B. J. Capoccia, A. D. Gregory, and D. C. Link, Recruitment of the inflammatory subset of monocytes to sites of ischemia induces angiogenesis in a monocyte chemoattractant protein-1-dependent fashion, J Leukoc Biol, vol.84, pp.760-768, 2008.

C. Rosales and E. Uribe-querol, Phagocytosis: a fundamental process in immunity, Biomed Res Int, p.9042851, 2017.

E. Kolaczkowska and P. Kubes, Neutrophil recruitment and function in health and inflammation, Nat Rev Immunol, vol.13, pp.159-75, 2013.

V. Brinkmann, U. Reichard, C. Goosmann, B. Fauler, Y. Uhlemann et al., Neutrophil extracellular traps kill bacteria, Science, vol.303, pp.1532-1537, 2004.

V. Kockritz-blickwede, M. Blodkamp, S. Nizet, and V. , Interaction of bacterial exotoxins with neutrophil extracellular traps: impact for the infected host, Front Microbiol, vol.7, p.402, 2016.

L. L. Reber, C. M. Gillis, P. Starkl, F. Jonsson, R. Sibilano et al., Neutrophil myeloperoxidase diminishes the toxic effects and mortality induced by lipopolysaccharide, J Exp Med, vol.214, pp.1249-58, 2017.
URL : https://hal.archives-ouvertes.fr/pasteur-01928589

J. Z. Csepregi, A. Orosz, E. Zajta, O. Kasa, T. Nemeth et al., Myeloid-specific deletion of Mcl-1 yields severely neutropenic mice that survive and breed in homozygous form, J Immunol, vol.201, pp.3793-803, 2018.

O. M. Colvin, An overview of cyclophosphamide development and clinical applications, Curr Pharm Des, vol.5, pp.555-60, 1999.

J. G. Hengstler, A. Hengst, J. Fuchs, B. Tanner, J. Pohl et al., Induction of DNA crosslinks and DNA strand lesions by cyclophosphamide after activation by cytochrome P450 2B1, Mutat Res, vol.373, pp.215-238, 1997.

D. T. Hung, T. F. Jamison, and S. L. Schreiber, Understanding and controlling the cell cycle with natural products, Chem Biol, vol.3, pp.623-662, 1996.

A. F. Zuluaga, B. E. Salazar, C. A. Rodriguez, A. X. Zapata, M. Agudelo et al., Neutropenia induced in outbred mice by a simplified low-dose cyclophosphamide regimen: characterization and applicability to diverse experimental models of infectious diseases, BMC Infect Dis, vol.6, p.55, 2006.

S. Manepalli, J. A. Gandhi, V. V. Ekhar, M. B. Asplund, C. Coelho et al., Characterization of a cyclophosphamide-induced murine model of immunosuppression to study Acinetobacter baumannii pathogenesis, J Med Microbiol, vol.62, pp.1747-54, 2013.

S. Hellman and H. E. Grate, Effect of cyclophosphamide on the murine hematopoietic stem cell compartment as measured by different assay techniques, Blood, vol.38, pp.706-720, 1971.

C. Summers, S. M. Rankin, A. M. Condliffe, N. Singh, A. M. Peters et al., Neutrophil kinetics in health and disease, Trends Immunol, vol.31, pp.318-342, 2010.

C. I. Timar, A. M. Lorincz, and E. Ligeti, Changing world of neutrophils, Pflugers Arch, vol.465, pp.1521-1554, 2013.

J. W. Van't-wout, I. Linde, P. C. Leijh, and R. Van-furth, Effect of irradiation, cyclophosphamide, and etoposide (VP-16) on number of peripheral blood and peritoneal leukocytes in mice under normal conditions and during acute inflammatory reaction, Inflammation, vol.13, pp.1-14, 1989.

G. D. Katkar, M. S. Sundaram, S. K. Naveenkumar, B. Swethakumar, R. D. Sharma et al., NETosis and lack of DNase activity are key factors in Echis carinatus venom-induced tissue destruction, Nat Commun, vol.7, p.11361, 2016.

E. Abraham, A. Carmody, R. Shenkar, and J. Arcaroli, Neutrophils as early immunologic effectors in hemorrhage-or endotoxemia-induced acute lung injury, Am J Physiol Lung Cell Mol Physiol, vol.279, pp.1137-1182, 2000.

M. V. Parsey, R. M. Tuder, and A. E. , Neutrophils are major contributors to intraparenchymal lung IL-1 beta expression after hemorrhage and endotoxemia, J Immunol, vol.160, pp.1007-1020, 1998.

J. Stackowicz, B. Balbino, B. Todorova, O. Godon, B. Iannascoli et al., Evidence that neutrophils do not promote Echis carinatus venom-induced tissue destruction, Nat Commun, vol.9, p.2304, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01900598

E. Wang, M. Simard, N. Ouellet, Y. Bergeron, D. Beauchamp et al., Pathogenesis of pneumococcal pneumonia in cyclophosphamideinduced leukopenia in mice, Infect Immun, vol.70, pp.4226-4264, 2002.

M. Marks, T. Burns, M. Abadi, B. Seyoum, J. Thornton et al., Influence of neutropenia on the course of serotype 8 pneumococcal pneumonia in mice, Infect Immun, vol.75, pp.1586-97, 2007.

J. A. Radford, R. K. Knight, and R. D. Rubens, Mitomycin C and vinblastine in the treatment of advanced breast cancer, Eur J Cancer Clin Oncol, vol.21, pp.1475-1482, 1985.

B. Gigant, C. Wang, R. B. Ravelli, F. Roussi, M. O. Steinmetz et al., Structural basis for the regulation of tubulin by vinblastine, Nature, vol.435, pp.519-541, 2005.
URL : https://hal.archives-ouvertes.fr/hal-02119489

M. A. Jordan, D. Thrower, and L. Wilson, Effects of vinblastine, podophyllotoxin and nocodazole on mitotic spindles. Implications for the role of microtubule dynamics in mitosis, J Cell Sci, vol.102, pp.401-417, 1992.

S. J. Getting, R. J. Flower, and M. Perretti, Inhibition of neutrophil and monocyte recruitment by endogenous and exogenous lipocortin 1, Br J Pharmacol, vol.120, pp.1075-82, 1997.

M. R. Looney, X. Su, J. A. Van-ziffle, C. A. Lowell, and M. A. Matthay, Neutrophils and their Fc gamma receptors are essential in a mouse model of transfusion-related acute lung injury, J Clin Invest, vol.116, pp.1615-1638, 2006.

T. J. Nevalainen, Cytotoxicity of vinblastine and vincristine to pancreatic acinar cells, Virchows Arch B Cell Pathol, vol.18, pp.119-146, 1975.

