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1 ANSES, Laboratory for Food Safety, Université PARIS-EST, Maisons-Alfort, France, 2 Unité des Bactéries Pathogènes
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The investigation of foodborne outbreaks (FBOs) from genomic data typically relies
on inspecting the relatedness of samples through a phylogenomic tree computed on
either SNPs, genes, kmers, or alleles (i.e., cgMLST and wgMLST). The phylogenomic
reconstruction is often time-consuming, computation-intensive and depends on hidden
assumptions, pipelines implementation and their parameterization. In the context of
FBO investigations, robust links between isolates are required in a timely manner to
trigger appropriate management actions. Here, we propose a non-parametric statistical
method to assert the relatedness of samples (i.e., outbreak cases) or whether to reject
them (i.e., non-outbreak cases). With typical computation running within minutes on
a desktop computer, we benchmarked the ability of three non-parametric statistical
tests (i.e., Wilcoxon rank-sum, Kolmogorov–Smirnov and Kruskal–Wallis) on six different
genomic features (i.e., SNPs, SNPs excluding recombination events, genes, kmers,
cgMLST alleles, and wgMLST alleles) to discriminate outbreak cases (i.e., positive
control: C+) from non-outbreak cases (i.e., negative control: C−). We leveraged four
well-characterized and retrospectively investigated FBOs of Salmonella Typhimurium
and its monophasic variant S. 1,4,[5],12:i:- from France, setting positive and negative
controls in all the assays. We show that the approaches relying on pairwise SNP
differences distinguished all four considered outbreaks in contrast to the other tested
genomic features (i.e., genes, kmers, cgMLST alleles, and wgMLST alleles). The freely
available non-parametric method written in R has been designed to be independent of
both the phylogenomic reconstruction and the detection methods of genomic features
(i.e., SNPs, genes, kmers, or alleles), making it widely and easily usable to anybody
working on genomic data from suspected samples.

Keywords: outbreak investigation, Salmonella Typhimurium, monophasic S. Typhimurium (S. 1,4,[5],12:i:-),
cgMLST, wgMLST, SNPs, genes, kmers
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INTRODUCTION

New genome sequencing technologies provide an unparalleled,
powerful tool for the characterization of infectious agents. In the
field of food safety, genomic analyses have taken an essential place
in the investigation of foodborne outbreaks (FBOs) (Mole, 2013).
The many studies focusing on retrospective analyses of well-
characterized FBOs have firmly established that phylogenetic
reconstruction based on whole genome sequencing (WGS) allows
for the investigation of epidemic clusters with a previously
unmatched resolution (Nadon et al., 2017). The advantages
of WGS have been tested for the main bacterial foodborne
pathogens: Salmonella (den Bakker et al., 2014), Listeria (Hilliard
et al., 2018), E. coli (Holmes et al., 2015), and Campylobacter
(Rokney et al., 2018). In all cases, WGS-based approaches
proved to be more accurate and discriminating than traditional
typing methods like pulsed-field gel electrophoresis (PFGE)
or multi-locus VNTR analysis (MLVA). Through WGS-based
subtyping, cases were correctly identified and additional clinical
isolates, not considered at the time of the initial investigation
that was performed with traditional typing methods, can
even be identified.

Several genomic investigations into FBOs have shown that
the level of genetic diversity within a FBO depends on the
history of the contamination and its investigation (Stimson
et al., 2019). Many studies have concluded that the concept of
a general threshold of single nucleotide polymorphism (SNP) is
not operational even within the same serovar (Pightling et al.,
2018). The nature of the outbreak (i.e., sources, dissemination,
and duration) affects the genetic distances between isolates
and requires a more subtle definition of outbreak cases. The
history of the isolates (i.e., origin, matrix, sampling date, and
context) must be carefully examined because the evolution
rate can vary in different food matrices or food-processing
environments (Duchêne et al., 2016). Epidemiological data and
traceback information are essential to rebuild the epidemic
events (Pightling et al., 2018; Sanaa et al., 2019), however, they
may contain inaccurate and missing data about the history
of isolates. In addition, significant evolutionary events can
obscure the relatedness of isolates (Snitkin et al., 2011). In
spite of these caveats, the isolates belonging to the same
recent FBO are genetically similar, and phylogenomic methods
are suitable to trace the source, dissemination routes and
mode of contamination. From this perspective, the generation
of a phylogenomic tree is a commonly used method (den
Bakker et al., 2010; Holmes et al., 2015; Hilliard et al.,
2018; Rokney et al., 2018). The traditional phylogenetic
reconstructions based on orthologous genes and multi-gene
alignments are today increasingly replaced by inferences based
on pairwise distances. It is possible to compute matrices of
pairwise distances from a diversity of genomic features: SNPs
(Timme et al., 2017), genes (Page et al., 2015), kmers (Ondov
et al., 2016), or alleles from coregenome and whole genome
multi-locus sequencing typing (i.e., cgMLST and wgMLST)
(Chen et al., 2017).

A crucial aspect of all molecular typing investigations resides
in the capacity to build a relevant and strong outgroup: a

set of isolates genetically close yet not directly related to the
sanitary situation of interest. A way to proceed is to include
in the analysis a large number of isolates sampled in the same
period and geographical area of the epidemic isolates and,
when the information is available, belonging to the same or
a close genetic group. In fact, at present, the construction of
this control group is largely empirical and built on common
sense principles.

Here, we propose a non-parametric statistical approach to
distinguish between outbreak and non-outbreak cases as an
alternative to methods based on pairwise differences thresholds,
bootstrap estimations or visual inspections of phylogenetic trees
(Lee et al., 2015a,b). We extracted six genomic features at
the coregenome, accessory genome or pangenome scales from
genomic data of four historical Salmonella enterica outbreaks,
and we evaluated the ability of three non-parametric tests—
Wilcoxon rank-sum (WS), Kolmogorov–Smirnov (KS), and
Kruskal–Wallis (KW)—to discriminate between outbreak and
non-outbreak cases.

