).
Some sites (Catalytic in Abl1, catalytic in EF, and Site2
from Dengue E protein) still displayed variations, suggest-
ing intrinsic difference between the reference sites and the
cavities that can be found in dynamics trajectories.

3.9 Mapping some Abl1 Ligand Binding Sites

Table 4: Co-Crystallized Ligands and Matching Predicted Sites.
Ligands found in other crystal structure of Abl1 were associated to
the identified sites (see Table S5). The site identifier, the number
of associated co-complexes, the number of different ligands (in
parenthesis), and the types of site are indicated. Site matching
the homologous kinase allosteric site found in PDB 5MRD (poc20)
is also mentioned.

Site ID Complexed Ligands
poc40 18 (12) complexes in catalytic site (DFG-in like)
poc113 16 (13) complexes in catalytic site (DFG-out like)
poc55 3 (2) complexes in GNF-2 allosteric site
Others 16 (10) Small molecules sites (Buffer, salt, etc...)
poc20 1 - Homologous site for PS267 (S26) in 5MRD

Structures of Abl1 from the PDB were retrieved (see Ta-
ble S5) and residues interacting with each ligand were used
to find corresponding sites from the analysis made on the
Abl1 molecular dynamics. Most ligands were associated to
the catalytic groove (Table 4). They were associated to
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two sites subdividing the groove, one in the catalytic part
(poc40) one extending towards the extension found in the
DFG-out forms (poc113; see SI, Figure S7). Other small
molecules ligands were found in various other sites, includ-
ing the GNF-2 site (poc55), in which myristic acid, involved
in the kinase regulation,50 also binds (see Table S5 for more
details).

In addition, the binding site of an allosteric inhibitor,
PS267 in complex with a related kinase, PDK1–PKCι
(5MRD), was mapped on the Abl1 structure. To overcome
difference in protein sequence, sequence-structure alignment
was performed to identify the matching transverse cavity
and pocket. Interestingly, a site, absent from the initial
structure (2HZI) of the Abl1 molecular dynamics, was found
in the dynamic site analysis (poc20, see SI, Figure S8).

3.10 Comparison with Existing Methods

Table 5: Site Identification Methods for Structure Ensembles.
Channel identification methods were not included. First author
of the reference is used when method name is lacking: aKrone
and bLindow. cmkgrigXf : this work. Cavity Detection: geo-
metrical algorithm family. Cavity Accretion: approach to relate
cavities from one step to another; For pocket based methods only
the type of atom groups list is specified; Geometrical: sites delin-
eated within the volume given in “Pocket Identification”. Pocket
identification can be “Exhaustive”: automatically identify all site
candidates; performed from a type of user selection (sel.), or; “No”:
not performed.

Method Cavity Cavity Pocket
Detection Accretion Identification

EPOSBP 16 Sphere Atoms Exhaustive
MDocket51 α−sphere Spatial Cavity sel.
aKrone52,53 Gaussian Spatial No
Provar54 Sphere/Grid Atoms/Residues No
bLindow55 Voronoi Spatial Cavity sel.
TRAPP56 Grid Spatial Pocket sel.
trj_cavity57 Grid Spatial No
POVME58 Grid Geometrical Sphere sel.
Epock59 Grid Geometrical Geometric sel.
cmkgridXf Grid Atoms/Residues Exhaustive

Methods to study cavities in dynamics are listed in Ta-
ble 5. Methods performing cavity accretion by protein envi-
ronment, e.g. list of atoms or residues, are by construct the
only ones to primarily perform pocket identification. They
are also far less sensitive to orientation and protein con-
formation than methods using spatial or geometrical cavity
accretion. The latter also require small time separation and
original order of the molecular dynamics trajectory steps
to ensure relevant overlap as can be read from their respec-
tive reference articles. Among pocket based methods, Provar
does not pursue the actual pocket classification. Hence, only
EPOSBP and mkgridXf perform an exhaustive classifica-
tion/identification of potential binding pocket, and could be
compared.

Comparison of Performance and Site Delineation
Completion time and number of sites are given in Table 6.
mkgridXf proved more than 60 times faster on single proces-
sor, and more than 1200 time faster if 18 processors could be
used. Memory requirement prevented EPOSBP completion
on large systems (Dengue E protein, EF).

Noticeably, EPOSBP predicted more sites. This is consis-
tent with the fact that fusion is not taken into account and
classification depends on transient aggregations with neigh-
boring cavities. In the same line, F1prot recalculated for

Table 6: Comparison of Programs Performance and Number of
Predicted Site. Single processor times are given. Time for 18
processors in parallel is also given in parenthesis for mkgridXf.
For large systems, Dengue E protein and EF, EPOSBP crashed
with memory error (256 GB memory machine).

mkgridXf EPOSBP

CPU time #sites CPU time #sites
Myoglobin 35mn (2mn) 34 43h 65
Abl1 4h (12mn) 123 248h 137
Dengue E p. 28h (2h) 193 Mem. err. -
EF 45h (3h) 159 Mem. err. -

EPOSBP (see SI, Table S6) were 0.582 and 0.561 for Myo-
globin and Abl1 respectively, lower than for mkgridXf (0.958
and 0.735; Table 2). Even if fusion is virtually allowed in
EPOSBP : more than one site can match the reference, these
scores were not high: 0.642 and 0.630 (see, e.g. Figure 7 or
Table 2 for comparison). Similarly, EPOSBP cavities were
often absent and did not fit reference ones as closely as mk-
gridXf allowed (see SI, Table S7).