G. C. Jagetia, H. Krishnamurthy, and P. Jyothi, Evaluation of cytotoxic effects of different doses of vinblastine on mouse spermatogenesis by flow cytometry, Toxicology, vol.112, pp.227-263, 1996.

T. J. Fleming, M. L. Fleming, and T. R. Malek, Selective expression of Ly-6G on myeloid lineage cells in mouse bone marrow. RB6-8C5 mAb to granulocytedifferentiation antigen (Gr-1) detects members of the Ly-6 family, J Immunol, vol.151, pp.2399-408, 1993.

D. M. Lewinsohn, R. F. Bargatze, and E. C. Butcher, Leukocyte-endothelial cell recognition: evidence of a common molecular mechanism shared by neutrophils, lymphocytes, and other leukocytes, J Immunol, vol.138, pp.4313-4334, 1987.

J. Jensen, T. Warner, and E. Balish, Resistance of SCID mice to Candida albicans administered intravenously or colonizing the gut: role of polymorphonuclear leukocytes and macrophages, J Infect Dis, vol.167, pp.912-921, 1993.

Y. Han and J. E. Cutler, Assessment of a mouse model of neutropenia and the effect of an anti-candidiasis monoclonal antibody in these animals, J Infect Dis, vol.175, pp.1169-75, 1997.

K. B. Abbitt, M. J. Cotter, V. C. Ridger, D. C. Crossman, P. G. Hellewell et al., Antibody ligation of murine Ly-6G induces neutropenia, blood flow cessation, and death via complement-dependent and independent mechanisms, J Leukoc Biol, vol.85, pp.55-63, 2009.

K. D. Carr, A. N. Sieve, M. Indramohan, T. J. Break, S. Lee et al., Specific depletion reveals a novel role for neutrophil-mediated protection in the liver during Listeria monocytogenes infection, Eur J Immunol, pp.41-2666, 2011.

R. I. Tepper, R. L. Coffman, and P. Leder, An eosinophil-dependent mechanism for the antitumor effect of interleukin-4, Science, vol.257, pp.548-51, 1992.

J. Matsuzaki, T. Tsuji, K. Chamoto, T. Takeshima, F. Sendo et al., Successful elimination of memory-type CD8+ T cell subsets by the administration of anti-Gr-1 monoclonal antibody in vivo, Cell Immunol, vol.224, pp.98-105, 2003.

M. A. Jutila, F. G. Kroese, K. L. Jutila, A. M. Stall, S. Fiering et al., Ly-6C is a monocyte/macrophage and endothelial cell differentiation antigen regulated by interferon-gamma, Eur J Immunol, vol.18, pp.1819-1845, 1988.

T. L. Walunas, D. S. Bruce, L. Dustin, D. Y. Loh, and J. A. Bluestone, Ly-6C is a marker of memory CD8+ T cells, J Immunol, vol.155, pp.1873-83, 1995.

N. Sato, T. Yahata, K. Santa, A. Ohta, Y. Ohmi et al., Functional characterization of NK1.1 + Ly-6C+ cells, Immunol Lett, vol.54, pp.5-9, 1996.

P. Y. Lee, J. X. Wang, E. Parisini, C. C. Dascher, and P. A. Nigrovic, Ly6 family proteins in neutrophil biology, J Leukoc Biol, vol.94, pp.585-94, 2013.

B. P. Morgan, J. R. Dankert, and A. F. Esser, Recovery of human neutrophils from complement attack: removal of the membrane attack complex by endocytosis and exocytosis, J Immunol, vol.138, pp.246-53, 1987.

J. Morton, B. Coles, K. Wright, A. Gallimore, J. D. Morrow et al., Circulating neutrophils maintain physiological blood pressure by suppressing bacteria and IFNgamma-dependent iNOS expression in the vasculature of healthy mice, Blood, vol.111, pp.5187-94, 2008.

E. J. Baron and R. A. Proctor, Elicitation of peritoneal polymorphonuclear neutrophils from mice, J Immunol Methods, vol.49, pp.305-318, 1982.

T. Chavakis, A. Bierhaus, N. Al-fakhri, D. Schneider, S. Witte et al., The pattern recognition receptor (RAGE) is a counterreceptor for leukocyte integrins: a novel pathway for inflammatory cell recruitment, J Exp Med, vol.198, pp.1507-1522, 2003.

E. Ribechini, P. J. Leenen, and M. B. Lutz, Gr-1 antibody induces STAT signaling, macrophage marker expression and abrogation of myeloid-derived suppressor cell activity in BM cells, Eur J Immunol, vol.39, pp.3538-51, 2009.

K. E. Norman, M. J. Cotter, J. B. Stewart, K. B. Abbitt, M. Ali et al., Combined anticoagulant and antiselectin treatments prevent lethal intravascular coagulation, Blood, vol.101, pp.921-929, 2003.

C. Ma, T. Kapanadze, J. Gamrekelashvili, M. P. Manns, F. Korangy et al., Anti-Gr-1 antibody depletion fails to eliminate hepatic myeloid-derived suppressor cells in tumor-bearing mice, J Leukoc Biol, vol.92, pp.1199-206, 2012.

C. J. Czuprynski, J. F. Brown, N. Maroushek, R. D. Wagner, and H. Steinberg, Administration of anti-granulocyte mAb RB6-8C5 impairs the resistance of mice to Listeria monocytogenes infection, J Immunol, vol.152, pp.1836-1882, 1994.

A. Easton, A. Haque, K. Chu, R. Lukaszewski, and G. J. Bancroft, A critical role for neutrophils in resistance to experimental infection with Burkholderia pseudomallei, J Infect Dis, vol.195, pp.99-107, 2007.

D. Tanaka, T. Kagari, H. Doi, and T. Shimozato, Essential role of neutrophils in anti-type II collagen antibody and lipopolysaccharide-induced arthritis, Immunology, vol.119, pp.195-202, 2006.

L. L. Reber, N. Gaudenzio, P. Starkl, and S. J. Galli, Neutrophils are not required for resolution of acute gouty arthritis in mice, Nat Med, vol.22, pp.1382-1386, 2016.

N. Nishio, Y. Okawa, H. Sakurai, and K. Isobe, Neutrophil depletion delays wound repair in aged mice, Age, vol.30, pp.11-20, 2008.

Y. Tsujimura, K. Obata, K. Mukai, H. Shindou, M. Yoshida et al., Basophils play a pivotal role in immunoglobulin-G-mediated but not immunoglobulin-E-mediated systemic anaphylaxis, Immunity, vol.28, pp.581-590, 2008.

J. M. Daley, A. A. Thomay, M. D. Connolly, J. S. Reichner, and J. E. Albina, Use of Ly6G-specific monoclonal antibody to deplete neutrophils in mice, J Leukoc Biol, vol.83, pp.64-70, 2008.

