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Abstract

Homologous recombination events between circular chromosomes, occurring during or after replication, can generate dimers
that need to be converted to monomers prior to their segregation at cell division. In Escherichia coli, chromosome dimers are
converted to monomers by two paralogous site-specific tyrosine recombinases of the Xer family (XerC/D). The Xer
recombinases act at a specific dif site located in the replication termination region, assisted by the cell division protein FtsK.
This chromosome resolution system has been predicted in most Bacteria and further characterized for some species. Archaea
have circular chromosomes and an active homologous recombination system and should therefore resolve chromosome
dimers. Most archaea harbour a single homologue of bacterial XerC/D proteins (XerA), but not of FtsK. Therefore, the role of
XerA in chromosome resolution was unclear. Here, we have identified dif-like sites in archaeal genomes by using a
combination of modeling and comparative genomics approaches. These sites are systematically located in replication
termination regions. We validated our in silico prediction by showing that the XerA protein of Pyrococcus abyssi specifically
recombines plasmids containing the predicted dif site in vitro. In contrast to the bacterial system, XerA can recombine dif sites
in the absence of protein partners. Whereas Archaea and Bacteria use a completely different set of proteins for chromosome
replication, our data strongly suggest that XerA is most likely used for chromosome resolution in Archaea.
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Introduction

In Bacteria, homologous recombination is essential during DNA

replication to resume stalled replication forks and to repair DNA

double and single strand breaks. Odd numbers of homologous

recombination events between circular chromosomes generate

dimers, which need to be resolved to ensure proper segregation in

daughter cells. In Escherichia coli two paralogous site-specific

tyrosine recombinases XerC and XerD were shown to convert

chromosome dimers to monomers [1] by acting at a specific DNA

recombination site, dif, located close to the replication termination

region [2–4]. Homologues of XerCD are widespread in the

bacterial domain, and dif sites have been characterized in several

Proteobacteria and Firmicutes [5–10]. dif sites are semi-conserva-

tive inverted repeats formed by two arms (Xer protein binding

sites) of 11 base pairs [11], separated by a spacer of 6 bp and are

fairly conserved among Bacteria [5]. In Proteobacteria the XerCD

activity is tightly regulated by the cell division protein FtsK, a

DNA translocase anchored at the division septum [12–15]. In E.

coli, 8 bp G-rich polar sequence elements (KOPS) direct FtsK

translocation on DNA [16–19]. KOPS are oriented from the

origin of replication towards dif where their polarity is precisely

inverted. FtsK DNA translocation is therefore always oriented

towards the dif site and dif sites carried on a chromosome dimer

are brought together at midcell. FtsK further controls chromo-

some dimer resolution by activating XerD activity through

protein-protein interactions [20,21]. In several Lactococcus and

Streptococcus strains, the canonical bacterial XerCD-dif system has

been replaced by a single tyrosine recombinase, XerS (distantly

related to XerCD) whose gene is located next to its specific dif-like

site and localized at the terminus of replication [22]. Strikingly,

this XerS-dif-like system still depends on the KOPS-oriented FtsK

activity to form the synaptic complex for recombination [22].

Archaea harbour circular chromosomes and have an active

homologous recombination system [23]. Therefore, they are

expected to resolve chromosomal dimers to ensure proper

chromosome segregation. It was previously reported that most

archaeal genomes encode a single protein homologous to bacterial

XerCD [24]; however, none encode a FtsK homologue. It is thus

unclear whether archaeal Xer-like proteins (hereafter called

XerA) are involved in chromosome resolution in Archaea, as in

Bacteria.

In order to determine whether XerA is involved in chromosome

resolution, we performed an in silico search for XerA specific
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recombination dif-like sites in four closely related archaeal

genomes from Thermococcales. We identified a highly conserved

28 bp sequence that shares 14 out of 28 bases with characterized

bacterial dif sites. The predicted dif sites are systematically located

in the replication termination regions of the four genomes. The

same analysis performed on three Sulfolobales genomes revealed

that a similar site is also present in this crenarchaeotal species. We

further identified short polarized sequences that point towards the

predicted dif sites in Thermococcales genomes. We validated the in

silico predictions by showing that a purified recombinant XerA

protein from Pyrococcus abyssi specifically recombines plasmids

carrying the predicted dif site of this archaeon. The recombination

activity did not require the presence of any protein partner, in

contrast to bacterial Xer-mediated recombination. Our data

strongly suggest that XerA is most likely used for chromosome

resolution in Archaea.

Results

The majority (88%) of archaeal genomes sequenced so far

(KEGG database [25]) harbour single orthologues of the bacterial

XerCD recombinases. Alignments of several bacterial XerCD

proteins with XerA proteins from different Archaea revealed that

they share a conserved C-terminal domain where the catalytic site

(Figure S1) is located. The six catalytic residues (R-K-H-R-[H/

W]-Y) characteristic of tyrosine recombinases [26] are perfectly

conserved in archaeal XerA proteins [24].

The more variable outer sequences of the bacterial dif sites are

the place of specific amino-acids/bases contacts that drive protein-

DNA interaction specificity. Several amino acids residues involved

in these contacts were identified, which led to the definition of a

dif-binding region within the C-terminal domain of the Xer

recombinases [27–29]. The dif binding motif is also conserved in

XerA proteins. Notably, the key residues that define binding

specificity for the XerC or XerD binding sites are distinct from

XerC or XerD in XerA (Figure 1A and Figure S1).