Hence, both in term of performance and in term of tight
delineation, mkgridXf proved advantageous to perform con-
sistent analysis of the cavities/pockets on an ensemble of
protein structures.

4 Discussion

The elusive nature of cavities in protein dynamics and the
resulting great difficulty to self-consistently identify them
as specific sites were marking surprises. After unsuccessful
attempts to develop an algorithm based on spatial overlap,
use of instantaneous “pockets” appeared more effective. No
comparable method exists except for one similar approach
proposed previously,16 but which lacked some fundamental
features, such as the notion of fusion/splitting, and was by
far not as consistent and efficient in our hands. In effect,
obtaining self-consistency proved a challenge. It could only
be achieved after testing various ways to define pockets, to
measure their distances and to cluster them. Finally, assem-
bling and use of reference sites/cavities/pockets to probe
and optimize the method turned out to be essential to reach
high accuracy.

Interestingly, our algorithm could make fairly accurate
predictions on benchmarks including “difficult” cases. Dif-
ficulty arises from the internal motions of the site that can
shift or create ambiguity in their definition. This stresses the
importance of having reference sites displaying different be-
haviors, especially significant variability, to push optimiza-
tion until robustness is reached.

Use of pockets as descriptors of cavities rather than use of
spatial overlap makes the method less sensitive to internal
motions, and insensitive to the orientation and the order
in the conformational ensemble. Similarly, it also makes it
insensitive to pruning of long trajectories to any extent.

Automation by pocket classification resolves site delin-
eation, but it also allows to perform the analysis on hundred
of thousand or even millions of transient cavities. This, with
the possibility to prune extensively, gives access to the ex-
ploitation of extremely long simulations for large systems.

Use of pocket as descriptors also allows to analyze the
whole surface of the protein without a priori or bias. Fi-
nally, the method returns the sites definitions as list of atoms
or residues, allowing the analysis of their composition (hy-
drophobicity, charge, polarity, etc...). This, with the geo-
metrical information, is convenient for subsequent use, for
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example, to setup virtual screening.

4.1 Reference Sites

As noted,33 gold standard libraries for cavity computation
are sparse. Despite numerous databases for assessment of
ligand binding sites (see e.g. Ref.60), to our knowledge, ref-
erence sites have never been described for cavity tracking in
ensembles such as molecular dynamics. In the present work,
we collected a set of 12 reference sites defined by a refer-
ence pocket. We calculated a trajectory of cavities along a
molecular dynamics simulation for each system, and even, in
one case, EF, two trajectories involving different functional
states were generated.

The reference systems were selected for their diversity and
are well described in the literature. They involved proteins
of various sizes (Myoglobin, Abl1, EF, DENV). The first 3
are monomers while DENV is a dimer. In all cases molecu-
lar motions are important, ranging from relaxation allowing
ligand diffusion in Myoglobin, to an extensive allosteric tran-
sition for EF. Some sites are at the surface while other are
buried (DP & Xe1-4 in Myoglobin; GNF-2 in Abl1, SABC
in inactive form of EF). All the sites are defined by ligands
except for Site 1 & Site 2 of DENV. The nature of the lig-
ands varies and correspondingly pocket composition differs
with different hydrophobicity, polarity or charge (see Fig-
ure 5). Correspondingly, the definition of sites by the pock-
ets (atoms or residues) provided by mkgridXf can help to
select those with desired physico-chemical profile, and thus
probable binding propensity.

Another aspect is the existence of “difficult sites”. Ex-
amples presented here, suggest various causes for the “dif-
ficulty”. In EF catalytic site and in Abl1 allosteric GNF-2
site, difficulty seems to originate from breathing motions,
significantly changing the local cavities delineation. For Site
1 & 2 of the Dengue E protein, ambiguity arises from fusion
and splitting. The SABC site is yet even more challenging.
The pocket clearly delineated in the inactive form is scat-
tered in pieces during the large allosteric reorganization of
the activation.

These difficult reference sites are essential for the identi-
fication of a robust method, and its validation emphasizes
its performance. Noticeably, the results question the very
definition of some of the reference sites, suggesting that con-
sideration of the protein dynamics may call for a refined
definition.