F. L. Ribeiro-gomes, N. C. Peters, A. Debrabant, and D. L. Sacks, Efficient capture of infected neutrophils by dendritic cells in the skin inhibits the early anti-leishmania response, PLoS Pathog, vol.8, p.1002536, 2012.

J. Faget, G. Boivin, P. Ancey, A. Gkasti, J. Mussard et al., Efficient and specific Ly6G + cell depletion: a change in the current practices toward more relevant functional analyses of neutrophils, bioRxiv, p.498881, 2018.

E. Pollenus, B. Malengier-devlies, L. Vandermosten, T. T. Pham, T. Mitera et al., Limitations of neutrophil depletion by anti-Ly6G antibodies in two heterogenic immunological models, Immunol Lett, vol.212, pp.30-36, 2019.

K. W. Bruhn, K. Dekitani, T. B. Nielsen, P. Pantapalangkoor, and B. Spellberg, Ly6G-mediated depletion of neutrophils is dependent on macrophages, Results Immunol, vol.6, pp.5-7, 2016.

K. Bucher, F. Schmitt, S. E. Autenrieth, I. Dillmann, B. Nurnberg et al., Fluorescent Ly6G antibodies determine macrophage phagocytosis of neutrophils and alter the retrieval of neutrophils in mice, J Leukoc Biol, vol.98, pp.365-72, 2015.

S. K. Wculek and I. Malanchi, Neutrophils support lung colonization of metastasis-initiating breast cancer cells, Nature, vol.528, pp.413-420, 2015.

N. Kawanishi, T. Mizokami, H. Niihara, K. Yada, and K. Suzuki, Neutrophil depletion attenuates muscle injury after exhaustive exercise, Med Sci Sports Exerc, vol.48, pp.1917-1941, 2016.

J. F. Deniset, B. G. Surewaard, W. Y. Lee, and P. Kubes, Splenic Ly6G(high) mature and Ly6G(int) immature neutrophils contribute to eradication of S. pneumoniae, J Exp Med, vol.214, pp.1333-50, 2017.

J. Thomas, S. Gangappa, S. Kanangat, and B. T. Rouse, On the essential involvement of neutrophils in the immunopathologic disease: herpetic stromal keratitis, J Immunol, vol.158, pp.1383-91, 1997.

M. Wojtasiak, D. L. Pickett, M. D. Tate, S. Bedoui, E. R. Job et al., Gr-1+ cells, but not neutrophils, limit virus replication and lesion development following flank infection of mice with herpes simplex virus type-1, Virology, vol.407, pp.143-51, 2010.

C. Shi, T. M. Hohl, I. Leiner, M. J. Equinda, X. Fan et al., Ly6G+ neutrophils are dispensable for defense against systemic Listeria monocytogenes infection, J Immunol, vol.187, pp.5293-5301, 2011.

M. Charmoy, G. Milon, and F. Tacchini-cottier, Role of neutrophils in the early shaping of the Leishmania major specific immune response in experimental murine cutaneous Leishmaniasis, Neutrophils in Infectious Diseases, pp.49-58, 2011.

C. M. Gillis, F. Jonsson, D. A. Mancardi, N. Tu, H. Beutier et al., Mechanisms of anaphylaxis in human low-affinity IgG receptor locus knock-in mice, J Allergy Clin Immunol, vol.139, pp.1253-65, 2017.
URL : https://hal.archives-ouvertes.fr/pasteur-01397927

F. Tacchini-cottier, C. Zweifel, Y. Belkaid, C. Mukankundiye, M. Vasei et al., An immunomodulatory function for neutrophils during the induction of a CD4+ Th2 response in BALB/c mice infected with Leishmania major, J Immunol, vol.165, pp.2628-2664, 2000.

H. Beutier, C. M. Gillis, B. Iannascoli, O. Godon, P. England et al., IgG subclasses determine pathways of anaphylaxis in mice, J Allergy Clin Immunol, vol.139, pp.269-80, 2017.
URL : https://hal.archives-ouvertes.fr/pasteur-01388338

H. Xiao, P. Heeringa, Z. Liu, D. Huugen, P. Hu et al., The role of neutrophils in the induction of glomerulonephritis by anti-myeloperoxidase antibodies, Am J Pathol, vol.167, issue.10, pp.62951-62954, 2005.

E. S. Delyria, R. W. Redline, and T. G. Blanchard, Vaccination of mice against H pylori induces a strong Th-17 response and immunity that is neutrophil dependent, Gastroenterology, vol.136, pp.247-56, 2009.

F. Wu, W. Cao, Y. Yang, and A. Liu, Extensive infiltration of neutrophils in the acute phase of experimental autoimmune encephalomyelitis in C57BL/6 mice, Histochem Cell Biol, vol.133, pp.313-335, 2010.

F. L. Ribeiro-gomes, E. H. Roma, M. B. Carneiro, N. A. Doria, D. L. Sacks et al., Site-dependent recruitment of inflammatory cells determines the effective dose of Leishmania major, Infect Immun, vol.82, pp.2713-2740, 2014.

J. X. Wang, A. M. Bair, S. L. King, R. Shnayder, Y. F. Huang et al., Ly6G ligation blocks recruitment of neutrophils via a ?2-integrin-dependent mechanism, Blood, vol.120, pp.1489-98, 2012.

B. G. Yipp and P. Kubes, Antibodies against neutrophil LY6G do not inhibit leukocyte recruitment in mice in vivo, Blood, vol.121, pp.241-243, 2013.

A. Hasenberg, M. Hasenberg, L. Mann, F. Neumann, L. Borkenstein et al., Catchup: a mouse model for imaging-based tracking and modulation of neutrophil granulocytes, Nat Methods, vol.12, pp.445-52, 2015.

S. Bhattacharyya, L. Xue, S. Devkota, C. E. Morris, S. Tobacman et al., Carrageenan-induced colonic inflammation is reduced in Bcl10 null mice and increased in IL-10-deficient mice, Mediators Inflamm, p.397642, 2013.

R. L. Pagano, M. A. Dias, C. S. Dale, and G. R. , Neutrophils and the calciumbinding protein MRP-14 mediate carrageenan-induced antinociception in mice, Mediators Inflamm, vol.11, pp.203-213, 2002.

T. Springer, G. Galfre, D. S. Secher, and C. Milstein, Mac-1: a macrophage differentiation antigen identified by monoclonal antibody, Eur J Immunol, vol.9, pp.301-307, 1979.

M. Rosas, B. Thomas, M. Stacey, S. Gordon, and P. R. Taylor, The myeloid 7/4-antigen defines recently generated inflammatory macrophages and is synonymous with Ly-6B, J Leukoc Biol, vol.88, pp.169-80, 2010.

W. L. Breslin, K. Strohacker, K. C. Carpenter, D. L. Haviland, and B. K. Mcfarlin, Mouse blood monocytes: standardizing their identification and analysis using CD115, J Immunol Methods, vol.390, pp.1-8, 2013.

