K. A. Datsenko and B. L. Wanner, One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products, P Natl Acad Sci USA, vol.97, pp.6640-6645, 2000.

J. H. Hu, S. M. Miller, M. H. Geurts, W. Tang, L. Chen et al., Evolved Cas9 variants with broad PAM compatibility and high DNA specificity, Nature, vol.556, pp.57-63, 2018.

Y. J. Lee and T. S. Moon, Design rules of synthetic non-coding RNAs in bacteria, Methods, vol.143, pp.58-69, 2018.

Y. Ji, B. Zhang, S. F. Van, P. Horn, G. Warren et al., Identification of critical staphylococcal genes using conditional phenotypes generated by antisense RNA, Science, vol.293, pp.2266-2269, 2001.

J. Meng, G. Kanzaki, D. Meas, C. K. Lam, H. Crummer et al., A genome-wide inducible phenotypic screen identifies antisense RNA constructs silencing Escherichia coli essential genes, FEMS Microbiol. Lett, vol.329, pp.45-53, 2012.

D. Na, S. M. Yoo, H. Chung, H. Park, J. H. Park et al., Metabolic engineering of Escherichia coli using synthetic small regulatory RNAs, Nat. Biotechnol, vol.31, pp.170-174, 2013.

A. A. Green, P. A. Silver, J. J. Collins, and P. Yin, Toehold switches: de-novo-designed regulators of gene expression, Cell, vol.159, pp.925-939, 2014.

S. Jang, S. Jang, J. Yang, S. W. Seo, and G. Y. Jung, RNA-based dynamic genetic controllers: development strategies and applications, Curr. Opin. Biotechnol, vol.53, pp.1-11, 2018.

M. N. Win and C. D. Smolke, A modular and extensible RNA-based gene-regulatory platform for engineering cellular function, Proc. Natl. Acad. Sci. U.S.A, vol.104, pp.14283-14288, 2007.

J. M. Carothers, J. A. Goler, D. Juminaga, and J. D. Keasling, Model-driven engineering of RNA devices to quantitatively program gene expression, Science, vol.334, pp.1716-1719, 2011.

A. Hoynes-o'connor and T. S. Moon, Development of Design Rules for Reliable Antisense RNA Behavior in E. coli, ACS Synth. Biol, vol.5, pp.1441-1454, 2016.

J. Chappell, M. K. Takahashi, and J. B. Lucks, Creating small transcription activating RNAs, Nat. Chem. Biol, vol.11, pp.214-220, 2015.

J. B. Lucks, L. Qi, V. K. Mutalik, D. Wang, and A. P. Arkin, Versatile RNA-sensing transcriptional regulators for engineering genetic networks, Proc. Natl. Acad. Sci. U.S.A, vol.108, pp.8617-8622, 2011.

L. S. Qi, M. H. Larson, L. A. Gilbert, J. A. Doudna, J. S. Weissman et al., Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression, Cell, vol.152, pp.1173-1183, 2013.

D. Bikard, W. Jiang, P. Samai, A. Hochschild, F. Zhang et al., Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system, Nucleic Acids Res, vol.41, pp.7429-7437, 2013.

R. Barrangou, C. Fremaux, H. Deveau, M. Richards, P. Boyaval et al., CRISPR provides acquired resistance against viruses in prokaryotes, Science, vol.315, pp.1709-1712, 2007.

L. A. Marraffini and E. J. Sontheimer, CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea, Nat. Rev. Genet, vol.11, pp.181-190, 2010.

M. Jinek, K. Chylinski, I. Fonfara, M. Hauer, J. A. Doudna et al., A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity, Science, vol.337, pp.816-821, 2012.

K. S. Makarova, Y. I. Wolf, O. S. Alkhnbashi, F. Costa, S. A. Shah et al., An updated evolutionary classification of CRISPR-Cas systems, Nature Reviews Microbiology, vol.13, pp.722-736, 2015.

H. Nishimasu, F. A. Ran, P. D. Hsu, S. Konermann, S. I. Shehata et al., Crystal Structure of Cas9 in Complex with Guide RNA and Target DNA, Cell, vol.156, pp.935-949, 2014.

D. Bikard, A. Hatoum-aslan, D. Mucida, and L. A. Marraffini, CRISPR interference can prevent natural transformation and virulence acquisition during in vivo bacterial infection, Cell Host Microbe, vol.12, pp.177-186, 2012.
URL : https://hal.archives-ouvertes.fr/pasteur-02505336

D. Bikard, C. Euler, W. Jiang, P. M. Nussenzweig, G. W. Goldberg et al., Development of sequence-specific antimicrobials based on programmable CRISPR-Cas nucleases, Nat Biotechnol, vol.32, pp.1146-1150, 2014.