MATERIALS AND METHODS

Selection of Outbreaks and Isolates for
Retrospective Epidemiological
Investigations
Four Salmonella FBOs with complete epidemiological
information and available microbiological materials were
selected for the study (Supplementary Table S1). Two outbreaks
(#1 and #2) were due to S. Typhimurium and the two others
(#3 and #4) to S. 1,4,[5],12:i:- (Figure 1). The outbreaks
occurred in France between 2010 and 2014, and isolates were
obtained from patients, contaminated food, animals and the
environment (Figure 1). The strain collection corresponding
to the four outbreaks included 63 strains (Supplementary
Table S1) to which we added 129 non-outbreak controls
presenting the same PFGE pattern for most of them collected
through passive surveillance (Supplementary Data S1 and
Supplementary Table S1). The clinical strains were obtained
from the National Reference Center (NRC) for Salmonella at
the “Institut Pasteur Paris.” Food, animal and environmental
strains were obtained from the ANSES Salmonella Network
at the French Food Safety Laboratory in Maisons-Alfort. The
antigenic formulae were determined by glass slide agglutination
according to the White-Kauffmann-Le Minor scheme (Grimont
and Weill, 2007), and PCRs were performed following EFSA
recommendations to confirm that all S. 1,4,[5],12:i:- isolates
were monophasic variants of serovar Typhimurium (EFSA,
2010; Tennant et al., 2010). The sequence types (ST) were
predicted using the version 2.16.1 of the program mlst developed
by Seemann T1. based on components of the PubMLST
website2, integrating BIGSdb developed by Jolley and Maiden
(Jolley and Maiden, 2010).

1https://github.com/tseemann/mlst
2https://pubmlst.org/
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FIGURE 1 | Localization in France and description of strains belonging to S. Typhimurium (n = 66) S. 1,4,[5],12:i:- (n = 126) involved in the four foodborne outbreaks
of interest. These strains were selected from the National Reference Center for Salmonella (NRC), ANSES Salmonella Network and “Direction générale de
l’alimentation” as part of the French Ministry of Agriculture, Food and Forestry.

Genomic DNA Preparation and
Sequencing
Genomic DNA was prepared from 2 ml of BHI overnight
cultures with the Wizard R© Genomic DNA Purification Kit
(Promega, France), according to the manufacturer’s instructions
for gram-negative organisms. Gels of 0.8% agarose were used
to assess the genomic DNA integrity. The DNA concentration
was measured with a Qubit R© fluorimeter and the purity ratio
was assessed with a Nanodrop R© Spectrophotometer. Library
preparation and NGS sequencing were performed by the
“Institut du Cerveau et de la Moelle épinière” (ICM3, Hôpital
de la Pitié-Salpêtrière, Paris). The libraries were prepared
with NextEra XT technology (Illumina), indexed according to
the manufacturer recommendations (Illumina), purified with
the Agencourt AMPure XP system (Beckman Coulter) and
quantified with the Microfluidic Labchip GX (PerkinElmer). The
sequencing was performed with 300 cycles High Output kit v2
cartridges (i.e., 800 million of paired-end reads of 150 bases) and
a NextSeq 500 sequencer.

Genomic Analysis
With an objective to evaluate which genetic information performs
the best in a context of outbreak investigations with non-
parametric approaches, we used a series of genomic features of
pairwise differences at the coregenome (i.e., SNPs including or
excluding recombination events and cgMLST), accessory genome
(i.e., presence-absence of genes) and pangenome (i.e., kmers
and wgMLST) scales.

Variant Calling (SNPs and InDels)
The coregenome SNPs and small InDels were detected based
on the variant caller HaplotypeCaller that was implemented in

3www.icm-institute.org

the iVARCall2 workflow (Felten et al., 2017), used Salmonella
Typhimurium LT2 (NCBI NC_003197.1) as a reference genome
and followed the best practices proposed by the Genome
Analysis ToolKit (GATK) (McKenna et al., 2010). More
precisely, secondary alignments around small InDels were
performed and duplications were excluded before variant
calling analysis via local de novo assembly of haplotypes in
active regions. The matrices of pairwise SNP differences and
pseudogenomes were computed using in-house Python scripts
called ‘VCFtoMATRIX’ and ‘VCFtoPseudoGenome,’ respectively.
The pseudogenomes correspond to the reference genome
where the genotypes of detected variants were replaced in
each genome (Felten et al., 2017). As previously described,
variants from homologous recombination events (>400 bp) were
detected with ClonalFrameML (Didelot and Wilson, 2015) and
subsequently excluded, or kept, with the script ‘Clonal_VCFilter’
(Felten et al., 2017).

Allelic Differences at the Coregenome Scale
(cgMLST)
Allelic differences were computed with BioNumerics v.7.6.3
software (Applied Maths, Sint-Martens-Latem, Belgium) using a
combination of assembly-free and assembly-based allele calling.
A similarity threshold of≥85% was used for assembly-based calls
and gapped alignments were allowed. The cgMLST Salmonella
scheme integrated within the software consists of a total of 3 002
loci. The cgMLST was restricted to ≥80% homology in ≥95%
of the isolates (Vincent et al., 2018). The matrices of pairwise
allele differences were obtained with a scaling factor of 1 and
a limit of differences ≤200. The alleles displaying discrepancy
between the assembly-free and assembly-based analyses were
excluded. Finally, the allelic differences were computed on 2 620
and 2 723 loci for S. Typhimurium and its monophasic variant S.
1,4,[5],12:i:-, respectively.
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Gene Differences at the Accessory Genome Scale
The assembly was performed with an in-house workflow called
ARTwork, based on coverage control (i.e., >100X) with Bbmap
(Bushnell, 2014), read normalization (i.e., 100X) with Bbnorm
(Xu et al., 2015), quality control of reads with FastQC (Andrews,
2010), read trimming (i.e., >20 of Quality Control) with
Trimmomatic (Bolger et al., 2014), de novo assembly with SPAdes
(Bankevich et al., 2012), selection of closely related genome with
MinHash (Ondov et al., 2016), scaffolding with MeDuSa (Bosi
et al., 2015), gap filling with GMcloser (Kosugi et al., 2015),
trimming of small scaffolds (i.e., <200 bases) with Biopython
(Cock et al., 2009) as well as control of assembly quality with
QUAST (Gurevich et al., 2013) and MultiQC (Ewels et al.,
2016). Based on these draft genomes, pangenomes of both
genome datasets were constructed with Roary (Page et al., 2015)
setting 95% of identity for blastp and a strict definition of the
coregenome (i.e., 100% of isolates with coregenes); the paralogs
were kept for downstream analyses. The matrices of pairwise gene
differences were produced with an in-house Python script called
‘roary_to_pairwise.’

kmer Differences
Using the genome assemblies obtained as described above, an
in-house Python workflow called QuickPhylo was developed
in order to produce matrices of pairwise kmer differences
based on a form of locality-sensitive hashing called MinHash
(Indyk and Motwani, 1998) implemented in Mash (Ondov et al.,
2016). More precisely, Mash is run for each genome against
a sketch including all the studied genomes, and the shared
hashes produced are retained to create matrices of pairwise kmer
differences, setting Mash with 1 000 selected kmers of 15 bases
in order to perform a fast (i.e., 1 000 kmers in the sketch)
and discriminant computing (i.e., smallest bounded error with
kmers of 15 bases according to simulated data representative of
the genome size of S. enterica), respectively. It must be noted
that the single-copy kmers were included, assuming those kmers
are not artifacts.