In silico identification of dif-like sites in archaeal genomes
To search for conserved putative archaeal dif sites, we selected

as first candidates four closely related genomes of Thermococcales

since their XerA proteins [Pyrococcus abyssi (Pab0255), Pyrococcus

horikoshii (PH1826), Pyrococcus furiosus (PF1868) and Thermococcus

kodakaraensis (TK0777)] are the most similar to bacterial XerCD

(35%–39% identity; Figure S2) among archaeal XerA. The

putative dif-binding motif of these XerA proteins shares numerous

conserved positions with both XerC (10 out of 19 positions) and

XerD (11 out of 19 positions) proteins (Figure 1A). These

remarkable sequence similarities suggest that one may expect to

identify conserved dif-like sequences in these four closely related

archaeal genomes based on known properties of bacterial dif sites.

Finally, XerA proteins are well conserved between these four

species (above 85% similarity, Figure S2). Thermococcales XerA

proteins are thus expected to recognize similar dif sites.

We built an algorithm to search for any potential tyrosine

recombinase-binding site. We searched for imperfect inverted

repeats of 11 to 15 bp separated by spacers ranging from 4 to 10 bp.

A total of 481,319 sequences were recovered after this analysis. In

order to reduce the sequences to one single most likely dif candidate,

we selected only sequences that were conserved above 80%

similarity in the four genomes. We found six sequences fulfilling

this criterion: two were shawn to be spacer sequences of CRISPRs

[30,31], three were imperfect inverted repeats of 11 bp separated by

long spacers (one of 8 bp and two of 10 bp), and only one sequence

in each genome was composed of 11 bp imperfect inverted repeats

separated by a 6 bp spacer (Figure 1B). Strikingly, these sequences

are 100% conserved between P. horikoshii and P. furiosus, have three

mismatches with that of Pyrococcus abyssi and seven with that of T.

kodakaraensis. Moreover, these four predicted sites share many

positions with the bacterial dif consensus sites (Figure 1B). The three

Pyrococcus sites show 14 out of 28 conserved positions of the bacterial

dif-consensus, and the T. kodakaraensis site shows 18 out of 28

(Figure 1B). The same site search was performed on the T.

gammatolerans, T. onnurineus and T. sibiricus genomes and led to the

identification of unique sites showing the same level of conservation

with the bacterial dif-consensus (Figure S3). Further analysis of the

dif sites environment in Thermococcales genomes revealed that all dif

sites are surrounded by conserved flanking sequences (Figure S3).

As in the canonical bacterial model, Thermococcales dif sites

predicted by our analysis were not located next to the xerA genes

(Figure 2 and Figure S4). The position of the xerA genes relative to

the replication origins (oriC) was highly variable (Table S1),

whereas the predicted dif sites were located within the second

quarter of the genome for P. horikoshi, P. furiosus and T. kodakaraensis

(135u, 122u and 130u from oriC, respectively) and in the third

quarter (2142u from oriC) for P. abyssi (Figure 2). In the latter case,

the difference in position could be a consequence of the large

fragment inversion containing oriC that recently occurred in this

species [32]. The conservation of dif site positions relative to oriC in

the four Thermococcales (between 122u and 142u) is especially

striking since these genomes have been extensively rearranged by

chromosome recombination, as indicated by the patterns obtained

from whole genome alignments (Figure S5).

The dif-like sites identified in our analyses do not localize precisely

at 180u from oriC. However, the predicted dif site of P. abyssi is

located into a late replicating fragment of the genome [33]. dif sites

positions are therefore compatible with a localization in the

terminus region of chromosome replication. It is not known if the

two replication forks always meet at the same point in Thermococcales.

A precise site for the terminus of DNA replication in Thermococcales

genomes cannot be predicted by using GC skew analysis because, in

contrast to the sharp peak observed at oriC, the potential termination

Author Summary

Bacteria with circular chromosome and active homologous
recombination systems have to resolve chromosomal
dimers before segregation at cell division. In Escherichia
coli, the Xer site-specific recombination system, composed
of two recombinases and a specific chromosomal site (dif),
is involved in the correct inheritance of the chromosome.
The recombination event is tightly regulated by the
chromosome translocase FtsK. This chromosome resolu-
tion system has been predicted in most bacteria and
further characterized for some species. Intriguingly, most
archaea possess a gene coding for a recombinase
homologous to bacterial Xers, but none have homologues
of the bacterial FtsK. We identified the specific target sites
for archaeal Xer. This site, present in one copy per
chromosome, is located in the replication termination
region and shows sequence similarities with bacterial dif
sites. In vitro, the archaeal Xer recombines this site in the
absence of protein partner. It has been shown that
DNA–related proteins from Archaea and Eukarya share
a common origin, whereas their analogues in Bacteria
have evolved independently. In this context, Eukarya and
Archaea would represent sister groups. Therefore, the
presence of a shared Xer-dif system between Bacteria
and Archaea illustrates the complex origin of modern DNA
genomes.

Xer Recombination in Archaea
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region appears as a broad distribution [33,34]. The terminus region

appears to be especially prone to chromosomal rearrangement in

Thermococcales [32], possibly explaining this lack of resolution.

