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Abstract:  

 

A critical step of placental development is the fusion of trophoblast cells into a multinucleated 

syncytiotrophoblast (ST) layer. Fusion is mediated by Syncytins, proteins deriving from ancestral 

endogenous retroviral envelopes. Elevated levels of type-I Interferons (IFN) during pregnancy are 

associated with intrauterine growth retardation, preterm birth, and fetal demise, but the 

mechanisms are not well understood. Using cultures of human trophoblasts or mouse cells, we show 

that IFN-induced transmembrane proteins (IFITMs), a family of restriction factors blocking the entry 

step of many viruses, impair ST formation and inhibit Syncytin-mediated fusion. Moreover, the IFN 

inducer Poly-IC promotes fetal resorption and placental abnormalities in wild-type, but not in Ifitm-

deleted mice. Thus, excessive levels of IFITMs may mediate pregnancy complications observed 

during congenital infections and other IFN-induced pathologies. 

 

 

Main Text: 

 

The placenta is the primary maternal-fetal barrier, achieving metabolic exchanges, hormone 

production as well as protection from pathogens and the maternal immune system. The placental 

tissue stems from embryonic cytotrophoblasts. The structural and functional unit of human placenta 

is the chorionic villous, that includes proliferative mononuclear villous cytotrophoblasts (VCT) at the 

basement and the syncytiotrophoblast (ST) layer at the surface. The multinuclear ST arises from the 

differentiation and fusion of VCT. In humans, an abnormal ST is observed in pregnancy pathologies 

including intrauterine growth retardation (IUGR), preeclampsia, lupus, and Down syndrome (1-3). In 

contrast to the human placenta, the mouse placenta has a labyrinthic structure and exhibits two ST 

layers that separate fetal capillaries from maternal blood (4). In gestating mice, IFN-β triggered by 

Zika or other viruses, or by administration of Poly-IC, promotes IUGR and fetal demise (2, 5-7). IFN-β 
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signalling leads to abnormal labyrinth and ST structures, with the presence of many unfused cells 

and reduced fetal blood vessels (7). 

Cytotrophoblast fusion is mediated by envelope glycoprotein (env)-derived genes of 

endogenous retroviruses (ERV) that have been domesticated by mammals (3). These genes were 

termed syncytins based on their fusogenic capacity. The capture of syncytin genes, sometimes as 

pairs (Syncytin-1 and -2 in humans and Syncytins-A and -B in mice) (3, 8, 9), occurred independently 

from different ERV in diverse mammalian lineages 10 to 85 million years ago. Knocking out Syncytin-

A or both Syncytin-A/B genes leads to fetal growth restriction and mid-gestational lethality (8, 9). 

The immune-related interferon-induced transmembrane proteins IFITM1, IFITM2, and IFITM3 

are restriction factors that protect uninfected cells from viral infection. They block the entry into 

host cells of many enveloped viruses by inhibiting virus–cell fusion at the hemifusion stage (10-12). 

They act by altering the biophysical properties or cholesterol content of the cellular membranes in 

which they are found (11-13).  IFITM modify the rigidity and/or curvature of the membranes without 

evidence of a direction interaction with fusogenic viral envelopes (11, 12). Due to different sorting 

motifs, IFITM1 mostly resides at the plasma membrane, whereas IFITM2/3 accumulate in the endo-

lysosomal compartment after transiting at the cell surface. IFITM proteins are expressed at various 

basal levels in different cell types and are upregulated by IFNs and other cytokines (11). Besides their 

antiviral activity, the physiological cellular functions of IFITM proteins remain poorly characterized. 

Transgenic mice in which the cluster of Ifitm genes is knocked out (thereafter IfitmDel mice) are 

more sensitive to various viral infections (12), but exhibit no overt abnormalities apart from being a 

little over-weight (14). Not much is known about the impact of IFITMs on fusion events mediated by 

cellular proteins or by ERV-derived Env proteins. Here, we examined whether IFITMs impair 

Syncytin-mediated fusion and thus impact fetal development.  

We first investigated whether IFITMs inhibit cell fusion mediated by exogenously-expressed 

human Syncytins. We generated 293T cells carrying a GFP-Split complementation system, in which 
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two cells separately produce half of the reporter protein, generating a signal only upon fusion 

(Fig. 1A). The extent of fusion was quantified by measuring the GFP-positive area (Fig. 1A). 

