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ABSTRACT In recent years nontyphoidal Salmonella has emerged as one of the
pathogens most frequently isolated from the bloodstream in humans. Only a small
group of Salmonella serovars cause this systemic infection, known as invasive nonty-
phoidal salmonellosis. Here, we present a focused minireview on Salmonella enterica
serovar Panama, a serovar responsible for invasive salmonellosis worldwide. S. Pan-
ama has been linked with infection of extraintestinal sites in humans, causing septi-
cemia, meningitis, and osteomyelitis. The clinical picture is often complicated by
antimicrobial resistance and has been associated with a large repertoire of transmis-
sion vehicles, including human feces and breast milk. Nonhuman sources of S. Pan-
ama involve reptiles and environmental reservoirs, as well as food animals, such as
pigs. The tendency of S. Panama to cause invasive disease may be linked to certain
serovar-specific genetic factors.

KEYWORDS invasive nontyphoidal Salmonella, Salmonella, Salmonella enterica
serovar Panama

Salmonellosis is a disease caused by the enteric pathogen Salmonella enterica, a
species that includes 2,637 different serovars (1). The various clinical presentations

of Salmonella disease in humans include enteric fever, gastroenteritis, extraintestinal
complications, and a chronic carrier state (2, 3). The clinical manifestation of Salmonella
is dependent on a number of features, including host immune status (reviewed in
reference 4), as well as factors specific to the Salmonella pathovariant that is causing the
infection (5). Certain pathogen factors are associated with clinical presentation, includ-
ing serovar and certain core and accessory genome components, such as the presence
of plasmids, prophages, virulence factors, and antimicrobial resistance genes (6). In this
review, we focus on Salmonella enterica serovar Panama, which has a strong association
with invasive disease (7) and is a rarely discussed serovar that has global public health
relevance. We review the global epidemiology, as well as the clinical picture, the
transmission vehicles, and antimicrobial resistance, and put them into the context of
our current genomic understanding.

GLOBAL DISEASE BURDEN AND EPIDEMIOLOGY

In 1931, an unknown bacterium caused widespread foodborne diarrheal disease
among American soldiers stationed at the Panama Canal. A full microbiological inves-
tigation was conducted, and the organism was identified as a “not previously described
Salmonella,” which was subsequently named S. Panama (8). Since initial isolation and
serological characterization, S. Panama has been implicated in numerous geographi-
cally localized outbreaks of gastrointestinal and extraintestinal disease around the
globe (9).

French territories in the Americas. S. Panama is responsible for a significant
proportion of the total Salmonella disease burden worldwide and is a leading cause of
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invasive nontyphoidal salmonellosis in French territories of America located in the
Caribbean and South America (7, 10, 11). Between 1972 and 1974, S. Panama was the
major Salmonella serovar isolated from human fecal samples in Martinique (10). Two
decades later, a study focused on pediatric salmonellosis in Martinique identified S.
Panama as the most commonly isolated Salmonella serovar, accounting for 35% of all
cases between 1990 and 1994 (11). Similarly, in French Guiana, S. Panama was the most
frequent Salmonella serovar acquired by humans, accounting for 12.9% of all cases of
Salmonella infection in 2011 (12). More recently, S. Panama was listed as the Salmonella
serovar most frequently isolated from pediatric blood samples in Guadeloupe, contrib-
uting to one-third of all cases of Salmonella infection between 2010 and 2014 (7), and
univariate analysis showed S. Panama was associated with causing disease in children
older than 6 months of age (P � 0.002) (7). These examples demonstrate the significant
impact that S. Panama has on public health in French territories in the Americas and
shows that S. Panama causes extraintestinal infection and gastrointestinal disease,
particularly in children. Although more extensive work needs to be done, no evidence
for antimicrobial resistance in S. Panama exists in these regions.

Latin America. S. Panama causes a significant proportion of the salmonellosis
burden in Latin America, which in the 2000s was 3.5 cases confirmed by serotyping per
100,000 people (9). As early as the 1950s, 41 (12%) of 357 human Salmonella isolates
collected in Maracaibo, Venezuela, were Salmonella serovar Panama. Interestingly, 15
isolates came from patients suffering from gastroenteritis, 4 came from individuals with
enteric fever, and 22 came from healthy carriers, indicating that S. Panama could be
carried asymptomatically (13).