We next extended our analysis to archaeal genomes outside of

the Thermococcales group. Using the dif sites and flanking sequences

found in Thermococcales, we constructed a Hidden Markov Model

with HMMER2 [35] and searched other archaeal genomes for

potential dif sequences. As an example, a single statistical-

significant sequence matching the Thermococcales dif sites was found

in the Methanosphaera stadtmanae genome. This site is located at

Figure 1. Alignments of Xer dif-binding motifs and dif sites from Archaea and Bacteria. A. Alignments of the dif binding motifs from
bacterial XerC and XerD and archaeal XerA proteins. Amino acids shared between XerD dif binding motifs, XerC dif binding motifs and putative dif
binding motifs of archaeal XerA proteins from Thermococcales are boxed. Conserved positions in XerD dif binding motifs are indicated by ‘{’ and
conserved positions in XerC dif binding motifs are indicated by ‘{’. The putative dif binding motifs of XerA proteins share several positions with XerD
and/or XerC proteins. The key motif for each family (XRX for XerC, XKX for XerA and and RQX for XerD) are shown in bold and shaded in dark gray. B.
Predicted Thermococcales dif sites are highly conserved, show very few or no mismatches between the two arms of the inverted repeat and share
several positions with the bacterial dif consensus (bold letters). Consensus sequences are indicated according to the IUPAC code.
doi:10.1371/journal.pgen.1001166.g001

Xer Recombination in Archaea
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about 180uC from oriC (Figure S6), and is surrounded by imperfect

inverted repeats. We then selected three Sulfolobales genomes to

search for dif sites in Crenarchaeota. Sulfolobus species possess

multiple replication origins [36,37] raising the possibility that an

alternative to the canonical Xer recombination system may occur

in these organisms. We used the same initial methodology that was

applied to Thermococcales genomes. Unique dif sites were found for

S. acidocaldarius and S. tokodaı̈, whereas two copies of this site were

found at the same chromosomal location in the S. solfataricus

genome (Figure S7). As opposed to Euryarchaeota, the predicted

dif sites localized close to xerA genes, and were flanked on only one

side by a short conserved sequence of 13 bp.

Figure 2. Genomic localization of dif sites and xer genes. The E. coli KOPS cumulative skew produces a pyramidal shaped graphic with the dif
site (black and white rectangle) located at the summit (178u from oriC). xerC, xerD and ftsK genes are located in the oriC region. ASPS skew graphics
from Thermococcales show rounded shapes where oriC (dark gray diamond) can be localized precisely and where putative regions of replication
termination (light gray rectangles) can be broadly determined. GTTG is the most skewed 4 nt sequence in P. abyssi, P. horikoshii and T. kodakaraensis
genomes whereas GTTC is the most skewed 4 nt sequence in P. furiosus genome. Thermococcales dif sites (black rectangles) are all located at the
summit of the ASPS skews graphics, at 120–142u from oriC, in putative replication termination regions. The xerA gene (white rectangles) positions are
more variable. Genomic coordinates of oriC, dif and xerA genes can be found in Table S1.
doi:10.1371/journal.pgen.1001166.g002

Xer Recombination in Archaea

PLoS Genetics | www.plosgenetics.org 4 October 2010 | Volume 6 | Issue 10 | e1001166



Identification of polarized sequences that point to the
predicted dif sites

In Bacteria, the directionality of FtsK-mediated DNA transloca-

tion is determined by octamers that are polarized on each arm of the

chromosome with their orientation switching at the dif site [16–18].

Although Archaea lack an FtsK homologue, we searched for the

most frequent and skewed sequences in Thermococcales genomes by

using the R’MES program ([38], see Materials and Methods). We

used the E. coli genome to validate this methodology and, as

expected, we found that KOPS are the most over-represented

skewed 8nt-long sequences. The corresponding diagram shows a

sharp peak corresponding to the position of the E. coli dif site

(Figure 2). We then analyzed all possible sequences of 4 to 8

nucleotide-long in the four Thermococcales genomes. We identified

GTTG as the most over-represented and skewed sequence in the P.

abyssi, P. horikoshi and T. kodakaraensis genomes, and GTTC in the P.

furiosus genome. For Thermococcales genomes, the cumulative

frequency of these 4 nucleotide sequences (Archaea Short Polarized

Sequences, ASPS) does not give a perfect triangle-shaped diagram

as observed for Proteobacteria (Figure 2) or Firmicutes where dif

sites locate exactly at the KOPS skew inversion. Nevertheless, in the

case of the three Pyrococcus genomes, the cumulative ASPS skews

diagrams displayed a sharp optima precisely located next to the dif-

like sites identified in silico (Figure 2). The optimum was located very

close to the dif sites in the cases of P. horikoshi and P. furiosus, whereas

it was located more to the left in the case of P. abyssi (around 160u
instead of 142u). This shift could be due to a recent transposition of

two chromosomal segments that occurred in the terminus region of

this species [32]. In the case of T. kodakaraensis, we only obtained the

sharp minimum corresponding to the replication origin, whereas

the opposite region appeared as a broad peak containing the

predicted dif site. The same analysis was extended to other archaeal

genomes where dif sites were predicted, and revealed that both

euryarchaeal and crenarchaeal genomes harbour ASPS (Figure 2;

Figures S4, S6, S7). Remarkably, the M. stadtmanae ASPS skew

displays the triangle-shaped diagram observed in Bacteria, with the

predicted dif site precisely located at the skew inversion (Figure S6).

