I. A. Berg, Ecological aspects of the distribution of different autotrophic CO 2 fixation pathways, Appl Environ Microbiol, vol.77, pp.1925-1936, 2011.

G. Borrel, Phylogenomic data support a seventh order of methylotrophic methanogens and provide insights into the evolution of methanogenesis, Genome Biol Evol, vol.5, pp.1769-1780, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01612746

G. Borrel, Comparative genomics highlights the unique biology of Methanomassiliicoccales, a Thermoplasmatales-related seventh order of methanogenic archaea that encodes pyrrolysine, BMC Genomics, vol.15, p.679, 2014.
URL : https://hal.archives-ouvertes.fr/pasteur-01059404

C. Brochier, P. Forterre, and S. Gribaldo, Archaeal phylogeny based on proteins of the transcription and translation machineries: tackling the Methanopyrus kandleri paradox, Genome Biol, vol.5, p.17, 2004.

J. F. Brugè-re, Archaebiotics: proposed therapeutic use of archaea to prevent trimethylaminuria and cardiovascular disease, Gut Microbes, vol.5, pp.5-10, 2014.

B. Dridi, M. L. Fardeau, B. Ollivier, D. Raoult, and M. Drancourt, Methanomassiliicoccus luminyensis gen. nov., sp. nov., a methanogenic archaeon isolated from human faeces, Int J Syst Evol Microbiol, vol.62, pp.1902-1907, 2012.

P. N. Evans, Methane metabolism in the archaeal phylum Bathyarchaeota revealed by genome-centric metagenomics, Science, vol.350, pp.434-438, 2015.

W. F. Fricke, The genome sequence of Methanosphaera stadtmanae reveals why this human intestinal archaeon is restricted to methanol and H2 for methane formation and ATP synthesis, 2006.

, J Bacteriol, vol.188, pp.642-658

G. Fuchs, Alternative pathways of carbon dioxide fixation: insights into the early evolution of life?, Annu Rev Microbiol, vol.65, pp.631-658, 2011.

S. Hattori, A. S. Galushko, Y. Kamagata, and B. Schink, Operation of the CO dehydrogenase/acetyl coenzyme A pathway in both acetate oxidation and acetate formation by the syntrophically acetate-oxidizing bacterium Thermacetogenium phaeum, J Bacteriol, vol.187, pp.3471-3476, 2005.

Y. He, Genomic and enzymatic evidence for acetogenesis among multiple lineages of the archaeal phylum Bathyarchaeota widespread in marine sediments, Nat Microbiol, 2016.

A. Kaster, J. Moll, K. Parey, and R. K. Thauer, Coupling of ferredoxin and heterodisulfide reduction via electron bifurcation in hydrogenotrophic methanogenic archaea, Proc Natl Acad Sci U S A, vol.108, pp.2981-2986, 2011.

J. T. Keltjens and G. D. Vogels, Conversion of methanol and methylamines to methane and carbon dioxide, pp.253-303, 1993.

H. Klenk, The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus, Nature, vol.390, pp.364-370, 1997.

L. Krö-ninger, S. Berger, C. Welte, and U. Deppenmeier, Evidence for the involvement of two different heterodisulfide reductases in the energy conserving system of Methanomassiliicoccus luminyensis, Febs J, vol.283, pp.472-483, 2016.

K. Lang, New mode of energy metabolism in the seventh order of methanogens as revealed by comparative genome analysis of 'Candidatus Methanoplasma termitum, Appl Environ Microbiol, vol.81, pp.1338-1352, 2015.

M. A. Lever, A new era of methanogenesis, Trends Microbiol, vol.24, pp.84-86, 2016.

M. A. Lever and A. P. Teske, Diversity of methane-cycling archaea in hydrothermal sediment investigated by general and group-specific PCR primers, Appl Environ Microbiol, vol.81, pp.1426-1441, 2015.