Historically, an outbreak of S. Panama in Chile originated from river water in
Santiago in 1975 (14). By 1978, the serovar had infiltrated almost the entire country,
expanding southward to Punta Arenas and northward toward Arica. The resulting
human epidemic across Chile lasted for 4 years and involved the isolation of S. Panama
from food, animals, and water, demonstrating the ability of the serovar to spread
rapidly and survive outside of the human host. The majority of clinical cases involved
children under 15 months of age with self-limiting diarrheal disease. However, exam-
ples of bacteremia and meningitis were also reported (14).

S. Panama continues to be isolated periodically in Chile and other parts of Latin
America. According to global Salmonella monitoring compiled by the World Health
Organization between 2001 and 2007, S. Panama was the ninth most common serovar
isolated in Latin America (9). In 2007, S. Panama was responsible for 1% of 3,439 cases
of Salmonella infection across Argentina, Brazil, Chile, and Costa Rica (9). In Colombia,
S. Panama was the fifth most common serovar isolated from patients between 2005
and 2011 (15). Rapid dissemination of S. Panama around Chile in the 1970s, and the
consistent reporting of the serovar among the top 10 that cause human disease
post-2000, highlight the persistent burden of S. Panama in Latin America.

Asia. In Asia, S. Panama was the 11th most frequently isolated Salmonella serovar in
humans between 2001 and 2007 (9). In 2001, 4% of salmonellosis cases in Thailand
were caused by S. Panama, dropping to 3% in 2007 (9). In Tokyo, Japan, S. Panama was
the third most common Salmonella serovar between 1974 and 1979, accounting for 5%
of cases of Salmonella infection, and was commonly isolated from asymptomatic
people (16). In Taiwan, where S. Panama causes 7% of the clinical cases of salmonellosis,
S. Panama causes a higher rate of bacteremia in children under 5 years of age than
other serovars, such as Salmonella enterica serovar Enteritidis (17). These findings
demonstrate that S. Panama is an important public health issue in Asia.

Europe and the United States of America. Historically, S. Panama has caused a
significant proportion of the salmonellosis cases in Europe, particularly related to the
pig industry, and in the United States, where S. Panama has been implicated in several
hospital and statewide outbreaks associated with a variety of food sources (18, 30, 98).
The serovar was introduced into the United Kingdom during World War II as a result of
unsterilized dried eggs imported from the United States being fed to pigs (18). Humans
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have also been involved in the spread of S. Panama during hospital outbreaks in France
and in other Western European countries during the 1960s and 1970s (19, 20). Over this
period, there was a 3-fold increase in S. Panama cases in the United Kingdom, which led
to a doubling of the number of salmonellosis cases (18). Subsequently, between 1969
and 1984, S. Panama was one of the top five serovars responsible for invasive disease
in the United Kingdom (21). It is thought that these isolates were exposed to high
antibiotic selective pressure in humans or food animals and consequently became
resistant to antibiotics via acquisition of many types of plasmids (22–28). Elsewhere in
the European Union, S. Panama was reported among the top 10 most frequently
isolated serovars during 2012, following 706 confirmed cases of S. Panama salmonel-
losis associated with outbreaks in Germany and Italy (29). Sporadic outbreaks of S.
Panama salmonellosis also occurred in Switzerland (1972), Hungary (1979), Spain
(1998), and the Netherlands (2008) (30–33). S. Panama maintained its ranking in the top
20 serovars associated with salmonellosis in the European Union until 2017, when it
was replaced by other serovars (Salmonella enterica serovar Brandenburg, Salmonella
enterica serovar Kottbus, and Salmonella enterica serovar Coeln) (34).

CLINICAL PICTURE IN HUMANS

Although S. Panama can cause gastrointestinal infection in humans (9), the serovar
is more widely known for its ability to cause invasive disease and to colonize extraint-
estinal sites. For most salmonellae, extraintestinal colonization refers to bloodstream
infection (2). However, S. Panama can also invade specific body sites, causing atypical
presentations, including throat infection, brain abscess, and Bartholin’s abscess (35–37)
(summarized in Fig. 1). These unexpected symptoms of S. Panama infection can impede
diagnosis and delay treatment.