P. abyssi XerA protein binds to the predicted dif site
To test our in silico predictions, we purified to homogeneity the

P. abyssi XerA protein (Pab0255) as a recombinant protein.

Recognition of the predicted dif site by the P. abyssi XerA protein

was first evaluated by Electrophoretic Mobility Shift Assay

(EMSA). Double stranded oligonucleotides corresponding to the

P. abyssi dif site were incubated with increasing amounts of P. abyssi

XerA protein at 20u and 65uC (Figure 3). As a control, P. abyssi

XerA protein was also incubated in presence of a non-specific

DNA site corresponding to the minimal recombination site (attP) of

another archaeal tyrosine recombinase, the SSV1 integrase [39].

XerC and XerD from E. coli have only been shawn to bind to an

oligonucleotide containing the E. coli dif site [40]. In contrast, P.

abyssi XerA was able to bind to both substrates, with two protein-

DNA complexes detected in each case (Figure 3). However,

complex migration was different between the two DNA substrates,

with P. abyssi XerA/dif complexes showing a higher mobility than

P. abyssi XerA/attP complexes. Furthermore, the P. abyssi XerA

protein presented a preference for the P. abyssi dif site as compared

to the non-specific substrate, with a 4 fold increase in complex

formation at 20uC and an 8 fold increase at 65uC (Figure 3). At the

P. abyssi optimal growth temperature (90uC), XerA binding to the

dif site should therefore be highly specific. Competition experi-

ments further confirmed that XerA has a much higher affinity for

its dif site than for a heterologous tyrosine recombinase binding site

(Figure S8).

P. abyssi XerA protein specifically recombines plasmids
containing the predicted dif site

We next searched for full or partial site-specific recombination

activity. In the case of XerCD, in vitro recombination at dif sites

requires the C-terminal domain of FtsK [15]. However, dif-

dependent DNA relaxation has been observed for XerC and XerD

[41]. In order to test for such activity, we cloned an oligonucleotide

containing the predicted dif site into a plasmid vector. After

incubation of XerA with this substrate, reactions products were

analyzed by agarose gel electrophoresis. Whereas incubation of the

control plasmid (without dif site) with P. abyssi XerA protein did not

reveal any reaction product, addition of the protein to the dif-

containing plasmid led to the appearance of several new bands of

lower mobility than the open circular (Moc) form of the substrate

(Figure 4A). The migration of the major product suggested that it

may correspond to the supercoiled form of a dimeric plasmid (Dsc),

while the other products may correspond to increasing multimers of

the dif-containing plasmid. The reaction was strongly dependent on

temperature (Figure 4A), as expected for a reaction catalyzed by a

protein from a hyperthermophilic organism. A single product,

migrating slightly above the open circular substrate form appeared

when the incubation was performed at 20u or 35uC. The amount of

product strongly increased when the incubation was performed at

50u and 65uC, reaching an amount roughly equivalent to that of the

remaining monomeric supercoiled (Msc) substrate. Several new

products of low mobility were detected when the reaction was

performed above 50uC, and their relative amounts increased from

50u to 65uC. To determine whether the reaction products generated

by the P. abyssi XerA were indeed multimers of the dif-containing

plasmid, we took advantage of a unique HindIII restriction site

present on the plasmid. We assumed that partial HindIII digestion of

the reaction products would produce linear multimeric plasmids

that could be identified by their size. The products of a P. abyssi

XerA catalyzed reaction performed for 20 minutes at 65uC were

incubated with one unit of HindIII for one hour, either at 37uC for

full digestion or at 20uC for partial digestion (Figure 4B). At 37uC,

digestion of reaction products produced only linear DNA of the

monomeric size (LM, 2.6 kb), indicating that all reaction products

were multimers of dif-containing plasmids which were cleaved at all

available HindIII sites (Figure 4B). HindIII digestion at 20uC
produced two additional bands of linear DNA with the expected

molecular weight for linear dimers (LD, 5.2 kb) or linear trimers

(LT, 7.8 kb) of the dif-containing plasmid. This result indicates that

P. abyssi XerA can recombine dif-containing plasmids in the absence

of protein partners, producing multimeric forms of the initial

substrate. The specificity of the reaction was further controlled by

using as substrate a plasmid containing the attP site (Figure S9). No

recombination activity could be detected on this substrate, further

indicating that binding of XerA to the attP site is non specific.

We followed the time course formation of multimeric plasmids

by P. abyssi XerA on the dif-containing plasmid at 65uC. Plasmid

dimers were obtained after five minutes incubation and plasmid

multimers were detected after 10 minutes (Figure S9). After

30 minutes reaction time, the relative intensity of all bands

remained fairly constant suggesting either that the recombination

activity had reached enzymatic equilibrium, or that the protein

was rapidly inactivated upon incubation at 65uC. However, pre-

incubating the protein alone for up to 40 min at 65uC did not

reduce the extent of recombination (Figure S9) thus ruling out

protein denaturation during the time course assay. This suggests

that at the reaction equilibrium, production of multimers from

monomers is equivalent to multimer resolution into monomers.