Allelic Difference at the Pangenome Scale (wgMLST)
Allelic differences were computed according to the wgMLST
scheme with the BioNumerics v.7.6.3 software (Applied Maths,
Sint-Martens-Latem, Belgium) as explained above. The wgMLST
Salmonella scheme integrated within the software consists of a
total of 15 874 loci. The matrices of pairwise allele differences
were computed on 3 530 and 3 698 loci for S. Typhimurium and
its monophasic variant S. 1,4,[5],12:i:-, respectively.

Statistical Approaches
The statistical approach includes three successive steps
(Figure 2A). Based on input genomes (i.e., gn in Figure 2A),
the first step of the statistical approach aims to identify the
genetic features of interest. More precisely, the identification
of coregenome SNPs, including (i.e., SNP-1) or excluding (i.e.,
SNP-2) recombination events detected with ClonalFrameML,
accessory genes (i.e., orthologous genes), kmers (i.e., 1 000
selected kmers) and alleles (cgMLST or wgMLST) are performed

with the workflows detailed above: iVARCall 2, ARTWork-
Roary, ARTWork-QuickPhylo and BioNumerics (Applied
Maths), respectively (Figure 2A). Based on these workflows,
the second step corresponds to the production of matrices (i.e.,
L in Figure 2A) of pairwise differences (i.e., D in Figure 2A)
regarding the considered genomic features (i.e., SNPs-1, SNPs-2,
accessory genes, kmers, cgMLST, or wgMLST alleles). The third
step is a computation step that divides each pairwise difference
matrix of interest into two lists of pairwise differences, which
are then compared by three non-parametric tests based on
the R script ‘matrix2association’ (i.e., pn in Figure 2A). The
first list corresponds to pairwise differences existing across
genomes known to be involved in the outbreak. The second
list corresponds to pairwise differences existing between these
outbreak genomes and the tested genome. With the hypothesis
that the tested genome is related to the outbreak of interest
(i.e., null hypothesis H0: absence of significant differences), this
script estimates statistical differences between these two lists
of pairwise differences. Both lists are compared with the three
non-parametric tests in order to assign (i.e., H0 conserved),
or not (i.e., H0 rejected), the tested genome to the outbreak
of interest (Figure 2B). The non-parametric two-sample WS,
KS, and KW [i.e., R Stats package (R Development Core Team,
2015)] tests assess the statistical differences of median values,
distributions and mean ranks, respectively (Figure 2B). These
non-parametric tests were selected because the distributions and
equality of variances were not known. In practice, two groups
of outbreak (i.e., positive control: C+) and non-outbreak (i.e.,
negative control: C−) controls were formed for each outbreak
and tested in a pairwise manner using these non-parametric
tests against a third group representative of samples involved in
the studied FBOs (i.e., outbreak test set: TS). The two groups
of samples involved in the studied FBOs (TS) and outbreak
control (C+) were previously confirmed to be epidemiologically
involved in the outbreaks of interest (Figures 1, 2B). Following
the results of statistical tests, the C+ and C− were assigned (i.e.,
H0 conserved and tested sample considered as related) or not
(i.e., H0 rejected and tested sample considered as unrelated) to
the outbreak of interest (TS). In addition, the developed R script
‘matrix2association’ produced graphical representations of the
distributions of pairwise differences. The dataframes of p-values
(i.e., df in Figure 2A) were plotted with ggplot2 and used to
choose the most suitable method(s) [i.e., genomic features(s)
combined with non-parametric test(s)] (Wickham, 2009).

Phylogenomic Inference
Phylogenomic inferences were performed by maximum
likelihood based on pseudogenomes produced by the iVARCall2
workflow and the general time-reversible (GTR) model
implemented in the RaxML program (Stamatakis, 2014). In
addition to the nucleotide substitution model (GTR) and the
secondary structure 16-state model, models describing rate
variation among sites were also applied. Gamma distribution (G)
and convergences of the phylogenomic inferences were checked
based on rapid bootstrap analysis (Stamatakis et al., 2008). The
phylogenomic inferences and annotations were graphically
represented with ggtree R package (Yu et al., 2017).
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FIGURE 2 | Workflows implementing non-parametric tests to assess statistical differences of pairwise differences of genomic features at the core (i.e., approaches
‘SNPs-1,’ ‘SNPs-2,’ and ‘cgMLST’), accessory (i.e., approaches ‘genes’) and pangenome (i.e., approaches ‘kmers’ and ‘wgMLST’) scales in order to investigate
food poisoning outbreaks (A) and statistical approaches implementing non-parametric tests (i.e., WS, KS, and KW) comparing pairwise differences of genomic
features during a foodborne outbreak (FBO) investigation (B). The approaches ‘SNPs-1,’ ‘SNPs-2,’ ‘genes,’ ‘kmers,’ ‘cgMLST,’ and ‘wgMLST’ were performed with
the workflows iVARCall2 with or without ClonalFrameML, ARTWork-Roary, ARTWork-QuickPhylo, and BioNumerics (Applied Maths), respectively. The ‘SNPs’
approaches were performed including (i.e., ‘SNPs-1’) or excluding (i.e., ‘SNPs-2’) SNPs from recombination events identified with ClonalFrameML. The R script
‘matrix2association’ estimates statistical differences between two lists of pairwise differences existing across genomes known to be involved in a studied outbreak
(i.e., outbreak test set: TS) and between these genomes and a tested genome (i.e., outbreak control C+ or non-outbreak control C–) in order to assign (i.e., absence
of statistical differences: H0 conserved), or not (i.e., presence of statistical differences: H0 rejected) this tested genome to the outbreak of interest.