The clinical presentation of S. Panama disease varies between adults and children

FIG 1 Overview of the clinical presentations caused by S. Panama in adults and children according to the published literature, as follows: baby, brain abscess
(36), meningitis (8, 14, 36, 38–43, 45), throat infection (35), septic arthritis (91), and osteomyelitis with sickle cell disease (92); adult, acute respiratory distress
syndrome (93), pleuritic in Hodgkin’s disease (94), aneurysm of the distending aorta (95), osteomyelitis (40, 92), pelvic inflammatory disease (96), Bartholin’s
abscess (37), knee joint empyema (40), and septic thrombophlebitis (97).
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(Fig. 1). A common complication of neonatal S. Panama infection is the development of
Salmonella meningitis (8, 14, 36, 38–45), a lethal disease that has previously been linked
to localized outbreaks in hospital maternity wards (8, 31). For example, S. Panama was
recovered from 138 babies, new mothers, and staff during an outbreak of salmonellosis
in a neonatal nursery in Michigan in 1934 to 1944 that resulted in 18 fatalities due to
Salmonella meningitis (8). Similar outbreaks have historically occurred in other coun-
tries, including Germany, where a hospital outbreak in a maternity unit caused pro-
longed contamination despite radical disinfection of the entire ward (46).

S. Panama causes more cases of clinically invasive disease in humans than most
Salmonella serovars. Historically, S. Panama infections have been 11 times more likely
to cause invasive disease than those by other serovars in Martinique (10, 11). In
England, 7% of all S. Panama isolates were isolated from extraintestinal sites compared
to 2% of Salmonella enterica serovar Typhimurium and 3% of S. Enteritidis isolates (21).
In Taiwan, 70% of S. Panama isolates were isolated from invasive disease compared to
12% of S. Enteritidis isolates (47). In addition to these epidemiologically suggestive
data, multivariate analysis has recently confirmed the association of S. Panama with
clinically invasive infection (P � 0.001) as part of a retrospective study of Salmonella
infections in children living in Guadeloupe (7). A gnotobiotic-mouse model has been
described for S. Panama (48), which could help to elucidate the mechanisms behind the
increased invasiveness.

TRANSMISSION VEHICLES

Wild reptiles are the natural reservoir for S. Panama in Latin America (12, 49–52). A
study focusing on the frequency and host distribution of Salmonella serovars in reptiles
and amphibians captured in the Republic of Panama between 1965 and 1967 showed
that 2.6% of 78 Salmonella isolates were serovar Panama (49). In a subsequent study
(1966 to 1969), 6.8% of Salmonella organisms isolated from neotropical lizards in
Panama were S. Panama (50). In the past decade, a high prevalence of Salmonella has
been found in the largest lizards in South America (Tegu lizards), and 3% of the isolates
were classified as S. Panama (51). In French Guiana, where S. Panama was the most
frequently isolated human-associated serovar in 2011, the serovar was also isolated
from wild reptiles (12). Reptiles are likely to be an important source for transmission of
S. Panama in regions of the world where many lizards and other reptiles are present in
and around households. A recent survey of Salmonella strains carried by African
venomous snakes did not isolate S. Panama (53).

In addition to reptiles, S. Panama has also been isolated from other wildlife species
and companion animals. A study on pouched wild birds found S. Panama in cloacal
swabs of chestnut-capped blackbirds in Rio de Janeiro, Brazil (54). In regard to com-
panion animals, S. Panama was isolated from a household dog in Taiwan (55). S.
Panama contamination has been found in birds and fish tanks sampled from pet shops
and households in Trinidad (56). Wildlife, therefore, represent a potential reservoir for
S. Panama dissemination.

In Europe, S. Panama infection is primarily a foodborne disease, with the main
transmission vehicles being pork-derived products, including cured meat, minced pork,
and sausages (57). The transmission pathway for S. Panama begins in animal feed, from
where it can enter porcine and poultry animal reservoirs and move into animal food
products, eventually infecting humans (18).

At the animal level, S. Panama was found in 2.08% of 200 abattoir pigs sampled in
Budapest, Hungary (58), and has been found in cattle and swine in Germany (59).
Outside Europe, S. Panama has been identified in beef and dairy herds in Argentina (60)
and is the second most common Salmonella serovar to be isolated from swine finishing
herds in Brazil (61).

S. Panama is also recognized as a contaminant in food-processing facilities and retail
establishments globally, including butcher shops (62), public markets (63), meat vans
(64), and slaughterhouses (65). The process of manufacturing pork-derived products
includes several steps designed to result in a microbiologically safe, shelf-stable prod-
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uct by tightly controlling physicochemical conditions, such as salt and nitrate concen-
trations, pH, water activity, and temperature (66). However, Salmonella viability
throughout this curing process has been reported, including the presence of S. Panama
in salami (67, 68). In the Netherlands, S. Panama has additionally been implicated in the
contamination of cattle-derived food products and was one of the three Salmonella
serovars most frequently isolated from mincemeat over a 13-month period. Interestingly,
mincemeat from slaughterhouses was more likely to contain Salmonella than mincemeat
derived from slaughtering completed at butcher shops (69). Food-processing facilities
themselves can play a role in the contamination of animal food products with S. Panama.