To further validate the resolution activity of the P. abyssi XerA

protein, we constructed a substrate with two dif sites in direct

Xer Recombination in Archaea

PLoS Genetics | www.plosgenetics.org 5 October 2010 | Volume 6 | Issue 10 | e1001166



repeat (Figure 4C). The reaction products were analyzed by PCR

as both integration and resolution events can occur on this

substrate. Resolution events reduced the distance between the two

primers from 1058 bp to 885 bp (Figure 4C). Even though

integration events were still favoured, as attested by the

appearance of plasmid multimers (not shown), a PCR product

with a size around 900 bp was detected (Figure 4C). This product

indicates that XerA was able to assemble a recombination

proficient synaptic complex and that although at low level

resolution events also occurred. The P. abyssi XerA protein is

therefore able to catalyse both resolution and integration

depending on the substrate provided in the reaction.

Discussion

We have shown that the P. abyssi XerA protein (homologous to

the bacterial XerCD recombinases) specifically recombines a

plasmid containing a predicted dif sequence present in the P. abyssi

genome. This dif sequence was identified in silico, taking into account

known features of tyrosine recombinase recombination sites and

searching for sequences present in the genomes of four closely

related Thermococcales. Importantly, whereas the location of xerA

genes relative to the replication origin (oriC) varies from one genome

to the other, the positions of the dif sites with respect to oriC is

relatively conserved in all four genomes. These observations

strongly suggest that archaeal XerA proteins may be involved in

the resolution of chromosome dimers at the terminus of replication.

Interestingly, although Archaea lack a FtsK homologue, we

could identify polarized sequences of four nucleotides (ASPS) that

define the replication termination region and point towards the

predicted dif sites in Euryarchaeota. The ASPS are shorter than

the KOPS used by FtsK in Bacteria. Strikingly, in most genomes

the predicted dif site localized at the summit of curves obtained by

ASPS cumulative skew analyses. Archaea may therefore use a

functional analogue of the bacterial FtsK-KOPS mechanism to

produce a dif-synaptic complex in vivo. It was suggested that the

archaeal bipolar DNA helicase HerA, which is probably involved

in the processing of double-strand breaks for homologous

recombination [42–44] may also be a functional analogue of

FtsK in Archaea on the basis of their common ATPase domain

used for DNA translocation [45]. Even though our results show

that P. abyssi XerA does not require an accessory protein to

catalyse recombination in vitro, as opposed to bacterial XerCD

which only recombine dif sites in the presence of FtsK [12,15],

they do not exclude that a protein partner could either regulate

synaptic complex assembly or XerA activity in vivo. Indeed, in

Figure 3. Binding of P. abyssi XerA to specific and non-specific DNA substrates. Increasing amounts of XerA were incubated at 20uC or 65uC
with two different double-stranded oligonucleotides 59end-labeled on their top strand. Reactions were loaded onto 5% non denaturing acrylamide
gels containing 5% glycerol. Electrophoresis was performed in TGE buffer (50 mM Tris, pH 7.5, 8 mM glycine, 0.1 mM EDTA) at 4uC for 4 h at 7.5 V/
cm. The DNA-protein complexes were visualized by phosphore-imaging. Right panel: quantification of free and bound DNA as a function of Pab0255
amount. Plain lines, dif-Pab substrate; dotted lines, attP substrate. Free DNA, square; complex I, white circle; complex II, black circle.
doi:10.1371/journal.pgen.1001166.g003
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Thermococcales genomes, dif sites are flanked by inverted repeats

(Figure S4) that may be binding sites for such partner.

Using different in silico methodologies, we were able to predict dif

sequences in other euryarchaeal genomes and crenarchaeal genomes

that harbour xerA genes. Archaea lacking a xerA gene, such as

Thaumarchaea and Pyrobaculum species, may have recruited another

tyrosine recombinase, as happened in some bacterial groups [5,22].

Although the archaeal and bacterial Xer/dif systems use similar

dif sites, they differ in terms of biochemical properties and reaction

mechanisms. Whereas E. coli and B. subtilis XerCD do not bind a

DNA fragment without dif site [8], the P. abyssi XerA protein can

bind with a lower affinity to a heterologous tyrosine recombinase

site. However this site is not recognized as a recombination

substrate. More significantly, the P. abyssi XerA protein can

recombine plasmids carrying the dif sequence in the absence of

protein partner. In contrast, the XerCD activity depends in vitro

and in vivo on FtsK to recombine the chromosomal dif site or on

other partners (PepA and ArcA or ArgR) to recombine the

plasmidic recombination sites psi on pSC101 or cer on ColE1

[46–49]. The ability of P. abyssi XerA to recombine in vitro a dif-

containing plasmid without any accessory protein suggests that

XerA may also work alone in vivo. However we cannot rule out

that a protein partner may bind the conserved dif-flanking

sequences. Such a partner may either control the directionality

of the reaction towards resolution or coordinate the recombination

activity with the progression of the cell cycle. Alternatively, XerA

activity may be limited to replication termination and chromo-

some segregation by regulating XerA expression at the transcrip-

tional level. In agreement with this view, the xerA gene of the

crenarchaeon Sulfolobus acidocaldarius (Saci 1490) is induced during

the G1/S phase and reaches its maximal expression level in the G2

phase of the cell cycle [50].