4.2 Cavities and Dynamics

Literature, reports 0.06 to 2.26% cavity volume in pro-
teins41,43). These numbers are for static structures, and
in our experience larger figures are obtained in dynamics:
from 2 to ∼6 % (Table 1). This difference may be due to
the amount of sampling used for the analysis (see data char-
acterizing sampling in SI, Figure S2 and S3), and could in-
crease with the sampling.

Additionally, the studied proteins could have larger voids
than average as we have selected them for their significant
functional motions. Hence, Myoglobin displays breathing
motion; Abl1, allosteric modulation; EF, large activation
transconformation; and Dengue E protein, large motion be-
tween pre- and post-fusion conformations.

If we now consider the domains of definition of the cavi-
ties, we have much larger figures (Table 1). This illustrates
that the course of cavities spans a wide volume than could

not be anticipated on static structures alone. This has im-
portant implications for the diffusion of ligands, like O2 in
Myoglobin. This characteristics can also explain why spatial
methods to track cavities are likely to fail.

An essential dynamics characteristics, absent in static
structures, is that cavities move, split, merge, disappear and
(re)appear in the sampled conformations. This is a strong
challenge, creating ambiguities, and it required thorough op-
timization of the clustering method to reach satisfying iden-
tification consistency.

Another characteristics is the possible presence of states
significantly differing, as found in the EF trajectory (inactive
and activated states). If the different sub-states are known in
advance, it is possible to make independent analyses for each
sub-state. However, it would be better if the analysis could
be performed without having to stratify sub-states. In effect,
i) it may be difficult to make a relevant site stratification
based on conformations only, ii) it might be more interesting
to have a unified analysis. Here again, the robustness of
the algorithm is essential/critical, but this open the way to
the use of novel relevant conformations for known binding
sites.20

Differences in definitions can appear through dynamic
analysis. For example, reference pockets, consensus pock-
ets predicted for the reference sites and consensus pockets
identified for the reference cavities are similar, but not iden-
tical (see Tables S7-S8). Noticeably, crystal structures are
structural averages and may not depict satisfactorily instan-
taneous cavities appearing in dynamics. Hence, methods
taking functional molecular motions into account without
requiring prior information, could lead to an enrichment of
sites definition over that obtained from static structures.

4.3 Towards the Identification of Novel Effector
Sites ?

Dynamics analysis can reveal new sites. For example,
the numbers of cavities detected on static initial struc-
tures are 13, 10, 29/30 and 52 for Myoglobin, Abl1,
Inactive/Activated-EF and Dengue E protein respectively.
The average numbers of cavities per conformation in dy-
namics are 12, 27, 36 and 58 for the respective systems (Ta-
ble 1), a significant increase (except for Myoglobin). Now,
if we consider all the identified sites appearing more than
25% of the time in the course of the analysis, the above fig-
ures raise to 18, 89, 107 and 127 respectively. Hence, this
approach can reveal new sites, which could be exploited, for
example to bind effectors. To evaluate the potential of a
novel site, the user can consider the exposition frequency of
the delineating groups through their weights in the consen-
sus pocket. The availability of a sufficient volume to bind a
ligand can be evaluated from the times series of the cavity
analysis.

Interestingly, the method could identify the reference sites
despite the absence of ligand in the molecular dynamics sim-
ulations (except for myoglobin). In the latter case, one CO
molecule only was hopping from one site to another.20 Fur-
thermore, for Abl1, the simulation was started from a crys-
tal structure (2HZI) in which the allosteric site is in an apo
form.

As another illustration of this capability, binding pockets
of all ligands found in a series of other crystal structures of
Abl1 could be mapped on the sites identified in the anal-
ysis of the Abl1 trajectory. Most of the ligands are found
in the catalytic groove, divided in two regions (see Table 4
and SI, Table S5 and Figure S7). More interestingly, all the
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other co-crystallized compounds, either allosteric or from the
buffer, could be associated to an identified site. Although
the matching score for smaller ligands was weaker (SI, Ta-
ble S5), they could in some instances be indicative of inter-
esting sites as exemplified by the site shared by myristic acid
and GNF-2.

As a further illustration, preliminary analysis showed that
the pocket binding compound PS267 in a related kinase
(crystal structure 5MRD) was not found in the initial struc-
ture of the Abl1 trajectory (2HZI) by mkgridXf, but was
identified in the course of the dynamics analysis (See SI,
Figure S8). This successful identification suggests that our
approach could be useful in drug design, where the identifi-
cation of cryptic sites draw increasing interest.61,62

4.4 Conclusion

We conceived a method to identify sites in a consistent way
on an ensemble of structures such as molecular dynamics
trajectories. It overcomes the challenges due to site intrinsic
ambiguity and flexibility, and can alleviate the burden of
analyzing massive amount of data. It required thorough
tuning, so we assembled a set of reference sites derived from
the literature. This essential benchmark, helped to reach
self-consistency, robustness and high accuracy. We could not
find as efficient, memory economical and accurate methods
preforming similar analysis in the literature. It appears to
have the ability to identify novel binding sites, as illustrated
on a few examples.
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