RESULTS

Assessment of Genomic Data Quality
The results of non-parametric approaches are supported by
the good quality of the mapping and assembly of pseudo- and

draft- genomes (Supplementary Data S3A and Supplementary
Table S2). The presence of exogenous DNA was assessed
based on the cumulated size of scaffolds, GC content, genome
fraction, gene content as well as the logarithmic and hyperbolic
forms of the curves representing the new and conserved
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genes according to the sizes of genome datasets, respectively
(Supplementary Data S3 and Supplementary Table S2).
One sample of S. Typhimurium 10CEB498SAL appeared as
potentially contaminated (i.e., total length of 6.26 Mb) and
was deliberately not excluded from the study in order to
demonstrate that the non-parametric approaches applied on
pairwise differences of genomic features provide robust results
independently of all the other tested genomes. In summary,
both genome datasets of S. Typhimurium and S. 1,4,[5],12:i:-
presented similar pangenome constitutions (Table 1).

Evaluation of the Considered Genomic
Features to Distinguish Outbreak (i.e.,
Positive Control: C+ and Non-outbreak
(i.e., Negative Control: C−) Controls
To assess the value of the non-parametric statistical approaches
for FBO analysis, we built four datasets corresponding to four
FBOs that took place in France between 2010 and 2014 (Figure 1
and Supplementary Data S2). For each FBO, our approach
consisted of building two groups of C+ and C− isolated in
the same period of time and comparing them to a set of
strains involved in FBOs of interest (TS) (Figure 1). For each
genomic feature (i.e., ‘SNPs-1,’ ‘SNP-2,’ ‘genes,’ ‘kmers,’ ‘cgMLST,’
and ‘wgMLST’), matrices of pairwise differences were obtained
including all isolates, and the R script ‘matrix2association’ was
run to extract lists of pairwise distances and evaluate the genetic
relatedness (Figure 2) existing between genomes from TS and
these genomes against each tested genome from the C+ and
C− (Figure 3).

In the present study, all the p-values from non-parametric tests
define the likelihood of incorrectly rejecting the null hypothesis:
the absence of statistical differences between samples from TS
and the C+ or C− genomes (i.e., [TS against TS] versus [TS
against C+] or [TS against TS] versus [TS against C−]). In other
words, the statistical tests estimate the probability of excluding
a sample that actually belongs to the outbreak. The important
result is that, for all four outbreaks, the use of non-parametric
tests on pairwise SNP differences (i.e., genomic features SNP-
1 and SNP-2) provides clear discrimination between C+ and
C− samples (Figure 3). The use of the genomic feature ‘SNPs-
1’ allows for the distinguishing of C+ from C− regardless

TABLE 1 | Pangenome constitutions of genome datasets belonging to S.
Typhimurium (n = 66) and S. 1,4,[5],12:i:- (n = 126) involved in the four foodborne
outbreaks of interest.

Localization Range of Number of genes
of genes genomes (%)

S. typhimurium S. 1,4,[5],12:i:-

Core [100,100] 3 794 4 066

Soft core [95,100[ 501 387

Shell [15,95[ 520 209

Cloud [0,15[ 3 192 2 006

Total [0,100[ 8 007 6 668

Assembly and pangenome analyses were performed with ARTWork and Roary,
respectively. Paralogs were retained for downstream analyses.

of the non-parametric test used (Supplementary Data S4
and Supplementary Tables S3, S4). This approach allows a
straightforward grouping of C+, while all C− stay apart.

Interestingly, the SNP-based non-parametric approaches
(SNP-1 or SNP-2) allow for the distinguishing between C+ and
C− even when the TS contained only four isolates (outbreak
#1) (Figures 1, 3). Additionally, the range of p-values of the
SNP-based non-parametric approaches, including (i.e., SNP-1)
or excluding the recombination events (i.e., SNP-2), indicated
that the discrimination between C+ and C− genomes was
improved when more genomes were included in the TS of
outbreak #1 (i.e., 4), #2 (i.e., 6), #3 (i.e., 10), and #4 (i.e., 11)
(Figure 3 and Supplementary Data S4). By contrast, the use of
pairwise differences of ‘genes,’ ‘kmers,’ or ‘wgMLST’ resulted in
overlapping ranges of p-values between C+ and C−, meaning
a higher alpha risk of incorrectly rejecting the null hypothesis
(Supplementary Data S4 and Supplementary Tables S3, S4). It is
interesting to note that the genomic feature ‘cgMLST’ was found
to be as efficient as SNP-1’ and ‘SNP-2’ for the outbreaks #2,
#3, and #4 (Figure 3 and Supplementary Data S4). This result
suggests that the genomic feature ‘cgMLST,’ combined with the
non-parametric tests, is accurate when at least six genomes are
present in the TS (Figures 1, 3).

An interesting feature arose from the analysis of outbreak #4,
where the sample 2013LSAL03045 was associated with C+ (i.e.,
range of p-values: 2.8× 10−2 to 3.4× 10−1) while it was initially
positioned in C−. The sample 2013LSAL03045 was isolated from
the environment (i.e., water off-take) 2 years after outbreak #4
(i.e., July 2011 versus 17 July 2013) in a different geographical area
(i.e., Rhône Alpes versus Normandie) (Supplementary Table S3).
Although no epidemiological evidence relates it to the outbreak,
the statistical analysis brings it closer to the epidemic samples,
suggesting that the SNP-based non-parametric approaches can
reveal unexpected links. This approach is also able to detect
erroneous epidemiological assignation. For instance, the sample
11CEB5591SAL was rejected from C+ in outbreak #4 (i.e.,
p-values between 2.1 × 10−8 and 1.6 × 10−7). This sample
corresponded to a soil sample isolated in the same period and
from the same region that was mistakenly linked to strains
responsible for infections, and it was included in the C+ in our
study (Supplementary Table S3).