The impact of S. Panama entering the human food chain can be seen in an outbreak
of salmonellosis that affected 300 people who had eaten contaminated roast pork in
the United Kingdom in 1970. S. Panama was implicated as the etiological agent (18). S.
Panama has also caused several foodborne outbreaks between 1990 and 1999 in
Asturias, Spain, and isolates were collected from gastroenteritis and septicemia patients
who had consumed contaminated fish puddings, cooked octopus, and cream cakes
(32). Other studies have linked S. Panama infections to consumption of goat cheese,
vegetables, beef, poultry, eggs, fruit juice, and shellfish (14, 33, 70).

In addition to the usual fecal-oral transmission route of Salmonella in humans, breast
milk has also been suggested as a vector for S. Panama (71). A study demonstrated that S.
Panama can infect the human mammary duct, can be shed for at least 2 weeks, and can
remain stable during storage of breast milk at 4°C (71). Furthermore, it is possible that a case
of meningitis in an exclusively breastfed 4-month-old patient was contracted from breast
milk that was contaminated with an antimicrobial-susceptible S. Panama isolate (41).

ANTIMICROBIAL RESISTANCE
Burden of antimicrobial resistance in S. Panama. Antimicrobial resistance (AMR)

is an important public health concern (72). There are conflicting reports in the literature
relating to the AMR status of the S. Panama serovar, with studies in Italy and Brazil
reporting low levels of antibiotic resistance (41, 73). They are supported by further
reports from Martinique, where 91% of S. Panama isolates were susceptible to beta-
lactams (11), and Guadeloupe, where all Salmonella serovars demonstrated high overall
susceptibility to antibiotics (7). In contrast, other studies have seen higher levels of
resistance in S. Panama, particularly against tetracycline (e.g., 67%) and chloramphen-
icol (e.g., 67%) since the 1980s (24, 47, 59, 74–76). Antibiotic stewardship promises to
be an effective tool for decreasing antimicrobial resistance in the S. Panama serovar. For
example, following a ban on tetracycline use in the pork industry in the Netherlands,
S. Panama tetracycline resistance dropped from 90% to 1% (24).

In Asia, S. Panama has been associated with high levels of AMR since 1980, when 58%
of the S. Panama isolates from Tokyo were resistant to at least one antibiotic agent (77). This
figure appears to be on the rise. By the turn of the millennium, 83% of domestic and
imported S. Panama isolates from cases in Tokyo were multidrug resistant. Similarly, in
Taiwan, the serovar also exhibited resistance to multiple antibiotics, including cotrimoxa-
zole (67%), ampicillin (56%), streptomycin (56%), kanamycin (56%), and gentamicin (45%)
(74). The high proportion of S. Panama isolates that show AMR should be considered by
clinicians working in Asia and by health care practitioners globally when treating Asian-
travel-associated salmonellosis cases caused by S. Panama.

Genomic markers and trends in antimicrobial resistance. A large proportion
of S. Panama antimicrobial resistance has been associated with plasmid carriage
(P � 0.012), class 1 integron presence, and transmissible drug resistance (R) factors (22,
47, 74, 78). Resistance to tetracycline, for example, has often been mediated by the R
factor R1 in S. Panama (26). Such R factors have been implicated in the transfer of
multiple antimicrobial resistance genes, usually simultaneously, between S. Panama
strains and other bacteria. However, an isolate from an epidemic of S. Panama infection
in Paris showed unusual patterns of transferable resistance, which may extend to other
strains in the S. Panama serovar. The isolate was able to transfer genes involved in
antimicrobial resistance singly or in pairs, rather than as one antibiotic resistance
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cassette. The proposed mechanism involved the simultaneous transfer of several
discrete genetic elements that were able to coexist stably and to replicate noncom-
petitively in S. Panama. The authors suggested that frequent cotransfer of genetic
elements may be propagated by conjugative-transfer machinery (27).