Transfection of Syncytin-1 induced the appearance of multinucleated GFP+ cells. Fusion was 

significantly decreased when Syncytin-1 was co-transfected with FLAG-tagged IFITM1, 2, or 3, but 

not with a control plasmid (Fig. 1A). The extent of inhibition of fusion varied between individual 

IFITMs. The IFITM3Δ1-21 and IFITM3∆ub mutants, which lack endocytic and ubiquitination motifs, 

respectively, and accumulate in the cell (15, 16), were more active at inhibiting fusion than WT 

IFITM3. In contrast, an IFITM3∆palm mutant, whose levels are reduced (15, 16), was inactive. The 

co-expression of three IFITMs strongly inhibited fusion (Fig. 1A). IFITMs similarly inhibited fusion 

mediated by Syncytin-2 (Fig. S1A). IFITMs did not decrease the levels of Syncytin-1 in transfected 

cells (Fig. S1B). To distinguish the effect of IFITMs in Syncytin-1+ (donor) cells from that in target cells 

(expressing SLC1A5, the Syncytin-1 receptor), we used an HIV Tat and LTR-luc transactivation co-

culture system, where cell fusion generates luciferase activity (13).  IFITMs inhibited fusion when 

present in either donor and/or target cells (Fig. S1C). 

We next examined the effect of IFITMs on endogenous Syncytins. In trophoblast-like BeWo 

human choriocarcinoma cells, addition of the adenylate cyclase activator forskolin triggers Syncytin-

1 production and syncytium formation (17). To quantify fusion, we generated BeWo cells carrying 

two complementation systems, based on either β-galactosidase-α/ω (β-Gal-α/ω) (Fig. 1B) or GFP-

Split (Fig. S2C). These cells were then transduced with lentiviral vectors to express a control protein 

or FLAG-tagged IFITM1-3 (Fig. S2A and D).  Forskolin triggered fusion and production of β-Gal, 

detected in fixed cells and quantified in cell lysates (Fig. 1 B and Fig. S2B). The fusion efficacy was 

significantly reduced by IFITMs. The presence of IFITMs did not modify BeWo cell growth or alter 

their ability to produce syncytia-independent β-Gal (Fig. S3A-D). Similar results were observed with 

the GFP-based system. A video-microscopy analysis showed delayed and reduced fusion with each 

IFITM (Fig. S2C-E, Movie S1). 
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We next tested the capacity of endogenous IFITMs to block fusion in mouse embryonic 

fibroblasts (MEFs) derived from WT or IfitmDel mice (14). To this aim, MEFs were co-transfected 

with Syncytin-A and GFP plasmids (Fig. 1C, Fig. S4A). Syncytin-A induced numerous and large GFP+ 

syncytia (with up to 20 nuclei) in IfitmDel MEFs, and fewer and smaller syncytia in WT MEFs. 

Transduction of IfitmDel MEFs with a murine Ifitm3 vector (Fig. S4B) restored resistance to fusion 

(Fig. 1C, Fig. S4A). That WT MEFs were poorly sensitive to fusion was likely due to high basal IFITM3 

levels (Fig. S4B). 

We then evaluated the effect of type-I IFN and IFITMs in primary human trophoblasts. We first 

asked whether IFITMs were upregulated by type-I IFN in human placental explants. It has been 

reported that in human mid-term placental chorionic villi explants, addition of IFN-β, but not IFN-λ, 

leads to defects including cellular damage, decreased production of human chorionic gonadotropin 

(hCG), and appearance of syncytial knots (7). In such explants, IFN-β upregulated hundreds of 

Interferon Stimulated Genes (ISGs) including IFITM1 (7). We took advantage of this large set of 

published RNA data to investigate the expression of IFITMs, Syncytins, and their receptors. IFITMs 

were upregulated by IFN-β, when compared to mock and IFN-λ treated explants, whereas Syncytins 

and their receptors were not modulated (Fig. S5). 