Considerations on Non-parametric Tests
By considering the SNP-based non-parametric approach, we
found that the range of p-values defining the C+ and C−
were similar between the WS, KS, and KW tests. For instance
the p-values defining the C+ in outbreak #3 ranged between
2.3 × 10−2 and 9.8 × 10−1, 1.9 × 10−2 and 9.9 × 10−1 as
well as 3.9 × 10−2 and 8.4 × 10−1, while those referring to
C− ranged between 4.5 × 10−7 and 6.4 × 10−5, 1.6 × 10−7

and 1.0 × 10−4 as well as 8.4 × 10−7 and 1.2 × 10−4 for
WS, KS, and KW tests, respectively (Supplementary Data S4
and Supplementary Tables S3, S4). With the notable exceptions
of samples 2013LSAL03045 (i.e., expected C− and identified as
C+) and 11CEB5591SAL (i.e., expected C+ and identified as
C−) mentioned above, all the other tested genomes (i.e., 345)
were successfully assigned as C+ and C− with the SNP-based
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FIGURE 3 | Negative common logarithms of p-values from non-parametric tests: Kolmogorov–Smirnov assessing statistical differences of pairwise differences of
genomic features at the core (i.e., approaches ‘SNPs’ and ‘cgMLST’), accessory (i.e., approaches ‘genes’) and pangenome (i.e., approaches ‘kmers’ and
‘wgMLST’) scales in order to investigate food poisoning outbreaks of 192 S. Typhimurium (i.e., outbreaks #1 and #2; n = 66) and S. 1,4,[5],12:i:- (i.e., outbreaks #3
and #4; n = 126). The ‘SNPs’ approaches were performed including (i.e., ‘SNPs-1’) or excluding (i.e., ‘SNPs-2’) SNPs from recombination events identified with
ClonalFrameML. The R script ‘matrix2association’ estimates statistical differences between two lists of pairwise differences existing across all genomes known to be
involved in a studied outbreak (i.e., outbreak test set: TS) and between these genomes and a tested genome (i.e., outbreak control C+ or non-outbreak control C–)
in order to assign (i.e., absence of statistical differences: H0 conserved), or not (i.e., presence of statistical differences: H0 rejected), this tested genome to the
outbreak of interest. The approaches ‘SNPs-1,’ ‘SNPs-2,’ ‘genes,’ ‘kmers,’ ‘cgMLST,’ and ‘wgMLST’ were performed with the workflows iVARCall2 with and
without ClonalFrameML, ARTWork-Roary, ARTWork-QuickPhylo, and BioNumerics (Applied Maths), respectively.

non-parametric approaches (i.e., ‘SNPs-1’) implementing WS,
KS or KW tests (Supplementary Data S4 and Supplementary
Tables S3, S4).

Effect of the Recombination Events on
the SNP-Based Non-parametric
Approaches
Homologous recombination events may increase the number
of SNPs in the impacted genomic regions. This phenomenon
may thus shift the distributions of pairwise SNP differences
and hinder the non-parametric comparisons of pairwise SNP
differences. In order to assess the impact of homologous
recombination events, we performed the SNP-based non-
parametric approaches including (i.e., ‘SNP-1’) or excluding
(i.e., ‘SNP-2’) the recombination events. Overall, 13 and four
recombination events were detected with ClonalFrameML
(Didelot and Wilson, 2015) across genomes of S. Typhimurium

(i.e., ranging from 404 to 1 194 bp) and its monophasic variant
(i.e., ranging from 532 to 14 597 bp), respectively. Starting with
SNP datasets of 4 818 for S. Typhimurium and 3 204 for its
monophasic variant, the exclusion of recombination events led to
datasets of 4 797 and 3 154 SNPs. The SNP-based non-parametric
approaches provide an accurate assignment of all tested genomes
(i.e., 345) to C+ and C− with either SNPs-1 or SNPs-2 genomic
features (Supplementary Data S4). In summary, the method was
not impacted by the presence of recombination events in our
dataset of genomes.

Reproducibility of the SNP-Based
Non-parametric Approaches
The non-parametric comparisons of pairwise SNP differences
existing between the genomes may be impacted by the selection of
genomes in the outbreak test sets (TS). We tested this hypothesis
by running the SNP-based non-parametric approach for each
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outbreak with three additional randomized replicates of TS. For
all repeated trials, all isolates (i.e., 345) were accurately assigned to
outbreak (C+) or non-outbreak (C−) controls (Supplementary
Data S5). From this random resampling, we can conclude that
the TS composition does not affect the predictive power of
the SNP-based non-parametric approaches, and the method is
consequently robust.

Phylogenomic Reconstruction and
Non-parametric Approaches
The reconstruction of a phylogenomic tree is one of the most
frequently used methods to combine genomic information and
extract evidence during outbreak investigations. To support
the idea that the non-parametric approach reflects and can
easily replace phylogenetic inference to establish the genetic
relatedness of isolates, we performed SNP-based phylogenetic
reconstruction, including recombination events, and used the
tree to report the p-values computed with the WS, KS, or
KW tests (Figure 4). The results depict epidemiological clades
perfectly delineated from context and control samples.

DISCUSSION

Practical Aspects for the Use of
Non-parametric Tests
With regards to our exhaustive comparison of approaches
(‘SNPs-1,’ ‘SNPs-2,’ ‘genes,’ ‘kmers,’ ‘cgMLST,’ and ‘wgMLST’),
we recommend the application of the WS, KS, or KW
tests on pairwise SNP differences in order to distinguish
between outbreak (C+) and non-outbreak (C−) genomes against
genomes from confirmed cases (i.e., outbreak test set: TS). In
the context of real-time outbreak investigations, and according to
Nadon et al. (2017), the genomes unrelated to the FBO of interest
(C−) have to be chosen based on epidemiological information
(i.e., time and place of isolation as close as possible to that of the
outbreak) or genomic proximity using a rapid method like the
kmer approach. From our results, the number of genomes in the
outbreak test set (TS) seem to influence the contrast between C+
and C− p-values. Consequently, the more samples in the TS the
better the discrimination will be. In a real situation, the number
of samples available to investigators will define the TS. However,
it is important to highlight that even with a small number of
samples in TS (i.e., 4 in outbreak #1) the performance of the
non-parametric approach was fully satisfactory.

Some bottlenecks caused by the non-parametric approach
in terms of computational and time requirements remain the
same as with phylogenomic methods: (i) the generation of high
quality genome assembly to obtain ‘genes,’ ‘kmers,’ ‘cgMLST,’ and
‘wgMLST’ data and (ii) the various calling steps to extract ‘SNPs-
1’ and ‘SNP-2’ data (Figure 2). However, the non-parametric
approach makes it possible to eliminate one of the longest
and most complex steps: phylogenetic reconstruction. While
running the R script ‘matrix2association,’ the non-parametric
test outcome is almost instantaneous. For instance, our Linux
network is constituted of 43TB for storage and has 240 threads

distributed across five servers for computing power. This Linux
network allows the execution of assembly (i.e., ARTWork) and
variant calling (iVARCall2) for 96 Salmonella genomes in around
400 min. Both assembly and variant calling represent a similar
duration of execution.