L. Cui and D. Bikard, Consequences of Cas9 cleavage in the chromosome of Escherichia coli, Nucleic Acids Res, vol.44, pp.4243-4251, 2016.
URL : https://hal.archives-ouvertes.fr/pasteur-01967442

R. J. Citorik, M. Mimee, and T. K. Lu, Sequence-specific antimicrobials using efficiently delivered RNA-guided nucleases, Nature Biotechnology, vol.32, pp.1141-1145, 2014.

J. M. Peters, A. Colavin, H. Shi, T. L. Czarny, M. H. Larson et al.,

C. A. Huang, . Gross, and . Comprehensive, CRISPR-based Functional Analysis of Essential Genes in Bacteria, Cell, vol.165, pp.1493-1506, 2016.

X. Liu, C. Gallay, M. Kjos, A. Domenech, J. Slager et al., High-throughput CRISPRi phenotyping identifies new essential genes in Streptococcus pneumoniae, Mol. Syst. Biol, vol.13, p.931, 2017.

L. Cui, A. Vigouroux, F. Rousset, H. Varet, V. Khanna et al., A CRISPRi screen in E. coli reveals sequence-specific toxicity of dCas9, Nat Commun, vol.9, p.1912, 2018.
URL : https://hal.archives-ouvertes.fr/pasteur-01819630

F. Rousset, L. Cui, E. Siouve, C. Becavin, F. Depardieu et al., Genome-wide CRISPR-dCas9 screens in E. coli identify essential genes and phage host factors, PLoS Genet, vol.14, p.1007749, 2018.
URL : https://hal.archives-ouvertes.fr/pasteur-01975438

E. Choudhary, P. Thakur, M. Pareek, and N. Agarwal, Gene silencing by CRISPR interference in mycobacteria, Nat Commun, vol.6, p.6267, 2015.

C. Zhao, X. Shu, and B. Sun, Construction of a Gene Knockdown System Based on Catalytically Inactive, Appl. Environ. Microbiol, vol.83, 2017.

A. M. Mariscal, S. Kakizawa, J. Y. Hsu, K. Tanaka, L. González-gonzález et al., Tuning Gene Activity by Inducible and Targeted Regulation of Gene Expression in Minimal Bacterial Cells, ACS Synth. Biol, vol.7, pp.1538-1552, 2018.

S. Z. Tan, C. R. Reisch, and K. L. Prather, A Robust CRISPR Interference Gene Repression System in Pseudomonas, Journal of Bacteriology, vol.200, pp.575-592, 2018.

T. Wang, C. Guan, J. Guo, B. Liu, Y. Wu et al., Pooled CRISPR interference screening enables genome-scale functional genomics study in bacteria with superior performance, Nat Commun, vol.9, 2018.

X. Dong, Y. Jin, D. Ming, B. Li, H. Dong et al., CRISPR/dCas9-mediated inhibition of gene expression in Staphylococcus aureus, J. Microbiol. Methods, vol.139, pp.79-86, 2017.

S. Horinouchi and B. Weisblum, Nucleotide sequence and functional map of pC194, a plasmid that specifies inducible chloramphenicol resistance, J. Bacteriol, vol.150, pp.815-825, 1982.

W. M. De-vos, Gene cloning in lactic streptococci., Neth. Milk Dairy J, pp.141-154, 1986.

J. Perez-casal, M. G. Caparon, and J. R. Scott, Mry, a trans-acting positive regulator of the M protein gene of Streptococcus pyogenes with similarity to the receptor proteins of two-component regulatory systems, J. Bacteriol, vol.173, pp.2617-2624, 1991.

A. T. Pulliainen, S. Haataja, S. Kähkönen, and J. Finne, Molecular basis of H2O2 resistance mediated by Streptococcal Dpr. Demonstration of the functional involvement of the putative ferroxidase center by site-directed mutagenesis in Streptococcus suis, J. Biol. Chem, vol.278, pp.7996-8005, 2003.

A. V. Bryksin and I. Matsumura, Rational Design of a Plasmid Origin That Replicates Efficiently in Both Gram-Positive and Gram-Negative Bacteria, PLoS One, vol.5, 2010.

L. K. Husmann, J. R. Scott, G. Lindahl, and L. Stenberg, Expression of the Arp protein, a member of the M protein family, is not sufficient to inhibit phagocytosis of Streptococcus pyogenes, Infect. Immun, vol.63, pp.345-348, 1995.

W. M. De-vos, Gene cloning and expression in lactic streptococci, FEMS Microbiology Letters, vol.46, pp.90113-90116, 1987.

R. R. Sanoja, J. Morlon-guyot, and J. P. Guyot, Electrotransformation of Lactobacillus manihotivorans LMG 18010T and LMG 18011, Journal of Applied Microbiology, vol.87, pp.99-107, 1999.