K. Moses, J. C. Klein, L. Mann, A. Klingberg, M. Gunzer et al., Survival of residual neutrophils and accelerated myelopoiesis limit the efficacy of antibody-mediated depletion of Ly-6G+ cells in tumor-bearing mice, J Leukoc Biol, vol.99, pp.811-834, 2016.

R. J. Collier, Diphtheria toxin: mode of action and structure, Bacteriol Rev, vol.39, pp.54-85, 1975.

J. G. Naglich, J. E. Metherall, D. W. Russell, and L. Eidels, Expression cloning of a diphtheria toxin receptor: identity with a heparinbinding EGF-like growth factor precursor, Cell, vol.69, pp.1051-61, 1992.

A. M. Pappenheimer, A. A. Harper, M. Moynihan, and J. P. Brockes, Diphtheria toxin and related proteins: effect of route of injection on toxicity and the determination of cytotoxicity for various cultured cells, J Infect Dis, vol.145, pp.94-102, 1982.

M. Saito, T. Iwawaki, C. Taya, H. Yonekawa, M. Noda et al., Diphtheria toxin receptor-mediated conditional and targeted cell ablation in transgenic mice, Nat Biotechnol, vol.19, pp.746-50, 2001.

R. Drazin, J. Kandel, and R. J. Collier, Structure and activity of diphtheria toxin. II Attack by trypsin at a specific site within the intact toxin molecule, J Biol Chem, vol.246, pp.1504-1514, 1971.

M. H. Marnell, S. P. Shia, M. Stookey, and R. K. Draper, Evidence for penetration of diphtheria toxin to the cytosol through a prelysosomal membrane, Infect Immun, vol.44, pp.145-50, 1984.

T. Honjo, Y. Nishizuka, and O. Hayaishi, Diphtheria toxin-dependent adenosine diphosphate ribosylation of aminoacyl transferase II and inhibition of protein synthesis, J Biol Chem, vol.243, pp.3553-3558, 1968.

M. Yamaizumi, E. Mekada, T. Uchida, and Y. Okada, One molecule of diphtheria toxin fragment A introduced into a cell can kill the cell, Cell, vol.15, pp.245-50, 1978.

T. Buch, F. L. Heppner, C. Tertilt, T. J. Heinen, M. Kremer et al., A Cre-inducible diphtheria toxin receptor mediates cell lineage ablation after toxin administration, Nat Methods, vol.2, pp.419-445, 2005.

B. P. Zambrowicz, A. Imamoto, S. Fiering, L. A. Herzenberg, W. G. Kerr et al., Disruption of overlapping transcripts in the ROSA beta geo 26 gene trap strain leads to widespread expression of beta-galactosidase in mouse embryos and hematopoietic cells, Proc Natl Acad Sci, vol.94, pp.3789-94, 1997.

E. Lagasse and I. L. Weissman, Mouse MRP8 and MRP14, two intracellular calcium-binding proteins associated with the development of the myeloid lineage, Blood, vol.79, pp.1907-1922, 1992.

E. Passegue, E. F. Wagner, and I. L. Weissman, JunB deficiency leads to a myeloproliferative disorder arising from hematopoietic stem cells, Cell, vol.119, pp.431-474, 2004.

E. R. Elliott, J. A. Van-ziffle, P. Scapini, B. M. Sullivan, R. M. Locksley et al., Deletion of Syk in neutrophils prevents immune complex arthritis, J Immunol, vol.187, pp.4319-4349, 2011.

C. L. Abram, G. L. Roberge, L. I. Pao, B. G. Neel, and C. A. Lowell, Distinct roles for neutrophils and dendritic cells in inflammation and autoimmunity in motheaten mice, Immunity, vol.38, pp.489-501, 2013.

S. D. Brydges, J. L. Mueller, M. D. Mcgeough, C. A. Pena, A. Misaghi et al., Inflammasome-mediated disease animal models reveal roles for innate but not adaptive immunity, Immunity, vol.30, pp.875-87, 2009.

H. Bouabe, R. Fassler, and J. Heesemann, Improvement of reporter activity by IRES-mediated polycistronic reporter system, Nucleic Acids Res, vol.36, p.28, 2008.

M. Casanova-acebes, N. -. Avila, J. A. Li, J. L. Garcia-silva, S. Balachander et al., Neutrophils instruct homeostatic and pathological states in naive tissues, J Exp Med, vol.215, pp.2778-95, 2018.

E. Bowers, A. Slaughter, P. S. Frenette, R. Kuick, O. M. Pello et al., Granulocyte-derived TNFalpha promotes vascular and hematopoietic regeneration in the bone marrow, Nat Med, vol.24, pp.95-102, 2018.

M. G. Manz and S. Boettcher, Emergency granulopoiesis, Nat Rev Immunol, vol.14, pp.302-316, 2014.

K. Hochweller, J. Striegler, G. J. Hammerling, and N. Garbi, A novel CD11c.DTR transgenic mouse for depletion of dendritic cells reveals their requirement for homeostatic proliferation of natural killer cells, Eur J Immunol, vol.38, pp.2776-83, 2008.

F. Liu, H. Y. Wu, R. Wesselschmidt, T. Kornaga, and D. C. Link, Impaired production and increased apoptosis of neutrophils in granulocyte colonystimulating factor receptor-deficient mice, Immunity, vol.5, pp.491-501, 1996.

J. L. Eyles, M. J. Hickey, M. U. Norman, B. A. Croker, A. W. Roberts et al., A key role for G-CSF-induced neutrophil production and trafficking during inflammatory arthritis, Blood, vol.112, pp.5193-201, 2008.

I. K. Campbell, D. Leong, K. M. Edwards, V. Rayzman, M. Ng et al., Therapeutic targeting of the G-CSF receptor reduces neutrophil trafficking and joint inflammation in antibody-mediated inflammatory arthritis, J Immunol, vol.197, pp.4392-402, 2016.

C. W. Yang, B. S. Strong, M. J. Miller, and E. R. Unanue, Neutrophils influence the level of antigen presentation during the immune response to protein antigens in adjuvants, J Immunol, vol.185, pp.2927-2961, 2010.

C. W. Yang and E. R. Unanue, Neutrophils control the magnitude and spread of the immune response in a thromboxane A2-mediated process, J Exp Med, vol.210, pp.375-87, 2013.

H. Kojima, A. Otani, A. Oishi, Y. Makiyama, S. Nakagawa et al., Granulocyte colony-stimulating factor attenuates oxidative stressinduced apoptosis in vascular endothelial cells and exhibits functional and morphologic protective effect in oxygen-induced retinopathy, Blood, vol.117, pp.1091-100, 2011.

F. Bussolino, J. M. Wang, P. Defilippi, F. Turrini, F. Sanavio et al., Granulocyte-and granulocyte-macrophage-colony stimulating factors induce human endothelial cells to migrate and proliferate, Nature, vol.337, pp.471-474, 1989.