INVASIVE DISEASE—GENOMIC INFERENCES IN S. PANAMA
Evolutionary history and virulence. The study of evolutionary history may explain

why S. Panama is associated with invasive disease. The majority of salmonellae that cause
disease in humans belong to S. enterica subsp. enterica, which is further divided into two
main clades, A and B, and a number of smaller clades (79). Phylogenetically, S. Panama is
in clade B, which is associated with increased levels of clinically invasive disease (53, 80, 81).
Another review of the population structure within S. enterica found that S. Panama is in
lineage 3 (equivalent to the above-mentioned clade B) (82).

The evolutionary history of S. Panama was studied by Selander et al. (83), who used
multilocus enzyme electrophoresis to assess the relationships among Salmonella sero-
vars that cause invasive disease. It was proposed that S. Panama evolved from the same
ancestors that gave rise to Salmonella enterica serovar Paratyphi, Salmonella enterica
serovar Sendai (which causes enteric fever), and Salmonella enterica serovar Miami (83).
In the current era of genomically informed epidemiological analysis, phylogenetic
methods can be used to understand the evolutionary history of Salmonella. However,
no large-scale phylogenetic study has yet been conducted on S. Panama, and only one
complete S. Panama genome sequence (from strain ATCC 7378; GenBank accession no.
CP012346) is available (84). As part of the current review, virulence genes were
identified in the complete genome of S. Panama strain ATCC 7378 using the program
ABRicate v0.8.10 (https://github.com/tseemann/abricate) against a virulence factor da-
tabase (85) with default parameters. In total, 131 virulence-associated genes were
identified. The analysis confirmed the presence of typical Salmonella virulence determi-
nants, including type III secretion systems, type III effector proteins, fimbriae, and flagella.
Of interest, S. Panama was also found to carry the cytolethal distending toxin B gene (cdtB),
which is characteristic of S. enterica clade B and the highly invasive Salmonella enterica
serovar Typhi (53, 80, 81). A more detailed, epidemiologically representative analysis is
required to further elucidate the uniqueness of the S. Panama serovar.

Accessory genome and virulence. Generally, plasmids play a key role in systemic
Salmonella infection, but little is known about the plasmid complement of the S.
Panama serovar. In the small number of available studies, it is reported that S. Panama,
including the above-mentioned S. Panama ATCC 7378, does not commonly carry the
large plasmids that have previously been associated with virulence in other Salmonella
serovars (41). Rather, S. Panama strains carry a heterogeneous population of plasmids
(86). Prophages can also make significant contributions to Salmonella virulence (87, 88),
but only one study has reported the presence of prophages in S. Panama (84). The
Salmonella RE-2010 prophage was identified in the genome of S. Panama ATCC 7378.
The prophage (also known as ElPhiS) has also been found in S. Enteritidis, where it has
been associated with specific phylogenetic clusters (89, 90). The importance of S.
Panama for public health globally necessitates that a concerted comparative genomic
analysis be conducted in the future.

PERSPECTIVES

S. Panama is a globally relevant pathogen that has consistently been reported as
one of the most frequently isolated Salmonella serovars over the past 70 years. The
proportion of clinical cases caused by S. Panama is particularly high in French territories
in the Americas, where it is associated with invasion of extraintestinal sites, particularly
in infants. Reptiles act as natural reservoirs for Salmonella in these regions, and it has
been speculated that the large numbers of reptiles found in and around homes in
tropical regions of America lead to high levels of S. Panama transmission to humans.
The serovar was also introduced into Europe, where it spread through the pork industry
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and caused hospital outbreaks in the 1960s and 1970s. S. Panama continues to
contribute to the global disease burden caused by salmonellae.

It is important to highlight the unusual clinical presentation of S. Panama in different
patient populations to avoid delays in patient treatment. Clinicians and researchers
should remain aware of the potential for increasing levels of antimicrobial resistance in
the serovar, as has been described in Asia. Unraveling the molecular epidemiology and
evolutionary history of S. Panama is the obvious next step in understanding more about
this rarely studied serovar that continues to cause invasive salmonellosis worldwide.

ACKNOWLEDGMENTS
Caisey V. Pulford is supported by a Fee Bursary Award from the Institute of

Integrative Biology at the University of Liverpool and by a John Lennon Memorial
Scholarship from the University of Liverpool. Kate S. Baker is funded by a Wellcome
Trust Clinical Research Career Development Fellowship (106690/A/14/Z). Jay C. D.
Hinton is funded by a Wellcome Trust Senior Investigator Award (106914/Z/15/Z).