I. Biswas, J. K. Jha, and N. Fromm, Shuttle expression plasmids for genetic studies in Streptococcus mutans, Microbiology, vol.154, pp.2275-2282, 2008.

M. L. Korir, R. A. Flaherty, L. M. Rogers, J. A. Gaddy, D. M. Aronoff et al., Investigation of the Role That NADH Peroxidase Plays in Oxidative Stress Survival in Group B Streptococcus, Front. Microbiol, vol.9, 2018.

G. Demarre, A. Guérout, C. Matsumoto-mashimo, D. A. Rowe-magnus, P. Marlière et al., A new family of mobilizable suicide plasmids based on broad host range R388 plasmid (IncW) and RP4 plasmid (IncPalpha) conjugative machineries and their cognate Escherichia coli host strains, Res. Microbiol, vol.156, pp.245-255, 2005.

L. Ferrieres, G. Hemery, T. Nham, A. Guerout, D. Mazel et al., Silent Mischief: Bacteriophage Mu Insertions Contaminate Products of Escherichia coli Random Mutagenesis Performed Using Suicidal Transposon Delivery Plasmids Mobilized by Broad-Host-Range RP4 Conjugative Machinery, Journal of Bacteriology, vol.192, pp.6418-6427, 2010.
URL : https://hal.archives-ouvertes.fr/pasteur-01372302

J. M. Peters, B. Koo, R. Patino, G. E. Heussler, C. C. Hearne et al., Enabling genetic analysis of diverse bacteria with Mobile-CRISPRi, Nature Microbiology, vol.4, p.244, 2019.

C. Engler, R. Kandzia, and S. Marillonnet, A One Pot, One Step, Precision Cloning Method with High Throughput Capability, PLoS ONE, vol.3, p.3647, 2008.

B. N. Kreiswirth, S. Löfdahl, M. J. Betley, M. O'reilly, P. M. Schlievert et al., The toxic shock syndrome exotoxin structural gene is not detectably transmitted by a prophage, Nature, vol.305, pp.709-712, 1983.

E. A. Boyle, J. O. Andreasson, L. M. Chircus, S. H. Sternberg, M. J. Wu et al., High-throughput biochemical profiling reveals sequence determinants of dCas9 off-target binding and unbinding, Proc Natl Acad Sci, vol.114, pp.5461-5466, 2017.

R. T. Leenay, K. R. Maksimchuk, R. A. Slotkowski, R. N. Agrawal, A. A. Gomaa et al., Identifying and Visualizing Functional PAM Diversity across CRISPR-Cas Systems, vol.62, pp.137-147, 2016.

R. Green and E. J. Rogers, Transformation of Chemically Competent E. coli, pp.329-336, 2013.

R. Novick, Properties of a cryptic high-frequency transducing phage in Staphylococcus aureus, Virology, vol.33, pp.155-166, 1967.

I. R. Monk, J. J. Tree, B. P. Howden, T. P. Stinear, and T. J. Foster, Complete Bypass of Restriction Systems for Major Staphylococcus aureus Lineages, MBio, vol.6, pp.308-323, 2015.

M. Pagels, S. Fuchs, J. Pané-farré, C. Kohler, L. Menschner et al., Redox sensing by a Rex-family repressor is involved in the regulation of anaerobic gene expression in Staphylococcus aureus, Mol. Microbiol, vol.76, pp.1142-1161, 2010.

E. M. Ozbudak, M. Thattai, I. Kurtser, A. D. Grossman, and A. Van-oudenaarden, Regulation of noise in the expression of a single gene, Nat Genet, vol.31, pp.69-73, 2002.

J. Paulsson, Models of stochastic gene expression, Physics of Life Reviews, vol.2, pp.157-175, 2005.

D. G. Gibson, L. Young, R. Chuang, J. C. Venter, C. A. Hutchison et al., Enzymatic assembly of DNA molecules up to several hundred kilobases, Nat. Methods, vol.6, pp.343-345, 2009.

F. St-pierre, L. Cui, D. G. Priest, D. Endy, I. B. Dodd et al., One-step cloning and chromosomal integration of DNA, ACS Synth Biol, vol.2, pp.537-541, 2013.

H. M. Salis, E. A. Mirsky, and C. A. Voigt, Automated design of synthetic ribosome binding sites to control protein expression, Nature Biotechnology, vol.27, pp.946-950, 2009.

I. Farasat, M. Kushwaha, J. Collens, M. Easterbrook, M. Guido et al., Efficient search, mapping, and optimization of multi-protein genetic systems in diverse bacteria, Molecular Systems Biology, vol.10, p.731, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01860867

F. Ceroni, R. Algar, G. Stan, and T. Ellis, Quantifying cellular capacity identifies gene expression designs with reduced burden, Nat Methods, vol.12, pp.415-418, 2015.