Our results also show that the non-parametric tests cannot
confidently distinguish between outbreak C+ and C− controls
when the ‘genes,’ ‘kmers,’ or ‘wgMLST’ genomic features were
used, while the ‘cgMLST’ genomic feature combined with the
non-parametric tests allowed for the accurate assignation of
controls when TS contained at least six genomes (i.e., outbreak#2,
#3, and #4). By contrast, the SNP genomic features joined to these
non-parametric tests were successful even when TS contains only
four genomes (outbreak#1), as was also supported by several trials
of randomly selected genomes in TS (Supplementary Data S5).
This lower discriminatory power of the cgMLST compared to
the SNP genomic feature might be due to the fact that the SNP
genomic feature includes intergenic and intragenic core variants
(Felten et al., 2017), whereas the cgMLST only integrates core
alleles defined from coding sequences (Pearce et al., 2018).

To date, our conclusions are supported by the datasets of
samples tested in this study. Other datasets will have to be
analyzed in order to generalize the method we adopted in
this study. It is therefore important that genomic outbreak
reference datasets grow in volume and diversity (Timme et al.,
2017). Publicly available reference datasets can be used for
method validation and to gain knowledge of pathogen evolution
over the course of outbreaks. Consequently, our method is
a complementary process through which to compile and
verify these datasets.

Impact of the Rate of Nucleotide
Evolution
All DNA-based phylogenetic tree reconstructions use explicit
statistical models of nucleotide evolution (Yang and Rannala,
2012). The molecular clock does not always tick regularly and
variation in substitution rates may occur for subpopulations
of pathogens experiencing different environmental conditions
(Okoro et al., 2012; Hawkey et al., 2013; Mather et al., 2013).
It is currently not clear if variations occurring during FBO are
due to drift (i.e., neutral evolution) or to a selection process.
Moreover, no outbreak is like any other. The period during
which a pathogen linked to a given source circulates is highly
variable, ranging from a few days (Taylor et al., 2015) to several
years (Lee et al., 2015a). The proposed non-parametric method
theoretically solves these issues (i.e., evolution rate and/or
outbreak duration) because it estimates the statistical differences
of pairwise differences existing between genomes from the
outbreak test set [TS against TS] and pairwise differences existing
between these genomes and a tested genome (i.e., [TS against
C+] or [TS against C−]). That is, these parameters are sampled,
represented and considered within the dataset. If both lists
of pairwise differences increase proportionally because of the
evolutionary rate or FBO duration (i.e., [TS against TS] and
[TS against C+]), the non-parametric test would be able to
correctly conserve (i.e., absence of differences: [TS against TS]
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FIGURE 4 | Phylogenetic inference based on coregenome single nucleotide polymorphisms (SNPs) identified in 192 Salmonella enterica subsp. enterica during
outbreaks in France caused by serovars Typhimurium (A: outbreaks #1 and #2; n = 66) and S. 1,4,[5],12:i:- (B: outbreaks #3 and #4; n = 126) and related p-values
from non-parametric tests WS (i.e., differences of median values), KS (i.e., differences in distributions) and KW (i.e., differences of mean ranks) aiming to access
statistical differences of pairwise SNP differences (i.e., approaches ‘SNPs-1’ including recombination events). The R script ‘matrix2association’ estimates statistical
differences between two lists of pairwise differences existing across all genomes known to be involved in a studied outbreak (i.e., outbreak test set: TS) and between
these genomes and a tested genome (i.e., outbreak control C+ or non-outbreak control C–) in order to assign (i.e., absence of statistical differences: H0 conserved),
or not (i.e., presence of statistical differences: H0 rejected), this tested genome to the outbreak of interest. The SNPs were identified by the workflow ‘iVARCall2’
against the reference genome S. Typhimurium LT2 (NCBI NC_003197.1). The produced pseudogenomes (4,857,432 bp) were inferred using the program ‘RaxML’
based on a bootstrap analysis and search for best-scoring Maximum Likelihood tree with General Time-Reversible model of substitution and the secondary structure
16-state model. Bootstraps higher than 80% are represented at each node.
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versus [TS against C+]) or reject (i.e., presence of differences [TS
against TS] versus [TS against C−]) the null hypothesis. On the
other hand, the environments encountered may be conducive to
growth or, on the contrary, may limit it, and this information
will in most cases be missing during the investigation. These
uncertainties and the heterogeneity of these situations are likely
to affect genome evolution. These elements led to the conclusion
that the definition of threshold values, below which isolates
would be epidemiologically linked, is not of good practice, at
least regarding FBO investigations. Remaining attentive to the
epidemiological traceback information is of major importance
before assuming connections between isolates of different origins
(Pightling et al., 2018), hence their recommendation to be
careful about bootstrap support and tree topology in the context
of phylogenetic approaches. For these reasons, we proposed
a non-parametric approach independent of pairwise difference
thresholds; however, considering the questionable assignment
of samples 11CEB5591SAL and 2013LSAL03045, we support
the conclusion that a good FBO investigation requires sound
epidemiological information.

Dealing With Recombination Events in
the Outbreak Test Set
The impact of recombination events occurring during an
outbreak can artificially increase the pairwise differences between
related samples. This is an important technical issue in genomic
investigations. Thus, other authors studying the largest outbreak
of Legionella pneumophila in Germany strongly recommended
compensating for recombination to distinguish related and
unrelated genomes of the same sequence type based on cgMLST
(Petzold et al., 2017). Similarly, the National Institutes of
Health (NIH) in the United States demonstrated that genomes
of Acinetobacter baumannii strains involved in nosocomial
infections belonged to the same epidemic lineage, though
they have diverged into three sub-lineages mainly driven by
homologous recombination events across 20% of their genomes
(Snitkin et al., 2011). This recommendation also applies to the
non-parametric approach; if recombination events only appear
in a C+ genome the likelihood of wrong assignment to C−
would increase, and the method could fail to assign this sample
to the TS. Although the Salmonella datasets and statistical
approaches used in the present study are relatively insensitive
to recombination events, we recommend that recombination
events from the SNP dataset are excluded to avoid theoretically
spurious assignments.