REFERENCES
1. Issenhuth-Jeanjean S, Roggentin P, Mikoleit M, Guibourdenche M, de

Pinna E, Nair S, Fields PI, Weill F-X. 2014. Supplement 2008 –2010 (no. 48)
to the White-Kauffmann-Le Minor scheme. Res Microbiol 165:526 –530.
https://doi.org/10.1016/j.resmic.2014.07.004.

2. Ao TT, Feasey NA, Gordon MA, Keddy KH, Angulo FJ, Crump JA. 2015.
Global burden of invasive nontyphoidal Salmonella disease. Emerg In-
fect Dis 21:941–949. https://doi.org/10.3201/eid2106.140999.

3. Crump JA, Luby SP, Mintz ED. 2004. The global burden of typhoid fever.
Bull World Health Organ 82:346 –353.

4. Gilchrist JJ, MacLennan CA. 2019. Invasive nontyphoidal Salmonella
disease in Africa. EcoSal Plus 8. https://doi.org/10.1128/ecosalplus.ESP
-0007-2018.

5. de Jong HK, Parry CM, van der Poll T, Wiersinga WJ. 2012. Host-pathogen
interaction in invasive salmonellosis. PLoS Pathog 8:e1002933. https://
doi.org/10.1371/journal.ppat.1002933.

6. Fierer J, Guiney DG. 2001. Diverse virulence traits underlying different
clinical outcomes of Salmonella infection. J Clin Invest 107:775–780.
https://doi.org/10.1172/JCI12561.

7. Guyomard-Rabenirina S, Muanza B, Bastian S, Malpote E, Jestin P, Guerin
M, Talarmin A, Weill F-X, Legrand A, Breurec S. 2018. Salmonella enterica
serovars Panama and Arechavaleta: risk factors for invasive non-
typhoidal Salmonella disease in Guadeloupe, French West Indies. Am J
Trop Med Hyg 99:584 –589. https://doi.org/10.4269/ajtmh.18-0192.

8. Leeder FS. 1956. An epidemic of Salmonella panama infections in in-
fants. Ann N Y Acad Sci 66:54 – 60. https://doi.org/10.1111/j.1749-6632
.1956.tb40102.x.

9. Hendriksen RS, Vieira AR, Karlsmose S, Lo Fo Wong DMA, Jensen AB,
Wegener HC, Aarestrup FM. 2011. Global monitoring of Salmonella
serovar distribution from the World Health Organization Global Food-
borne Infections Network Country Data Bank: results of quality assured
laboratories from 2001 to 2007. Foodborne Pathog Dis 8:887–900.
https://doi.org/10.1089/fpd.2010.0787.

10. Papa F. 1976. Contribution to the study of Salmonella in Martinique.
Evolution during 1972, 1973 and 1974. Bull Soc Pathol Exot Filiales
69:121–125.

11. Olive C, Mansuy JMM, Desbois N, Roche B, Cecile W, Saint-Aime C,
Jouannelle J. 1996. Salmonella panama en Martinique: aspects épidémi-
ologiques et cliniques chez l’enfant hospitalisé. Méd Mal Infect 26:
590 –593. https://doi.org/10.1016/S0399-077X(96)80078-3.

12. Gay N, Le Hello S, Weill F-X, de Thoisy B, Berger F. 2014. Salmonella
serotypes in reptiles and humans, French Guiana. Vet Microbiol 170:
167–171. https://doi.org/10.1016/j.vetmic.2014.01.024.

13. Le Minor L, Le Minor S, Fossaert H, Maso Dominguez J. 1954. Salmonella
isolated in Maracaibo (Venezuela) in 1952–1953. Bull Soc Pathol Exot
Filiales 47:775–781.

14. Cordano AM, Virgilio R. 1996. Evolution of drug resistance in Salmonella
panama isolates in Chile. Antimicrob Agents Chemother 40:336 –341.
https://doi.org/10.1128/AAC.40.2.336.

15. Rodriguez EC, Diaz-Guevara P, Moreno J, Bautista A, Montano L, Realpe
ME, Della Gaspera A, Wiesner M. 2017. Laboratory surveillance of Sal-

monella enterica from human clinical cases in Colombia 2005–2011.
Enferm Infecc Microbiol Clin 35:417– 425. https://doi.org/10.1016/j.eimc
.2016.02.023.

16. Horiuchi S, Inagaki Y, Nakaya R, Goto N, Yoshida Y, Kusunoki J, Ito T,
Ohashi M. 1989. Serovars, antimicrobial resistance and conjugative R
plasmids of Salmonella isolated from human during the period of
1966 –1986 in Tokyo. Kansenshogakuzasshi 63:352–362. https://doi.org/
10.11150/kansenshogakuzasshi1970.63.352.