M. J. Christopher and D. C. Link, Granulocyte colony-stimulating factor induces osteoblast apoptosis and inhibits osteoblast differentiation, J Bone Miner Res, vol.23, pp.1765-74, 2008.

D. Lucas, I. Bruns, M. Battista, S. Mendez-ferrer, C. Magnon et al., Norepinephrine reuptake inhibition promotes mobilization in mice: potential impact to rescue low stem cell yields, Blood, vol.119, pp.3962-3967, 2012.

K. J. Eash, A. M. Greenbaum, P. K. Gopalan, and D. C. Link, CXCR2 and CXCR4 antagonistically regulate neutrophil trafficking from murine bone marrow, J Clin Invest, vol.120, pp.2423-2454, 2010.

G. Cacalano, J. Lee, K. Kikly, A. M. Ryan, S. Pitts-meek et al., Neutrophil and B cell expansion in mice that lack the murine IL-8 receptor homolog, Science, vol.265, pp.682-686, 1994.

C. Silvestre-roig, Q. Braster, K. Wichapong, E. Y. Lee, J. M. Teulon et al., CXCR2 knockout mice are protected against DSS-colitis-induced acute kidney injury and inflammation, Am J Physiol Renal Physiol, vol.569, pp.1422-1429, 2013.

D. Rio, L. Bennouna, S. Salinas, J. Denkers, and E. Y. , CXCR2 deficiency confers impaired neutrophil recruitment and increased susceptibility during Toxoplasma gondii infection, J Immunol, vol.167, pp.6503-6512, 2001.

J. P. Jacobs, A. Ortiz-lopez, J. J. Campbell, C. J. Gerard, D. Mathis et al., Deficiency of CXCR2, but not other chemokine receptors, attenuates autoantibody-mediated arthritis in a murine model, Arthritis Rheum, vol.62, pp.1921-1953, 2010.

B. D. Semple, N. Bye, J. M. Ziebell, and M. C. Morganti-kossmann, Deficiency of the chemokine receptor CXCR2 attenuates neutrophil infiltration and cortical damage following closed head injury, Neurobiol Dis, vol.40, pp.394-403, 2010.

W. A. Boisvert, D. M. Rose, K. A. Johnson, M. E. Fuentes, S. A. Lira et al., Up-regulated expression of the CXCR2 ligand KC/GROalpha in atherosclerotic lesions plays a central role in macrophage accumulation and lesion progression, Am J Pathol, vol.168, pp.1385-95, 2006.

J. Hallgren, T. G. Jones, J. P. Abonia, W. Xing, A. Humbles et al., Pulmonary CXCR2 regulates VCAM-1 and antigen-induced recruitment of mast cell progenitors, Proc Natl Acad Sci, vol.104, pp.20478-83, 2007.

J. Reutershan, M. A. Morris, T. L. Burcin, D. F. Smith, D. Chang et al., Critical role of endothelial CXCR2 in LPS-induced neutrophil migration into the lung, J Clin Invest, vol.116, pp.695-702, 2006.

D. P. Dyer, K. Pallas, L. Medina-ruiz, F. Schuette, G. J. Wilson et al., CXCR2 deficient mice display macrophage-dependent exaggerated acute inflammatory responses. Sci Rep, vol.7, p.42681, 2017.

H. Karsunky, H. Zeng, T. Schmidt, B. Zevnik, R. Kluge et al., Inflammatory reactions and severe neutropenia in mice lacking the transcriptional repressor Gfi1, Nat Genet, vol.30, pp.295-300, 2002.

C. B. Gilks, S. E. Bear, H. L. Grimes, and P. N. Tsichlis, Progression of interleukin-2 (IL-2)-dependent rat T cell lymphoma lines to IL-2-independent growth following activation of a gene (Gfi-1) encoding a novel zinc finger protein, Mol Cell Biol, vol.13, pp.1759-68, 1993.

P. A. Zweidler-mckay, H. L. Grimes, M. M. Flubacher, and P. N. Tsichlis, Gfi-1 encodes a nuclear zinc finger protein that binds DNA and functions as a transcriptional repressor, Mol Cell Biol, vol.16, pp.4024-4058, 1996.

H. Karsunky, I. Mende, T. Schmidt, and T. Moroy, High levels of the onco-protein Gfi-1 accelerate T-cell proliferation and inhibit activation induced T-cell death in Jurkat T-cells, Oncogene, vol.21, pp.1571-1580, 2002.

M. Zornig, T. Schmidt, H. Karsunky, A. Grzeschiczek, and T. Moroy, Zinc finger protein GFI-1 cooperates with myc and pim-1 in T-cell lymphomagenesis by reducing the requirements for IL-2, Oncogene, vol.12, pp.1789-801, 1996.

B. Tong, H. L. Grimes, T. Y. Yang, S. E. Bear, Z. Qin et al., The Gfi-1B protooncoprotein represses p21WAF1 and inhibits myeloid cell differentiation, Mol Cell Biol, vol.18, pp.2462-73, 1998.

H. Hock, M. J. Hamblen, H. M. Rooke, D. Traver, R. T. Bronson et al., Intrinsic requirement for zinc finger transcription factor Gfi-1 in neutrophil differentiation, Immunity, vol.18, pp.109-129, 2003.

J. Zhu, D. Jankovic, A. Grinberg, L. Guo, and W. E. Paul, Gfi-1 plays an important role in IL-2-mediated Th2 cell expansion, Proc Natl Acad Sci, vol.103, pp.18214-18223, 2006.

M. Lakso, J. G. Pichel, J. R. Gorman, B. Sauer, Y. Okamoto et al., Efficient in vivo manipulation of mouse genomic sequences at the zygote stage, Proc Natl Acad Sci, vol.93, pp.5860-5865, 1996.

L. Z. Shi, N. S. Kalupahana, M. E. Turnis, G. Neale, H. Hock et al., Inhibitory role of the transcription repressor Gfi1 in the generation of thymus-derived regulatory T cells, Proc Natl Acad Sci, vol.110, pp.3198-205, 2013.

R. Yucel, C. Kosan, F. Heyd, and T. Moroy, Gfi1:green fluorescent protein knockin mutant reveals differential expression and autoregulation of the growth factor independence 1 (Gfi1) gene during lymphocyte development, J Biol Chem, vol.279, pp.40906-40923, 2004.

L. Vassen, U. Duhrsen, C. Kosan, H. Zeng, and T. Moroy, Growth factor independence 1 (Gfi1) regulates cell-fate decision of a bipotential granulocytic-monocytic precursor defined by expression of Gfi1 and CD48

, Am J Blood Res, vol.2, pp.228-270, 2012.