Our results show that Archaea possess a Xer/dif system similar

to its bacterial counterpart that is likely involved in chromosome

Figure 4. Recombination activity of P. abyssi XerA. A. Temperature dependence of the reaction. XerA was incubated at different temperatures
with a plasmid containing or not the predicted dif site (gray box). MW: molecular weight marker (identified in Kbp on the left). C: control without
protein. The control assay was performed at 65uC. Msc: supercoiled monomer. Moc: open circular monomer. Dsc: supercoiled dimer. B.
Recombination product analysis. C: control without protein. HindIII, pBend2dif full restriction by HindIII. XerA: recombination reaction, 1h at 65uC.
XerA/HindIII 20uC: Recombination reaction followed by restriction with one unit of HindIII, for 1 h at 20uC. XerA/HindIII 37uC: same as before, but
restriction performed at 37uC. Msc: supercoiled monomer. LM: linearized monomer (2.6 kbp). LD: linearized dimer (5.2 kbp). LT: linearized trimer
(7.8 kbp). C. Resolution reaction. The substrate used is diagramed in (i) and the product in (ii). Small black arrows correspond to the hybridization
position of the oligonucleotides used in the PCR assay. PCR fragments obtained on the substrate (i) or on the reaction products (ii) were analyzed by
agarose gel electrophoresis (right).
doi:10.1371/journal.pgen.1001166.g004
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dimer resolution. However, the archaeal Xer system displays

differences, such as the involvement of a unique protein and the

ability to perform site-specific recombination in vitro in the absence

of accessory proteins. To get a better view of the evolution of the

Xer system, we performed a phylogenetic analysis including

bacterial and archaeal Xer proteins and a subset of bacteriophage

encoded tyrosine recombinases (Figure 5). Unfortunately, the

resulting tree is not resolved at most basal nodes, preventing a

clear view of the evolutionary relationships of these proteins.

However, it shows that bacterial and archaeal homologues are not

intermixed, indicating that no recent horizontal gene transfer has

occurred between domains. Our data thus suggest that a Xer/dif

system was present in the common ancestor of Archaea and

Bacteria, suggesting that this ancestor had a circular double-

stranded DNA genome. However, this raises further issues such as

why the replication machinery of Archaea and Bacteria are now

composed of non homologous proteins [51]. Alternatively,

homologous viral tyrosine recombinases may have been recruited

independently in Archaea and Bacteria to be used as Xer/dif

systems after transition from RNA to DNA genomes [52]. In any

case, the presence of a shared Xer-dif system in Bacteria and

Archaea illustrates the complex origin of modern DNA genomes.

Further studies of Xer-dif systems in different archaeal and

bacterial groups will be now necessary to test alternative scenarios

for the origin and evolution of Xer proteins.

Materials and Methods

Identification of dif candidates
A model searched for all inverted repeats (11 to 15bp) separated

by a spacer (4 to 10bp) present in non-coding genomic regions. A

consensus sequence was deduced from the alignment of predicted

dif sites and represented as a sequence logo [53].

Skew analyses
Statistical significant skewed words in the four Thermococcales

genomes were determined using the R’MES program (http://mig.

jouy.inra.fr/logiciels/rmes/) [38]. Since R’MES reads only one

single strand of DNA at time, we artificially defined several ends of

replication, starting at 120u, and then moving by 5u steps up to

200u from oriC. From these artificially-defined ends of replication

to oriC we reverse complemented the genomic sequence. The most

skewed word for each analyzed genome was selected by

comparing the R’MES results. Cumulative skews were calculated

using the formula:

Skew~
X

word{word complementð Þ=

wordzword complementð Þ:

Genome alignments
Genomes of the four Thermococcales where aligned by dot-plot

analyses based on BlastP searches (e-value of 1610210).

Homology searches and phylogenetic analysis
Xer homologues were searched by BLASTP at the NCBI

(http://www.ncbi.nlm.nih.gov/) against complete sequenced ar-

chaeal genomes using E. coli XerC and XerD proteins as query

(threshold of 16e210). The retrieved homologues were aligned using

Muscle and a specific HMM profile was calculated for exhaustive

detection of homologues. Using the HMMER program (http://

hmmer.janelia.org/) we performed iterative searches until no new

homologues were detected in the archaeal genomes. From the

resulting dataset, a preliminary phylogenetic analysis allowed to

select 62 representative XerC and XerD sequences from several

bacterial species and several tyrosine recombinases from plasmids/

viruses or from mobile elements integrated into cellular genomes.

The final alignment was trimmed to remove ambiguously aligned

positions, leading to 222 conserved residues for phylogenetic

analysis. A maximum likelihood tree was obtained by using PHYML

[54], with the WAG evolutionary model including correction for

heterogeneity of evolutionary rates (4 categories+invariant) and

statistical support at nodes was calculated by non parametric

bootstrap on 100 resampling of the original dataset by PHYML.