17. Tsai KS, Yang YJ, Wang SM, Chiou CS, Liu CC. 2007. Change of serotype
pattern of group D non-typhoidal Salmonella isolated from pediatric
patients in southern Taiwan. J Microbiol Immunol Infect 40:234 –239.

18. Lee JA. 1974. Recent trends in human salmonellosis in England
and Wales: the epidemiology of prevalent serotypes other than
Salmonella typhimurium. J Hyg 72:185–195. https://doi.org/10.1017/
s0022172400023391.

19. Le Minor L, Le Minor S. 1981. Origin and frequency of the serotypes of
Salmonella isolated in France and received in the French National Center
during the years 1977–1979. Rev Epidemiol Sante Publique 29:45–55.

20. Cherubin CE. 1981. Antibiotic resistance of Salmonella in Europe and
the United States. Rev Infect Dis 3:1105–1126. https://doi.org/10
.1093/clinids/3.6.1105.

21. Wilkins EG, Roberts C. 1988. Extraintestinal salmonellosis. Epidemiol
Infect 100:361–368. https://doi.org/10.1017/s095026880006711x.

22. Manten A, Guinee PA, Kampelmacher EH, Voogd CE. 1971. An eleven-
year study of drug resistance in Salmonella in the Netherlands. Bull
World Health Organ 45:85–93.

23. Guinee PA, Scholtens RT, Willems HM. 1967. Influence of resistance-
factors on the phage types of Salmonella panama. Antonie Van Leeu-
wenhoek 33:30 – 40. https://doi.org/10.1007/BF02045531.

24. van Leeuwen WJ, Voogd CE, Guinee PA, Manten A. 1982. Incidence of
resistance to ampicillin, chloramphenicol, kanamycin, tetracycline
and trimethoprim of Salmonella strains isolated in The Netherlands
during 1975–1980. Antonie Van Leeuwenhoek 48:85–96. https://doi
.org/10.1007/BF00399490.

25. Guinee PA. 1969. Phage types and resistance factors in S. panama strains
from various countries. Zentralbl Bakteriol Orig 209:331–336.

26. Guinee PA. 1968. R transfer to S. panama in vitro and in vivo. Antonie
Van Leeuwenhoek 34:93–98. https://doi.org/10.1007/BF02046419.

27. Bouanchaud DH, Chabbert YA. 1969. Stable coexistence of three resis-
tance factors (fi-) in Salmonella panama and Escherichia coli K12. J Gen
Microbiol 58:107–113. https://doi.org/10.1099/00221287-58-1-107.

28. Avril JL, Dabernat HJ, Gerbaud GR, Horodniceanu T, Lambert-Zechovsky
N, Le Minor S, Mendez B, Chabbert YA. 1977. R plasmids incompatibility
groups in epidemic Salmonella. Ann Microbiol 128:165–175.

29. European Food Safety Authority and European Centre for Disease Pre-
vention and Control. 2012. The European Union summary report on
trends and sources of zoonoses, zoonotic agents and food-borne out-
breaks in 2010. Euro Surveill 17:20113.

30. Ernst R, Gurdan P. 1973. Salmonella-panama epidemic in Basel, spring
1972, from the veterinary viewpoint. Schweiz Arch Tierheilkd 115:8 –15.