Independency to the Phylogenomic
Inferences
One of the main difficulties in the more widespread use
of genomics is the variety of procedures and bioinformatics
workflows used to reconstruct sequences and establish genetic
relatedness between strains. Food and environmental reference
laboratories are facing requests from health services to link
clinical strains to food and environmental strains originating
from epidemiological inquiries or surveillance networks. The
objective of any molecular investigation of FBO is to establish

links based on genetic relatedness between clinical and food
isolates while distinguishing them from the circulating unrelated
population. In these situations, the availability of general
guidance to assess the genetic relatedness between isolates
would be of great help. Few current studies compare fast and
inaccurate phylogenomic clustering methods based on distances
(e.g., Neighbour-joining, Unweighted pair group method with
arithmetic mean) to slow and accurate phylogenomic clustering
methods based on characters (e.g., maximum likelihood and
Bayesian) (Lees et al., 2018). Faced with the contemporary debate
about biological veracities and technical feasibility of distances-
versus character-based methods during real-time investigations
of FBO (Sneath and Sokal, 1973), our non-parametric approach
presents the crucial advantage of being completely independent
of the phylogenomic reconstruction methods. Many different
approaches are implemented for genomic analysis of pathogens
in the context of public health investigations. There is still no
evidence that this complex situation will simplify in the near
future. Rather, it is likely that a variety of approaches—‘SNPs’ (i.e.,
the most accurate), ‘genes’ (i.e., the most de novo), ‘alleles’ (i.e., the
most portable) and ‘kmers’ (i.e., the fastest)— implemented in a
variety of pipelines will coexist. A large number of benchmarking
studies that evaluate methods testify to this complex situation.
Thus, to continue the implementation of WGS approaches in
the field of food safety, there is a need for methods that allow
for a reliable quantification of the genetic relatedness between
strains and which maintain dialogue between laboratories using
different pipelines.

What’s Next?
Although transmission dynamics of several outbreaks were
successfully solved thanks to high-resolution genomics, the
contemporary challenge is to describe ongoing outbreaks in
real time based on genomic epidemiology and to lead safety
authorities and public health decision makers to consider
the implementation of automated and integrated genomic
systems (Tang and Gardy, 2014). Many initiatives are moving
in this direction. The Pathogen detection browser of the
GenomeTrakr international genomic reference database of
foodborne pathogens from food and environmental isolates
provides a cluster analysis on a daily basis (Timme et al., 2019), as
it is also the case for PulseNet International network dedicated to
laboratory-based surveillance for food-borne pathogens (Nadon
et al., 2017). In Europe, genomic surveillance of gastrointestinal
infections is implemented on a routine basis by Public Health
England (Mook et al., 2018) or the Austrian Agency for Health
and Food Safety (Pietzka et al., 2019). Transmission events
may be described by rooted phylogenomic reconstructions with
ancient branches presenting clusters of genomes associated with
specific hosts or environmental compartments. However, rooted
phylogenomic reconstructions during an ongoing outbreak
cannot be considered as directional transmission trees because
of the poor statistical support of nodes closed to the final
leaves. A recent algorithm based on a reversible jump Monte-
Carlo Markov Chain proposes a new way to address directional
transmission during ongoing transmission (Didelot et al.,
2017), and this would consequently improve our proposed
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non-parametric approaches with a view to provide a fast,
discriminant and accurate method that is generally applicable to
investigate FBOs.

CONCLUSION

The advantages of WGS led food safety laboratories to generate
phylogenomic trees and to propose genetic distance thresholds to
investigate FBOs. We proposed a novel approach based on non-
parametric tests, which is independent of phylogenomic trees
reconstruction and thresholds of pairwise distances. The proof
of concept was validated by performing a retrospective analysis
of four S. Typhimurium and S. 1,4,[5],12:i:- FBOs. The approach
can be applied to multiple pairwise differences measured at
the coregenome (i.e., SNPs or cgMLST), accessory genome (i.e.,
genes) and pangenome (i.e., kmers or wgMLST) scales.
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DATA S1 | Epidemiological details about the four foodborne outbreaks of S.
Typhimurium (A: n = 66) and S. 1,4,[5],12:i:- (B: n = 126) retrospectively studied.
Strains were selected from the collections of the National Reference Center for
Salmonella (NRC), the ANSES Salmonella Network and the “Direction générale de
l’alimentation” as part of the French Ministry of Agriculture, Food and Forestry.

DATA S2 | Description of the four foodborne outbreaks of interest. Strains were
selected from the collections of the National Reference Center for Salmonella
(NRC), the ANSES Salmonella Network and the “Direction générale de
l’alimentation” as part of the French Ministry of Agriculture, Food and Forestry.

DATA S3 | Number (A) and size (B) of scaffolds, other parameters of assembly
and mapping (C) and number of genes resulting from pangenome analyses (D) of
Salmonella enterica subsp. enterica (i.e., black bars; n = 192) serovars
Typhimurium (i.e., gray bars or on the left side; n = 66) and S. 1,4,[5],12:i:- (i.e.,
white bars or on the right side; n = 126). Assembly, mapping and variant calling,
as well as computing of quality metrics and pangenome analyses were performed
with ARTWork, iVARCall2, Quast-MultiQC and Roary, respectively. Means and
standard deviation are represented.

DATA S4 | Likelihoods of non-parametric tests WS (i.e., differences of median
values), KS (i.e., differences in distributions) and KW (i.e., differences of mean
ranks) assessing statistical differences of pairwise differences of genomic features
at the core (i.e., approaches ‘SNPs-1,’ ‘SNP-2,’ and ‘cgMLST’), accessory (i.e.,
approaches ‘genes’) and pangenome (i.e., approaches ‘kmers’ and ‘wgMLST’)
scales in order to investigate food poisoning outbreaks of 192 S. Typhimurium
(i.e., outbreaks #1 and #2; n = 66) and S. 1,4,[5],12:i:- (i.e., outbreaks #3 and #4;
n = 126). The ‘SNPs’ approaches were performed including (i.e., ‘SNPs-1’) or
excluding (i.e., ‘SNPs-2’) SNPs from recombination events identified with
ClonalFrameML. The R script ‘matrix2association’ estimates statistical differences
between two lists of pairwise differences existing across all genomes known to be
involved in a studied outbreak (i.e., outbreak test set: TS) and between these
genomes and a tested genome (i.e., outbreak control C+ or non-outbreak control
C−) in order to assign (i.e., absence of statistical differences: H0 conserved), or
not (i.e., presence of statistical differences: H0 rejected), this tested genome to the
outbreak of interest. The approaches ‘SNPs-1,’ ‘SNP-2,’ ‘genes,’ ‘kmers,’
‘cgMLST,’ and ‘wgMLST’ were performed with the workflows iVARCall2 with or
without ClonalFrameML, ARTWork-Roary, ARTWork-QuickPhylo, and
BioNumerics (Applied Maths), respectively.