Cloning, expression, and purification of Pab0255
The Pab0255 gene was amplified by PCR using P. abyssi geno-

mic DNA as a template, Phusion high-fidelity DNA polymerase

(Finnzyme) and the following primers:

59-GGGAACATATGCACCATCACCATCACCATGAGGA-

GAGGGAGGAGAGAGTGAGGGATGATACAATTG-39

59-TTTTTGCGGCCGCTTAGGAACCCCCGATG-39

The forward primer allows the addition of six histidine codons

in frame with the ATG start codon (underlined). The PCR

product was digested by NdeI and NotI and cloned into a derivative

of a pET vector (Novagen). The resulting recombinant plasmid

was sequenced prior to being transformed into the E. coli

expression strain Rosetta(DE3)pLys (Novagen).

Cells were grown in 2xYT medium (BIO101Inc.) at 37uC to

A600nm = 1 and expression of Pab0255 was induced by the

addition of 0.5 mM IPTG (final concentration). Four hours after

induction, cells were harvested by centrifugation, and the pellets

resuspended in 40 ml of 50 mM Tris-HCl, pH 8.0, 1 M NaCl and

5 mM b-mercaptoethanol and stored at 220uC. Cells were lysed

by sonication and centrifuged at 13, 0006 g for 30 min at 25uC.

The supernatant was collected and heated for 15 minutes at 70uC.

After centrifugation at 13,0006 g, the supernatant was loaded

onto a Ni2+ affinity column (Ni-NTA agarose, Qiagen) pre-

equilibrated in the same buffer. The His-tagged Pab0255 was

eluted at 20 mM imidazole, and loaded onto a 2 ml HiTrap

Heparin (Amersham Biosciences) column pre-equilibrated in a

buffer containing 50 mM Tris-HCl pH 7.0, 200 mM NaCl,

1 mM DTT. A NaCl linear gradient (200 mM to 2 M) was

developed, and the protein eluted at about 800 mM NaCl. Finally,

the protein was loaded onto a cation-exchange SP Sepharose

column (Amersham Biosciences) pre-equilibrated in the same

buffer, and eluted by a NaCl linear gradient. The purified protein

was dialysed against 50 mM Tris pH7.0, 300 mM NaCl, 50%

glycerol prior to being stored at 220uC.

Substrate preparation
The following 43 nt long oligonucleotides containing the top

and bottom strands of the predicted dif site from P. abyssi (Pab) or

minimal attP site from SSV1 [39] were purchased from

Eurogentec:

Pab-Dif-Top 59-gttaactatATTGGATATAATCGGCCTTA-

TATCTAAAgtgttg-39

Pab-Dif-Bottom 59-caacacTTTAGATATAAGGCCGATTA

TATCCAATatagttaac-39

attP-Top 59-gttaactaTCTTTTCCGCCTCCGGAGCCGGA

GGTCCCgtgttg-39

attP-Bottom 59-caacacGGGACCTCCGGCTCCGGAGGC

GGAAAAGAtagttaac-39

For binding assays, top strand oligonucleotides were 59-end

labeled by using [g-32P]ATP and T4 polynucleotide kinase.

Unincorporated nucleotides were removed by spin dialysis, and

the labeled oligonucleotide was then hybridized with a 2-fold
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Figure 5. Xer phylogeny. Unrooted maximum likelihood tree of a selection of bacterial and archaeal (bold) Xer homologues and viral tyrosine
recombinases (italics). Sequences are identified by their NCBI Reference Sequence. Numbers at nodes represent bootstrap values. The scale bar
represents the average number of substitutions per site.
doi:10.1371/journal.pgen.1001166.g005
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excess of unlabeled complementary strand in TE buffer (10 mM

Tris, pH 8.0, 1 mM EDTA).

Electrophoretic mobility shift assays
The DNA binding reactions were carried out in 20 ml of a

mixture composed of 0.5 mM 59-end labeled dif substrate or attP

substrate, increasing amounts of Pab0255 in a binding buffer

composed of 50 mM Tris pH 7.5, 30 mM NaCl and 0.5 mg

poly(dIdC).poly(dIdC). Incubation was performed for 30 min at

either 20uC or 65uC, and then 5 ml of 56 loading buffer (10 mM

Tris pH 7.5, 1 mM EDTA, 20% glycerol, 0.1 mg/ml BSA, 0.1%

xylene cyanol) was added to the binding reactions. The samples

were loaded onto 8% polyacrylamide gels (30:0.5 acrylamide:bi-

sacrylamide), and electrophoresis performed in 16 TGE buffer

(50 mM Tris, 8 mM Glycine, 0.1 mM EDTA) at 4uC for 4 h at

7 V/cm. The DNA-protein complexes were visualized by

autoradiography and phosphorimaging.

Recombination assays
The 43 bp double stranded oligonucleotide containing the

predicted P. abyssi dif and the 43 bp double stranded oligonucleotide

containing the attP site were cloned into the pBend2 (2.6 Kbp)

vector [55]. pBend2, pBend2-dif and pBend2-attP plasmids were

purified on CsCl gradients. Recombination reactions were

performed in 20 ml of reaction mixture consisting of 30 mM Tris

pH 7.5, 50 mg/ml bovine serum albumin, 50 mM NaCl, 500 ng of

plasmid and 40 pmol of XerA protein. The reaction mixture was

incubated at 65uC (unless otherwise stated) and at the times

indicated, quenched with SDS (0.5% final) and 106 loading buffer

(100 mM EDTA, 5% SDS, 40% glycerol, 0.35% Bromphenol blue)

was added. Reaction mixes were loaded on a 1.2% agarose gel, and

electrophoresis performed in 16TAE buffer at room temperature

for 3 hr at 4 V/cm with buffer circulation. DNA was visualized by

staining with ethidium bromide.