These observations were made in whole placental explants where non-trophoblastic cells are 

also present. We thus studied the impact of IFN-β on primary VCT isolated from 8 term human 

placentas. VCT can be cultured up to three days and spontaneously differentiate in multinucleated 

ST (18). Treating VCT with IFN-β (100 or 1000 IU/mL for 48 h) strongly upregulated IFITM1 and 2/3 

proteins, as shown by immunofluorescence and western blot (Fig. S6A, C). IFN-β slightly upregulated 

RNA levels of Syncytin-1 but did not impact those of Syncytin-2 and Syncytin receptors (Fig. S6D). We 

next quantified VCT fusion, using a method based on the detection of the transcription factor GATA3 

by immunofluorescence and its down-regulation upon ST differentiation (18). Cells were also stained 

for E-cadherin, to visualize plasma membranes.  IFN-β inhibited VCT fusion, to the same extent than 
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GW9662, a PPARγ antagonist known to block this process (18) (Fig. 2A,B). As it acts independently of 

IFN signalling, GW9662 did not induce IFITM (Fig. S6A,C). The effect of IFN-ß on ST differentiation 

was supported by a decreased release of hCG, secreted by ST but not by VCT (Fig. 2C). The reduction 

of fusion was not due to a cytotoxic effect of IFN-β, since levels of an apoptosis marker (cCK18), 

were not augmented (Fig.  S6B, C). 

To further assess the effect of IFITMs in this system, VCTs were transfected with a FLAG-

tagged IFITM3 or a control GFP plasmid. The poor efficiency of transfection (10% of the cells 

expressing IFITM or GFP) precluded precise quantification of syncytia. However, a visual examination 

indicated that IFITM3+ cells remained mononucleated, even in vicinity of large syncytia, whereas 

GFP-transfected cells were able to fuse (Fig. S7). Altogether, these results demonstrate that IFN-β 

induces IFITMs in VCT and that both IFN-ß and IFITMs inhibit ST formation. 

We then evaluated the role of IFITM in pregnant mice. Administration of Poly-IC has been 

extensively used as a model of type-I IFN induction, triggering fetal growth retardation and 

resorption (2, 6, 7). We thus tested the effect of Poly-IC in gestating WT, Ifnar-/- or IfitmDel dams 

that have been mated to males of the same genotypes (Fig. 3A). Poly-IC was injected at E7.5, a time 

point that shortly precedes ST formation (about E8.5) (4). A dose of 200 µg, that results in resorption 

of almost all fetuses within 48h (7) was injected. With Poly-IC, WT fetuses, but neither Ifnar-/- nor 

IfitmDel fetuses were resorbed at E9.5 (Fig. 3 B). The fetus size was similar in Ifnar-/- and IfitmDel 

mice (Fig. 3 C, S8) and slightly reduced compared to untreated animals (Fig. 3C, S8). We checked that 

IfitmDel and WT mice similarly responded to Poly-IC, as shown by the induction of various ISGs (Irf7, 

Oas1a, Stat1) measured in the liver at 14h post-injection, indicative of a systemic inflammation (Fig. 

S9B). A local response was also observed in placental extracts of WT mice, which up-regulated 

ifitm1, ifitm3 and Irf7 RNAs. As expected, IfitmDel placentas did not express Ifitm genes but up-

regulated Irf7 (Fig. S9 C). Of note, levels of Syncytin A and B RNAs were not significantly impacted by 

Poly-IC (Fig. S9C). 
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We next performed histological analysis of the placentas to examine the consequences of 

Poly-IC treatment. Placentas from WT and IfitmDel fetuses were stained for E-cadherin to label 

trophoblasts (Fig. 3D). As expected, ST formation was detectable in untreated placenta from both 

WT and IfitmDel fetoplacental units (arrows). In contrast, with Poly-IC, less ST was detected in WT 

placentas, whereas it was still present in IfitmDel placentas. We next triple stained placenta 14h post 

Poly-IC injection for IFITM3, E-cadherin, and CD31 (a marker of endothelial cells) (Fig. S9D). As 

expected, IFITM3 was upregulated in placentas of Poly-IC treated WT mice, but not in IfitmDel mice. 

IFITM3 overexpression upon Poly-IC injection was noticed in CD31 positive E-cadherin negative cells 

(endothelium), and CD31 negative E-cadherin positive cells (trophoblasts), demonstrating that 

IFITM3 is induced in trophoblasts in response to Poly-IC, consistent with in vitro results. 

Altogether, these results strongly suggest that IFITM upregulation in trophoblasts inhibits ST 

formation in vivo, which likely contributes to type-I IFN-associated placental dysfunction and fetal 

demise in mice.  

In summary, we have uncovered a function for the IFITM family of antiviral restriction factors. 