DATA S5 | Reproducibility of negative common logarithms of p-values from
non-parametric tests WS (i.e., differences of median values), KS (i.e., differences in
distributions) and KW (i.e., differences of mean ranks) assessing the statistical
differences of pairwise SNP differences including recombination events (i.e.,
approach ‘SNP-1’) in order to investigate food poisoning outbreaks of 192 S.
Typhimurium (i.e., outbreaks #1 and #2; n = 66) and S. 1,4,[5],12:i:- (i.e.,
outbreaks #3 and #4; n = 126). The R script ‘matrix2association’ estimates
statistical differences between two lists of pairwise differences existing across all
genomes known to be involved in a studied outbreak (i.e., outbreak test set: TS)
and between these genomes and a tested genome (i.e., outbreak control C+ or
non-outbreak control C−) in order to assign (i.e., absence of statistical
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differences: H0 conserved), or not (i.e., presence of statistical differences: H0
rejected), this tested genome to the outbreak of interest. The approach ‘SNPs-1’
was performed with the workflow iVARCall2. In total, four random selections of
samples included in the outbreak test set (TS) were performed in order to access
reproducibility of the non-parametric approaches.

TABLE S1 | Isolates used as outbreak test set (TS) and outbreak control (i.e.,
positive control: C+), both considered as involved in outbreaks of 63 S.
Typhimurium (i.e., outbreaks #1 and #2; n = 20) and S. 1,4,[5],12:i:- (i.e.,
outbreaks #3 and #4; n = 43). The clinical strains were obtained from the National
Reference Center (NRC) for Salmonella at the “Institut Pasteur Paris.” Food,
animal and environmental strains were obtained from the ANSES Salmonella
Network at the French Food Safety Laboratory in Maisons-Alfort.

TABLE S2 | Parameters for the assembly and mapping of the studied genomes of
192 S. Typhimurium (i.e., n = 66) and S. 1,4,[5],12:i:- (i.e., n = 126). Assembly,
mapping and variant calling as well as computing of quality metrics and
pangenome analyses were performed with ARTWork, iVARCall2, Quast-MultiQC,
and Roary, respectively. For both assembly and mapping the reference genome
was Salmonella Typhimurium LT2 (NCBI NC_003197.1).

TABLE S3 | Negative common logarithms of p-values from non-parametric tests
WS (i.e., differences of median values), KS (i.e., differences in distributions), and
KW (i.e., differences of mean ranks) assessing statistical differences of pairwise
differences of genomic features at the core (i.e., approaches ‘SNPs-1,’ ‘SNPs-2,’
and ‘cgMLST’), accessory (i.e., approaches ‘genes’) and pangenome (i.e.,
approaches ‘kmers’ and ‘wgMLST’) scales in order to investigate food poisoning
outbreaks of 192 S. Typhimurium (i.e., outbreaks #1 and #2; n = 66) and S.
1,4,[5],12:i:- (i.e., outbreaks #3 and #4; n = 126). The ‘SNPs’ approaches were
performed including (i.e., ‘SNPs-1’) or excluding (i.e., ‘SNPs-2’) SNPs from
recombination events identified with ClonalFrameML. The R script
‘matrix2association’ estimates statistical differences between two lists of pairwise

differences existing across all genomes known to be involved in a studied
outbreak (i.e., outbreak tested set: TS) and between these genomes and an
unknown genome (i.e., outbreak control C+ or non-outbreak control C−) in order
to assign (i.e., absence of statistical differences: H0 conserved), or not (i.e.,
presence of statistical differences: H0 rejected), this tested genome to the
outbreak of interest. The approaches ‘SNPs-1,’ ‘SNP-2,’ ‘genes,’ ‘kmers,’
‘cgMLST,’ and ‘wgMLST’ were performed with the workflows iVARCall2 with and
without ClonalFrameML, ARTWork-Roary, ARTWork-QuickPhylo, and
BioNumerics (Applied Maths), respectively.

TABLE S4 | Mean, standard deviation (i.e., the signs ‘±’), minimum and maximum
(i.e., in square brackets) of the negative common logarithms of p-values from
non-parametric tests WS (i.e., differences of median values), KS (i.e., differences in
distributions), and KW (i.e., differences of mean ranks) assessing statistical
differences of pairwise differences of genomic features at the core (i.e.,
approaches ‘SNPs-1,’ ‘SNPs-2,’ and ‘cgMLST’), accessory (i.e., approaches
‘genes’) and pangenome (i.e., approaches ‘kmers’ and ‘wgMLST’) scales in order
to investigate food poisoning outbreaks of 192 S. Typhimurium (i.e., outbreaks #1
and #2; n = 66) and S. 1,4,[5],12:i:- (i.e., outbreaks #3 and #4; n = 126). The
‘SNP’ approaches were performed including (i.e., ‘SNPs-1’) or excluding (i.e.,
‘SNPs-2’) SNPs from recombination events identified with ClonalFrameML. The R
script ‘matrix2association’ estimates statistical differences between two lists of
pairwise differences existing across all genomes known to be involved in a studied
outbreak (i.e., outbreak tested set: TS) and between these genomes and a tested
genome (i.e., outbreak control C+ or non-outbreak control C−) in order to assign
(i.e., absence of statistical differences: H0 conserved), or not (i.e., presence of
statistical differences: H0 rejected), this tested genome to the outbreak of interest.
The approaches ‘SNPs-1,’ ‘SNPs-2,’ ‘genes,’ ‘kmers,’ ‘cgMLST,’ and ’wgMLST’
were performed with the workflows iVARCall2 with and without ClonalFrameML,
ARTWork-Roary, ARTWork-QuickPhylo, and BioNumerics (Applied
Maths), respectively.
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