Supporting Information

Figure S1 Alignment of the C-terminal domain of Xer proteins

from the XerD, XerC, XerA and XerS subfamilies. Left panel: dif

binding motif alignment. The XerA putative dif binding motif

show high residues conservation with both XerC and XerD motifs.

Thermococcales XerA harbour the XerC ‘XRX’ motif signature.

XerS proteins show very few residues conserved, meaning that

they belong to other tyrosine recombinase subfamily. Right panel:

catalytic domain of tyrosine recombinases. Catalytic residues are

highlighted in white bold lettering. Note that two catalytic residues

apart from the highly conserved motif are not represented here.

Found at: doi:10.1371/journal.pgen.1001166.s001 (0.09 MB PDF)

Figure S2 Xer similarity scores. A. Top five E. coli XerC and

XerD matches in complete sequenced archaeal genomes. B.

Similarities between XerA from Thermococcales.

Found at: doi:10.1371/journal.pgen.1001166.s002 (0.06 MB PDF)

Figure S3 Thermococcales predicted dif sites and conserved

flanking regions. Alignment of predicted dif sites and conserved

flanking sequences. The flanking sequences are approximately

23 bp long and AT rich. A consensus sequence was deduced and is

represented as a sequence logo (see [53] in the main text).

Found at: doi:10.1371/journal.pgen.1001166.s003 (0.08 MB PDF)

Figure S4 Genomic localization of dif sites and xer genes. ASPS

skew graphics from T. sibiricus, T. onnurineus and T. gammatolerans.

TGGT is the most skewed sequence (ASPS) for all species.

Symbols are as in Figure 2. Genomic coordinates of oriC, dif and

xerA genes can be found in Table S1.

Found at: doi:10.1371/journal.pgen.1001166.s004 (0.11 MB PDF)

Figure S5 Whole genome alignments of the four Thermococcales

genomes. A. Alignment of P. horikoshii (X-axis) and P. abyssi (Y-axis)

genomes shows that they share several regions with conserved

gene order. dif sites (circle) are located in a relatively well-

conserved region at 135u from oriC (triangle) in P. horikoshii and at

142u from oriC in P. abyssi. The xerA gene (square) genomic position

is indicated. Regions where replication may end are indicated by

dark rectangles on the axes and delimited by doted lines. B,C.

Alignments of P. furiosus and P. abyssi genomes (B) and of T.

kodakaraensis and P. abyssi genomes (C) reveal an extensive gene

order loss. However dif relative positions with respect to oriC are

maintained in all these genomes (respectively 122u and 130u from

oriC in the P. furiosus and T. kodakaraensis genomes).

Found at: doi:10.1371/journal.pgen.1001166.s005 (0.31 MB PDF)

Figure S6 Identification and localization of the M. stadtmanae dif

site. A single statistical-significant sequence matching the Thermo-

coccales dif sites was found in M. stadtmanae by using HMM search.

The dif candidate localizes at the ASPS skew inversion.

Found at: doi:10.1371/journal.pgen.1001166.s006 (0.09 MB PDF)

Figure S7 Sulfolobales dif sites. By using the methodology

described in the main text of this article on S. solfataricus, S.

acidocaldarius and S. tokodaii genomes, one single sequence that fits

all of the requirements (two inverted repeats separated by a spacer

of 4–8 base pairs, highly conserved between the three genomes

and located inside intergenic regions) was found. This potential dif

candidate is present only once in S. acidocaldarius and S. tokodaii, but

has two copies (only one highly conserved), at the same

chromosomal location in S. solfataricus genome.

Found at: doi:10.1371/journal.pgen.1001166.s007 (0.10 MB PDF)

Figure S8 Binding specificity of P. abyssi XerA to specific and

non-specific DNA substrates. 40 pmoles of XerA were incubated

with dif-Pab or attP substrates at 20uC with increasing amounts of

non specific competitor poly(dIdC)2. Bottom panel: quantification

of free and bound DNA as a function of poly(dIdC)2 amount. Plain

lines, dif-Pab substrate; dotted lines, attP substrate. Free DNA,

square; complex I, white circle; complex II, black circle.

Found at: doi:10.1371/journal.pgen.1001166.s008 (0.14 MB PDF)

Figure S9 XerA enzymatic properties. A. XerA substrate

specificity. The three substrates were incubated for 1 hr at 65uC
with or without 10 pmol of XerA. Recombination products are

only observed on the pBend2-dif substrate. B: time course of XerA-

mediated recombination at 65uC. C: XerA was pre-incubated at

different times at 65uC and then mixed with the dif-containing

plasmid for one hour at 65uC. No difference in activity is observed

between the different lanes, indicating that XerA is stable for more

than one hour at 65uC.

Found at: doi:10.1371/journal.pgen.1001166.s009 (0.25 MB PDF)

Table S1 Specific genomic positions of oriC-cdc6, xerA genes and

dif sites in Thermococcales genomes.

Found at: doi:10.1371/journal.pgen.1001166.s010 (0.06 MB PDF)
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