Y. Liu, L. L. Beer, and W. B. Whitman, Methanogens: a window into ancient sulfur metabolism, Trends Microbiol, vol.20, pp.251-258, 2012.

K. Lloyd, Beyond known methanogens, Science, vol.350, p.384, 2015.

K. G. Lloyd, Predominant archaea in marine sediments degrade detrital proteins, Nature, vol.496, pp.215-218, 2013.

G. J. Mander, A. J. Pierik, H. Huber, and R. Hedderich, Two distinct heterodisulfide reductase-like enzymes in the sulfate-reducing archaeon Archaeoglobus profundus, Eur J Biochem, vol.271, pp.1106-1116, 2004.

A. C. Martiny, K. Treseder, and G. Pusch, Phylogenetic conservatism of functional traits in microorganisms, Isme J, vol.7, pp.830-838, 2013.

S. Nelson-sathi, Acquisition of 1,000 eubacterial genes physiologically transformed a methanogen at the origin of Haloarchaea, Proc Natl Acad Sci U S A, vol.109, pp.6-11, 2012.

M. K. Nobu, T. Narihiro, K. Kuroda, R. Mei, and W. Liu, Chasing the elusive Euryarchaeota class WSA2: genomes reveal a uniquely fastidious methyl-reducing methanogen, Isme J, 2016.

C. Petitjean, P. Deschamps, P. Ló-pez-garcía, D. Moreira, and C. Brochier-armanet, Extending the conserved phylogenetic core of archaea disentangles the evolution of the third domain of life, Mol Biol Evol, vol.32, pp.1242-1254, 2015.

A. J. Probst, Biology of a widespread uncultivated archaeon that contributes to carbon fixation in the subsurface, Nat Commun, vol.5, p.5497, 2014.

K. Raymann, C. Brochier-armanet, and S. Gribaldo, The two-domain tree of life is linked to a new root for the Archaea, Proc Natl Acad Sci, vol.112, pp.6670-6675, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02018983

A. A. Santos, A protein trisulfide couples dissimilatory sulfate reduction to energy conservation, Science, vol.350, pp.1541-1545, 2015.

S. Lazar and C. , Genomic evidence for distinct carbon substrate preferences and ecological niches of Bathyarchaeota in estuarine sediments, Environ Microbiol, vol.18, pp.1200-1211, 2015.

R. Schauder, A. Preuß, M. Jetten, and G. Fuchs, Oxidative and reductive acetyl CoA/carbon monoxide dehydrogenase pathway in Desulfobacterium autotrophicum -2. Demonstration of the enzymes of the pathway and comparison of CO dehydrogenase, Arch Microbiol, vol.151, pp.84-89, 1988.

K. W. Seitz, C. S. Lazar, K. Hinrichs, A. P. Teske, and B. J. Baker, Genomic reconstruction of a novel, deeply branched sediment archaeal phylum with pathways for acetogenesis and sulfur reduction, Isme J, 2016.

A. Sö-llinger, Phylogenetic and genomic analysis of Methanomassiliicoccales in wetlands and animal intestinal tracts reveals clade-specific habitat, FEMS Microbiol Ecol, vol.92, p.149, 2016.

F. L. Sousa, Lokiarchaeon is hydrogen dependent, Nat. Microbiol, pp.14-16, 2016.

J. Vorholt, J. Kunow, K. O. Stetter, and R. K. Thauer, Enzymes and coenzymes of the carbon monoxide dehydrogenase pathway for autotrophic CO2 fixation in Archaeoglobus lithotrophicus and the lack of carbon monoxide dehydrogenase in the heterotrophic A. profundus, Arch Micro biol, vol.163, pp.112-118, 1995.

P. V. Welander and W. W. Metcalf, Mutagenesis of the C1 oxidation pathway in Methanosarcina barkeri: new insights into the Mtr/Mer bypass pathway, J Bacteriol, vol.190, pp.1928-1936, 2008.

, Associate Editor: Bill Martin