P. A. Monach, P. A. Nigrovic, M. Chen, H. Hock, D. M. Lee et al., Neutrophils in a mouse model of autoantibody-mediated arthritis: critical producers of Fc receptor gamma, the receptor for C5a, and lymphocyte function-associated antigen 1, Arthritis Rheum, vol.62, pp.753-64, 2010.

C. Rathinam, R. Geffers, R. Yucel, J. Buer, K. Welte et al., The transcriptional repressor Gfi1 controls STAT3-dependent dendritic cell development and function, Immunity, vol.22, pp.717-745, 2005.

T. Yasuoka, M. Kuwahara, T. Yamada, S. Maruyama, J. Suzuki et al., The transcriptional repressor Gfi1 plays a critical role in the development of NKT1-and NKT2-type iNKT cells, PLoS ONE, vol.11, 2016.

H. Yang, J. Gan, X. Xie, M. Deng, L. Feng et al., Gfi1-Cre knock-in mouse line: a tool for inner ear hair cell-specific gene deletion, Genesis, vol.48, pp.400-406, 2010.

D. Wallis, M. Hamblen, Y. Zhou, K. J. Venken, A. Schumacher et al., The zinc finger transcription factor Gfi1, implicated in lymphomagenesis, is required for inner ear hair cell differentiation and survival, Development, vol.130, pp.221-253, 2003.

S. Geissler, M. Textor, S. Stumpp, S. Seitz, A. Lekaj et al., Loss of murine Gfi1 causes neutropenia and induces osteoporosis depending on the pathogen load and systemic inflammation, PLoS ONE, vol.13, p.198510, 2018.

D. Ordonez-rueda, F. Jonsson, D. A. Mancardi, W. Zhao, A. Malzac et al., A hypomorphic mutation in the Gfi1 transcriptional repressor results in a novel form of neutropenia, Eur J Immunol, vol.42, pp.2395-408, 2012.

B. N. Jaeger, J. Donadieu, C. Cognet, C. Bernat, D. Ordonez-rueda et al., Neutrophil depletion impairs natural killer cell maturation, function, and homeostasis, J Exp Med, vol.209, pp.565-80, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00685480

R. Sporri, N. Joller, H. Hilbi, and A. Oxenius, A novel role for neutrophils as critical activators of NK cells, J Immunol, vol.181, pp.7121-7151, 2008.

D. A. Mancardi, F. Jonsson, B. Iannascoli, H. Khun, N. Van-rooijen et al., Cutting Edge: the murine high-affinity IgG receptor FcgammaRIV is sufficient for autoantibody-induced arthritis, J Immunol, vol.186, pp.1899-903, 2011.

C. G. Cochrane, W. O. Weigle, and F. J. Dixon, The role of polymorphonuclear leukocytes in the initiation and cessation of the Arthus vasculitis, J Exp Med, vol.110, pp.481-94, 1959.

B. P. Hurrell, I. B. Regli, and F. Tacchini-cottier, Different Leishmania species drive distinct neutrophil functions, Trends Parasitol, vol.32, pp.392-401, 2016.

R. Mora-cartin, C. Gutierrez-jimenez, A. Alfaro-alarcon, E. Chaves-olarte, C. Chacon-diaz et al., Neutrophils dampen adaptive immunity in brucellosis, Infect Immun, vol.87, pp.118-137, 2019.

D. A. Moulding, J. A. Quayle, C. A. Hart, and S. W. Edwards, Mcl-1 expression in human neutrophils: regulation by cytokines and correlation with cell survival, Blood, vol.92, pp.2495-502, 1998.

D. El-kebir, A. Damlaj, and J. G. Filep, Toll-like receptor 9 signaling delays neutrophil apoptosis by increasing transcription of Mcl-1, PLoS ONE, vol.9, p.87006, 2014.

S. J. Leuenroth, P. S. Grutkoski, A. Ayala, and H. H. Simms, The loss of Mcl-1 expression in human polymorphonuclear leukocytes promotes apoptosis, J Leukoc Biol, vol.68, pp.158-66, 2000.

B. E. Clausen, C. Burkhardt, W. Reith, R. Renkawitz, and I. Forster, Conditional gene targeting in macrophages and granulocytes using LysMcre mice, Transgenic Res, vol.8, pp.265-77, 1999.

I. Dzhagalov, A. St-john, and Y. W. He, The antiapoptotic protein Mcl-1 is essential for the survival of neutrophils but not macrophages, Blood, vol.109, pp.1620-1626, 2007.

F. C. Weber, T. Nemeth, J. Z. Csepregi, A. Dudeck, A. Roers et al., Neutrophils are required for both the sensitization and elicitation phase of contact hypersensitivity, J Exp Med, vol.212, pp.15-22, 2015.

K. U. Birkenkamp and P. J. Coffer, FOXO transcription factors as regulators of immune homeostasis: molecules to die for?, J Immunol, vol.171, pp.1623-1632, 2003.

L. Lin, J. D. Hron, and S. L. Peng, Regulation of NF-kappaB, Th activation, and autoinflammation by the forkhead transcription factor Foxo3a, Immunity, vol.21, pp.203-216, 2004.

H. Jonsson, P. Allen, and S. L. Peng, Inflammatory arthritis requires Foxo3a to prevent Fas ligand-induced neutrophil apoptosis, Nat Med, vol.11, pp.666-71, 2005.

Y. Aratani, H. Koyama, S. Nyui, K. Suzuki, F. Kura et al., Severe impairment in early host defense against Candida albicans in mice deficient in myeloperoxidase, Infect Immun, vol.67, pp.1828-1864, 1999.

A. Belaaouaj, R. Mccarthy, M. Baumann, Z. Gao, T. J. Ley et al., Mice lacking neutrophil elastase reveal impaired host defense against gram negative bacterial sepsis, Nat Med, vol.4, pp.615-623, 1998.

M. Brennan, A. Gaur, A. Pahuja, A. J. Lusis, and W. F. Reynolds, Mice lacking myeloperoxidase are more susceptible to experimental autoimmune encephalomyelitis, J Neuroimmunol, vol.112, pp.97-105, 2001.

D. Araujo, T. H. Okada, S. S. Ghosn, E. E. Taniwaki, N. N. Rodrigues et al., Intracellular localization of myeloperoxidase in murine peritoneal B-lymphocytes and macrophages, Cell Immunol, vol.281, pp.27-30, 2013.

K. D. Metzler, T. A. Fuchs, W. M. Nauseef, D. Reumaux, J. Roesler et al., Myeloperoxidase is required for neutrophil extracellular trap formation: implications for innate immunity, Blood, vol.117, pp.953-962, 2011.

E. Kolaczkowska, C. N. Jenne, B. G. Surewaard, A. Thanabalasuriar, W. Y. Lee et al., Molecular mechanisms of NET formation and degradation revealed by intravital imaging in the liver vasculature, Nat Commun, vol.6, p.6673, 2015.