Minireview Infection and Immunity

September 2019 Volume 87 Issue 9 e00273-19 iai.asm.org 7

 on F
ebruary 17, 2020 at IN

S
T

IT
U

T
 P

A
S

T
E

U
R

-B
ibliotheque

http://iai.asm
.org/

D
ow

nloaded from
 

https://doi.org/10.1016/j.resmic.2014.07.004
https://doi.org/10.3201/eid2106.140999
https://doi.org/10.1128/ecosalplus.ESP-0007-2018
https://doi.org/10.1128/ecosalplus.ESP-0007-2018
https://doi.org/10.1371/journal.ppat.1002933
https://doi.org/10.1371/journal.ppat.1002933
https://doi.org/10.1172/JCI12561
https://doi.org/10.4269/ajtmh.18-0192
https://doi.org/10.1111/j.1749-6632.1956.tb40102.x
https://doi.org/10.1111/j.1749-6632.1956.tb40102.x
https://doi.org/10.1089/fpd.2010.0787
https://doi.org/10.1016/S0399-077X(96)80078-3
https://doi.org/10.1016/j.vetmic.2014.01.024
https://doi.org/10.1128/AAC.40.2.336
https://doi.org/10.1016/j.eimc.2016.02.023
https://doi.org/10.1016/j.eimc.2016.02.023
https://doi.org/10.11150/kansenshogakuzasshi1970.63.352
https://doi.org/10.11150/kansenshogakuzasshi1970.63.352
https://doi.org/10.1017/s0022172400023391
https://doi.org/10.1017/s0022172400023391
https://doi.org/10.1093/clinids/3.6.1105
https://doi.org/10.1093/clinids/3.6.1105
https://doi.org/10.1017/s095026880006711x
https://doi.org/10.1007/BF02045531
https://doi.org/10.1007/BF00399490
https://doi.org/10.1007/BF00399490
https://doi.org/10.1007/BF02046419
https://doi.org/10.1099/00221287-58-1-107
https://iai.asm.org
http://iai.asm.org/


31. Lantos J, Fekete J, Kiraly K. 1981. R-plasmid study of an outbreak caused
by multiresistant strains of Salmonella panama. Acta Microbiol Acad Sci
Hung 28:211–217.

32. Soto SM, Guerra B, Del Cerro A, González-Hevia MA, Mendoza MC. 2001.
Outbreaks and sporadic cases of Salmonella serovar Panama studied by
DNA fingerprinting and antimicrobial resistance. Int J Food Microbiol
71:35– 43. https://doi.org/10.1016/S0168-1605(01)00553-0.

33. Noël H, Hofhuis A, De Jonge R, Heuvelink AE, De Jong A, Heck M, De
Jager C, van Pelt W. 2010. Consumption of fresh fruit juice: how a
healthy food practice caused a national outbreak of Salmonella
Panama gastroenteritis. Foodborne Pathog Dis 7:375–381. https://doi
.org/10.1089/fpd.2009.0330.

34. European Food Safety Authority and European Centre for Disease Pre-
vention and Control. 2018. The European Union summary report on
trends and sources of zoonoses, zoonotic agents and food�borne out-
breaks in 2017. EFSA J 16:262.

35. Varela G, Aguilar Ochoa A. 1953. Salmonella panama and Escherichia coli
055 in the throat of infants. Rev Inst Salubr Enferm Trop 13:331–333.

36. Kostiala AA, Westerstrahle M, Muttilainen M. 1992. Neonatal Salmonella
panama infection with meningitis. Acta Paediatr 81:856 – 858. https://doi
.org/10.1111/j.1651-2227.1992.tb12122.x.

37. Cummins AJ, Atia WA. 1994. Bartholin’s abscess complicating food
poisoning with Salmonella panama: a case report. Genitourin Med 70:
46 – 48. https://doi.org/10.1136/sti.70.1.46.

38. Talon P, Schneller E, Stoll C. 1985. Salmonella panama responsible for
meningitis secondary to febrile gastroenteritis in a 3-month-old infant.
Pediatrie 40:223–227.

39. Borderon JC, Prieur D, Huguet B. 1981. Cefotaxime CSF levels in children
with purulent meningitis. Nouv Presse Med 10:580 –584.

40. Opree W. 1975. Infection with “enteritis salmonella” at non-intestinal
sites. Dtsch Med Wochenschr 100:1425–1428. https://doi.org/10.1055/s
-0028-1106400.

41. Carneiro MRP, de Patrício MIA, Jain S, Rodrigues DDP, Fracalanzza S.
2018. Meningitis caused by Salmonella enterica serotype Panama in
Brazil: first case reported. Rev Soc Bras Med Trop 51:244 –246. https://
doi.org/10.1590/0037-8682-0367-2017.

42. Elenga N, Cuadro E, Long L, Njuieyon F, Martin E, Kom-Tchameni R, Defo
A, Razafindrakoto SH, Mrsic Y, Henaff F, Mahamat A. 2017. Salmonella
enterica serovar Panama meningitis in exclusive breastfeeding infants:
report of 4 cases, clinical features and therapeutic challenges. Medicine
96:e6665. https://doi.org/10.1097/MD.0000000000006665.

43. Gericke D, Luchtrath H. 1951. A peculiar form of meningitis caused by
Salmonella panama. Med Klin 46:862– 865.

44. Coignet J, Tamalet J, Pons M, Passeron P, Chapoy P. 1971. 2 cases of
neonatal meningitis caused by “Salmonella panama”. Mars Med 108:
63– 66.
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