We report that IFITMs impair the fusogenic activity of Syncytins required for ST formation and 

maintenance. Our results provide a possible molecular explanation for placental dysfunctions 

associated with IFN-mediated disorders, such as IUGR and “TORCH” infections (Toxoplasmosis, 

Other, Rubella, Cytomegalovirus, and Herpes) (19). In addition to infection, genetic and auto-

immune interferonopathies such as Aicardi-Goutières syndrome and systemic lupus erythematosus 

(SLE) are associated with pregnancy complications (2). High serum IFN level is a marker of poor 

pregnancy outcome in SLE (20). Down syndrome in trisomy 21 (T21) patients is also associated with 

serious birth defects (1). In vitro, VCT from T21 patients poorly fuse into ST (1). This may be due to 

the location of the IFN receptor on chromosome 21, rendering T21 cells hyper-responsive to IFN (21) 

and thus potentially expressing high amounts of IFITMs. 
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Like other restriction factors, Ifitm genes are polymorphic in humans and primates (11, 12). It 

will be worth determining whether placental pathologies of unknown etiology, such as certain 

preeclampsia or early spontaneous abortions, implicate IFITM proteins and variants. It is also 

tempting to suggest that blockade of IFITMs may represent a possible intervention strategy to 

prevent pregnancy complications linked to interferonopathies.   
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Figure Legends 

Figure 1. IFITMs inhibit Syncytin-mediated cell fusion. (A) Left: 293T-GFP1-10 and -GFP11 

cells were co-cultured at a 1:1 ratio and co-transfected with Syncytin-1 and IFITM or control 

plasmids. Cell fusion was quantified by measuring the GFP+ area at 18h. Middle: Representative 

image. White lines display the GFP area. Right: Quantification of GFP areas. Results are mean±sd 

from 4 independent experiments. Bar: 200 µm. (B) Left: BeWo β-Gal-α and -ω were transduced with 

IFITM or control vectors. Cells were co-cultured at a 1:1 ratio and fusion was induced by Forskolin for 

48h. Right: Fusion index (β-Gal activity) measured with a colorimetric (CPRG) assay. Results are 

mean±sd from 4 independent experiments. (C) Left: WT or IfitmDel MEFs were co-transfected with 

GFP and Syncytin-A plasmids. Syncytia were quantified after 24h. Right: Quantification of syncytia 

(cells with >3 nuclei) per well. Results are mean±sd from 3-6 independent experiments. Statistical 

analysis: One-Way ANOVA, ns: non-significant, ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001, ∗∗∗∗p < 0.0001.  

 

Figure 2. IFN-β inhibits fusion in primary human villous cytotrophoblasts (VCTs). (A) 

Quantification of fusion. Mononucleated VCTs express the nuclear GATA3 protein, downregulated 

after fusion. After 48h, nuclei are visualised by DAPI and plasma membranes with E-Cadherin. 

Representative images are shown.  Syncytia, defined as large cells containing multiple GATA3-

negative nuclei, have been delimited in white. Bar: 50 µm. (B) Fusion index was quantified and 

calculated as (100 − % (number of GATA3+ nuclei/total number of DAPI nuclei) (C) hCG levels in 

culture supernatants at 72h. Results are mean±sd from 8 independent experiments. Statistical 

analysis: One-Way ANOVA, ∗∗∗∗p < 0.0001.  

 

Figure 3. IFITMs are key mediators of IFN induced fetal demise in mice. (A) Gestating dams 

were injected intra-peritoneally with Poly-IC or PBS at E7.5. Number, size and resorption of the 
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embryos were assessed at E9.5. Number of litters: WT PBS: 3, WT Poly-IC: 6, Ifnar-/- PBS: 3, Ifnar-/- 

Poly-IC: 3, IfitmDel PBS: 3, IfitmDel Poly-IC: 7. (B) Percentage of resorption for the indicated 

conditions. Numbers in brackets indicate the number of resorptions/total number of feto-placental 

units. Statistical analysis: Mann-Whitney, ns: non-significant, ∗∗∗∗p < 0.0001. (C) Representative 

images of E9.5 embryos. Bar: 500 µm. (D) WT and IfitmDel placentas (E9.5) stained for E-cadherin 

(red), and Hoechst (blue). White arrows indicate ST. Representative images from 3 independent 

experiments are shown. Bar: 50 µm. 

 