J. Rossaint, J. M. Herter, H. Van-aken, M. Napirei, Y. Doring et al., Synchronized integrin engagement and chemokine activation is crucial in neutrophil extracellular trap-mediated sterile inflammation, Blood, vol.123, pp.2573-84, 2014.

R. E. Young, R. D. Thompson, K. Y. Larbi, M. La, C. E. Roberts et al., Neutrophil elastase (NE)-deficient mice demonstrate a non-redundant role for NE in neutrophil migration, generation of proinflammatory mediators, and phagocytosis in response to zymosan particles in vivo, J Immunol, vol.172, pp.4493-502, 2004.

D. M. Macivor, S. D. Shapiro, C. T. Pham, A. Belaaouaj, S. N. Abraham et al., Normal neutrophil function in cathepsin G-deficient mice, Blood, vol.94, pp.4282-93, 1999.

S. Hemmers, J. R. Teijaro, S. Arandjelovic, and K. A. Mowen, PAD4-mediated neutrophil extracellular trap formation is not required for immunity against influenza infection, PLoS ONE, vol.6, 2011.

P. Li, M. Li, M. R. Lindberg, M. J. Kennett, N. Xiong et al., PAD4 is essential for antibacterial innate immunity mediated by neutrophil extracellular traps, J Exp Med, vol.207, pp.1853-62, 2010.

K. Nakashima, S. Arai, A. Suzuki, Y. Nariai, T. Urano et al., PAD4 regulates proliferation of multipotent haematopoietic cells by controlling c-myc expression, Nat Commun, vol.4, p.1836, 2013.

C. Tanikawa, M. Espinosa, A. Suzuki, K. Masuda, K. Yamamoto et al., Regulation of histone modification and chromatin structure by the p53-PADI4 pathway, Nat Commun, vol.3, p.676, 2012.

O. Efimova, P. Szankasi, and T. W. Kelley, Ncf1 (p47phox) is essential for direct regulatory T cell mediated suppression of CD4+ effector T cells, PLoS ONE, vol.6, 2011.

K. A. Gelderman, M. Hultqvist, L. M. Olsson, K. Bauer, A. Pizzolla et al., Rheumatoid arthritis: the role of reactive oxygen species in disease development and therapeutic strategies, Antioxid Redox Signal, vol.9, pp.1541-67, 2007.

C. K. Huang, L. Zhan, M. O. Hannigan, Y. Ai, and T. L. Leto, P47(phox)-deficient NADPH oxidase defect in neutrophils of diabetic mouse strains, C57BL/6J-m db/db and db/+, J Leukoc Biol, vol.67, pp.210-215, 2000.

M. Hultqvist, P. Olofsson, J. Holmberg, B. T. Backstrom, J. Tordsson et al., Enhanced autoimmunity, arthritis, and encephalomyelitis in mice with a reduced oxidative burst due to a mutation in the Ncf1 gene, Proc Natl Acad Sci, vol.101, pp.12646-51, 2004.

O. Sareila, N. Jaakkola, P. Olofsson, T. Kelkka, and R. Holmdahl, Identification of a region in p47phox/NCF1 crucial for phagocytic NADPH oxidase (NOX2) activation, J Leukoc Biol, vol.93, pp.427-462, 2013.

K. Karatepe, H. Zhu, X. Zhang, R. Guo, H. Kambara et al., Proteinase 3 limits the number of hematopoietic stem and progenitor cells in murine bone marrow, Stem Cell Reports, vol.11, pp.1092-105, 2018.

P. P. Ward, M. Mendoza-meneses, P. W. Park, and O. M. Conneely, Stimulusdependent impairment of the neutrophil oxidative burst response in lactoferrin-deficient mice, Am J Pathol, vol.172, pp.1019-1048, 2008.

P. P. Ward, M. Mendoza-meneses, G. A. Cunningham, and O. M. Conneely, Iron status in mice carrying a targeted disruption of lactoferrin, Mol Cell Biol, vol.23, pp.178-85, 2003.

Q. Ye, Y. Zheng, S. Fan, Z. Qin, N. Li et al., Lactoferrin deficiency promotes colitis-associated colorectal dysplasia in mice, PLoS ONE, vol.9, p.103298, 2014.

B. Korkmaz, T. Moreau, and F. Gauthier, Neutrophil elastase, proteinase 3 and cathepsin G: physicochemical properties, activity and physiopathological functions, Biochimie, vol.90, pp.227-269, 2008.

J. Tkalcevic, M. Novelli, M. Phylactides, J. P. Iredale, A. W. Segal et al., Impaired immunity and enhanced resistance to endotoxin in the absence of neutrophil elastase and cathepsin G, Immunity, vol.12, pp.201-211, 2000.

I. Hahn, A. Klaus, A. K. Janze, K. Steinwede, N. Ding et al.,

, Cathepsin G and neutrophil elastase play critical and non-redundant roles in lung-protective immunity against Streptococcus pneumoniae in mice, Infect Immun, vol.79, pp.4893-901, 2011.

K. Kessenbrock, L. Frohlich, M. Sixt, T. Lammermann, H. Pfister et al., Proteinase 3 and neutrophil elastase enhance inflammation in mice by inactivating antiinflammatory progranulin, J Clin Invest, vol.118, pp.2438-2485, 2008.

A. Strzepa, K. A. Pritchard, and B. N. Dittel, Myeloperoxidase: a new player in autoimmunity, Cell Immunol, vol.317, pp.1-8, 2017.

S. Gao, H. Zhu, X. Zuo, and H. Luo, Cathepsin G and its role in inflammation and autoimmune diseases, Arch Rheumatol, vol.33, pp.498-504, 2018.

M. El-shikh, E. Sayed, R. Nerviani, A. Goldmann, K. John et al., Extracellular traps and PAD4 released by macrophages induce citrullination and auto-antibody production in autoimmune arthritis, J Autoimmun, vol.105, p.102297, 2019.

W. Lee, S. Y. Ko, M. S. Mohamed, H. A. Kenny, E. Lengyel et al., Neutrophils facilitate ovarian cancer premetastatic niche formation in the omentum, J Exp Med, vol.216, pp.176-94, 2019.

T. Nemeth, K. Futosi, C. Sitaru, J. Ruland, and A. Mocsai, Neutrophilspecific deletion of the CARD9 gene expression regulator suppresses autoantibody-induced inflammation in vivo, Nat Commun, vol.7, p.11004, 2016.

J. P. Eiserich, S. Baldus, M. L. Brennan, W. Ma, C. Zhang et al., Myeloperoxidase, a leukocyte-derived vascular NO oxidase, Science, vol.296, pp.2391-2395, 2002.

S. Gross, S. T. Gammon, B. L. Moss, D. Rauch, J. Harding et al., Bioluminescence imaging of myeloperoxidase activity in vivo, Nat Med, vol.15, pp.455-61, 2009.

F. Jönsson, D. A. Mancardi, Y. Kita, H. Karasuyama, B. Iannascoli et al., Mouse and human neutrophils induce anaphylaxis, J Clin Invest, vol.121, pp.1484-96, 2011.

H. S. Alshetaiwi, S. Balivada, T. B. Shrestha, M. Pyle, M. T. Basel et al., Luminol-based bioluminescence imaging of mouse mammary tumors, J Photochem Photobiol B, vol.127, pp.223-231, 2013.

S. Wirtz, V. Popp, M. Kindermann, K. Gerlach, B. Weigmann et al., Chemically induced mouse models of acute and chronic intestinal inflammation, Nat Protoc, vol.12, pp.1295-309, 2017.

S. Kossodo, J. Zhang, K. Groves, G. J. Cuneo, E. Handy et al., Noninvasive in vivo quantification of neutrophil elastase activity in acute experimental mouse lung injury, Int J Mol Imaging, p.581406, 2011.

A. S. Ho, C. H. Chen, C. C. Cheng, C. C. Wang, H. C. Lin et al., Neutrophil elastase as a diagnostic marker and therapeutic target in colorectal cancers, Oncotarget, vol.5, pp.473-80, 2014.

L. Xiao, Y. Zhang, S. S. Berr, M. D. Chordia, P. Pramoonjago et al., A novel near-infrared fluorescence imaging probe for in vivo neutrophil tracking, Mol Imaging, vol.11, pp.372-82, 2012.

X. Q. Wang, X. M. Duan, L. H. Liu, Y. Q. Fang, and Y. Tan, Carboxyfluorescein diacetate succinimidyl ester fluorescent dye for cell labeling, Acta Biochim Biophys Sin, vol.37, pp.379-85, 2005.

J. Liese, S. H. Rooijakkers, J. A. Van-strijp, R. P. Novick, and M. L. Dustin, Intravital two-photon microscopy of host-pathogen interactions in a mouse model of Staphylococcus aureus skin abscess formation, Cell Microbiol, vol.15, pp.891-909, 2013.

M. F. Bennewitz, S. C. Watkins, and P. Sundd, Quantitative intravital twophoton excitation microscopy reveals absence of pulmonary vaso-occlusion in unchallenged Sickle Cell Disease mice, Intravital, vol.3, p.29748, 2014.

J. G. Egen, A. G. Rothfuchs, C. G. Feng, N. Winter, A. Sher et al., Macrophage and T cell dynamics during the development and disintegration of mycobacterial granulomas, Immunity, vol.28, pp.271-84, 2008.

J. Orthgiess, M. Gericke, K. Immig, A. Schulz, J. Hirrlinger et al., Neurons exhibit Lyz2 promoter activity in vivo: implications for using LysM-Cre mice in myeloid cell research, Eur J Immunol, vol.46, pp.1529-1561, 2016.

D. A. Hume, Applications of myeloid-specific promoters in transgenic mice support in vivo imaging and functional genomics but do not support the concept of distinct macrophage and dendritic cell lineages or roles in immunity, J Leukoc Biol, vol.89, pp.525-563, 2011.

M. Drechsler, R. T. Megens, M. Van-zandvoort, C. Weber, and O. Soehnlein, Hyperlipidemia-triggered neutrophilia promotes early atherosclerosis, Circulation, vol.122, pp.1837-1882, 2010.

L. Madisen, T. A. Zwingman, S. M. Sunkin, S. W. Oh, H. A. Zariwala et al., A robust and high-throughput Cre reporting and characterization system for the whole mouse brain, Nat Neurosci, vol.13, pp.133-173, 2010.

S. Yousefi, D. Stojkov, N. Germic, D. Simon, X. Wang et al., Untangling "NETosis" from NETs, Eur J Immunol, vol.49, pp.221-228, 2019.

R. T. Megens, S. Vijayan, D. Lievens, Y. Doring, M. A. Van-zandvoort et al., Presence of luminal neutrophil extracellular traps in atherosclerosis, Thromb Haemost, vol.107, pp.597-605, 2012.

M. E. Lachowicz-scroggins, E. M. Dunican, A. R. Charbit, W. Raymond, M. R. Looney et al., Extracellular DNA, neutrophil extracellular traps, and inflammasome activation in severe asthma, Am J Respir Crit Care Med, vol.199, pp.1076-85, 2019.

F. Jonsson, L. De-chaisemartin, V. Granger, A. Gouel-cheron, C. M. Gillis et al., An IgG-induced neutrophil activation pathway contributes to human drug-induced anaphylaxis, Sci Transl Med, vol.11, 2019.
URL : https://hal.archives-ouvertes.fr/pasteur-02294649

D. Boer, O. J. Li, X. Teeling, P. Mackaay, C. Ploegmakers et al., Neutrophils, neutrophil extracellular traps and interleukin-17 associate with the organisation of thrombi in acute myocardial infarction, Thromb Haemost, vol.109, pp.290-297, 2013.

D. Buhr, N. , V. Kockritz-blickwede, and M. , How neutrophil extracellular traps become visible, J Immunol Res, p.4604713, 2016.

Y. Doring, H. D. Manthey, M. Drechsler, D. Lievens, R. T. Megens et al., Auto-antigenic protein-DNA complexes stimulate plasmacytoid dendritic cells to promote atherosclerosis, Circulation, vol.125, pp.1673-83, 2012.

B. Mcdonald, R. Urrutia, B. G. Yipp, C. N. Jenne, and P. Kubes, Intravascular neutrophil extracellular traps capture bacteria from the bloodstream during sepsis, Cell Host Microbe, vol.12, pp.324-357, 2012.

B. G. Yipp, B. Petri, D. Salina, C. N. Jenne, B. N. Scott et al., Infectioninduced NETosis is a dynamic process involving neutrophil multitasking in vivo, Nat Med, vol.18, pp.1386-93, 2012.

K. Tanaka, Y. Koike, T. Shimura, M. Okigami, S. Ide et al., In vivo characterization of neutrophil extracellular traps in various organs of a murine sepsis model, PLoS ONE, vol.9, p.111888, 2014.

V. Bruhl, M. L. Stark, K. Steinhart, A. Chandraratne, S. et al., Monocytes, neutrophils, and platelets cooperate to initiate and propagate venous thrombosis in mice in vivo, J Exp Med, vol.209, pp.819-854, 2012.

B. N. Porto and R. T. Stein, Neutrophil extracellular traps in pulmonary diseases: too much of a good thing? Front Immunol, vol.7, p.311, 2016.

V. Delgado-rizo, M. A. Martinez-guzman, L. Iniguez-gutierrez, A. Garcia-orozco, A. Alvarado-navarro et al., Neutrophil extracellular traps and its implications in inflammation: an overview. Front Immunol, vol.8, p.81, 2017.