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Abstract

How does the brain allow us to interact with others? Social neuroscience has already provided some answers to these

questions but has tended to treat high-level, cognitive interpretations of social behavior separately from the sensorimotor

mechanisms upon which they rely. The goal here is to identify the underlying neural processes and mechanisms linking

sensorimotor coordination and intention attribution. We combine the human dynamic clamp, a novel paradigm for

studyingrealistic social behavior, with high-resolution electroencephalography. The collection of humanness and intention

attribution reports, kinematics, and neural data affords an opportunity to relate brain activity to the ongoing social

behavior. Behavioral results demonstrate that sensorimotor coordination influences the judgments of cooperativeness and

humanness. Analysis of brain dynamics reveals two distinct networks related to the integration of visuo-motor information

from self and other which overlap over the right parietal region. Furthermore, judgment of humanness and cooperation of

others modulate the functional connectivity between this right parietal hub and the prefrontal cortex. These results reveal

how distributed neural dynamics integrates information from “low-level” sensorimotor mechanisms and “high-level” social

cognition to support the realistic social behaviors that play out in real time during interactive scenarios.

Key words: EEG, rTPJ, self–other integration, social cognition, virtual partner interaction

Introduction

Much of our social life consists of interactions with others.

Despite their essential role, social interactions still remain the

“dark matter” of social neuroscience: the field is in urgent need

of studies that embrace the reciprocal and real-time nature of

social coordination (Hari and Kujala 2009; Dumas 2011; Hasson

et al. 2012; Konvalinka and Roepstorff 2012; Schilbach et al. 2013;

Hari et al. 2015). Overcoming the methodological challenge of

bringing a true interactive context into the laboratory, some

innovations have allowed behavioral tracking, brain recording,

and stimulation of multiple participants in interaction (Mon-

tague et al. 2002; Babiloni et al. 2006; Tognoli et al. 2007; Dumas

et al. 2010; Funane et al. 2011; Moreau et al. 2016; Chen et al.

2017; Dikker et al. 2017; Hirsch et al. 2017; Novembre et al.

2017; Era et al. 2018b). Such investigations have exposed the

neural underpinnings of our propensity to interact with others

during sensorimotor coordination (sensorimotor coordination is

defined here as the coupling at the behavioral level through
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Figure 1. Schematic representation of brain areas associated with action perception, action execution, and reciprocal behaviors.

action-perception loops. In the present task, this is quantified

by a phase relationship) (Tognoli and Kelso 2015). Functional

neuroimaging studies have revealed several neural structures

involved in simultaneous action perception, action execution,

and reciprocal behaviors. A nonexclusive list includes visual

cortices such as lateral occipito-temporal cortex (Lingnau and

Downing 2015) and superior temporal sulcus (STS; Chauvigné et

al. 2018), the parietal lobe including the intra parietal sulcus and

the temporo-parietal junction (TPJ; Chauvigné et al. 2018), and

frontal motor areas comprising the primary motor cortex (M1;

Kilner et al. 2007), the premotor cortex, and the supplementary

motor area, but also the anterior cingulate cortex (Apps et al.

2016) and the prefrontal cortex (Shaw et al. 2018; cf., Fig. 1).

At the neurophysiological level, several frequency bands have

been implicated in social processes, including fronto-central and

occipito-temporal Theta (4–7 Hz; Dumas et al. 2012; Moreau

et al. 2018), fronto-parietal Alpha (8–13 Hz; Tognoli et al. 2007;

Konvalinka et al. 2010; Novembre et al. 2014; Tognoli and Kelso

2015), rolandic Beta (Ménoret et al. 2014), and parietal Gamma

(>30 Hz; Dumas et al. 2010, 2012).

Social neuroscience studies that investigate the interaction

between multiple participants face the challenge of having

more sources of unconstrained variance than experimental

paradigms with single participants do. To overcome this

limitation while at the same time maintaining the essential

reciprocal and dynamical nature of social interaction, we use

the human dynamic clamp (HDC) paradigm which enables

direct experimental control of one of the social partners, as well

as the coupling between them. The HDC consists of a human

interacting reciprocally with a virtual partner (VP), the design

of which is based on an empirically grounded computational

model of human coordination dynamics (Kelso et al. 2009;

Dumas et al. 2014a; Kostrubiec et al. 2015). This attempt to

integrate empirically validated models is thus a departure

from an ad hoc approach to modeling avatar behavior. Thus,

the VP’s behavior is neither the product of a scripted scenario

nor the sole outcome of the human’s behavioral dispositions,

but rather a truly emergent collective pattern that results from

their interaction. Both the intrinsic dynamics of the VP and its

coupling to the human can be manipulated in real time thereby

enabling the parametric exploration of the relationship between

humans and interaction-capable surrogates. Analogous to its

cellular counterpart (Prinz et al. 2004), the HDC paradigm offers

a computationally precise way to approach the complexity of

real-life social interaction while at the same time maximizing

experimental control.

Divergent theories of social cognition have risen over the

years. On the one hand, cognitive theories have focused on “top-

down” processes (Sebanz et al. 2006), mentalizing and theory

of mind (Frith and Frith 2012); on the other hand, sensorimo-

tor theories have focused on the spontaneously self-organizing

nature of coordination (Oullier et al. 2008; Coey et al. 2012),

mirroring (Rizzolatti and Sinigaglia 2016), and sensorimotor cou-

pling (Hari and Kujala 2009). The fully bidirectional nature of

social behavior in terms of the perception-action has stressed

the reciprocal relationship between levels of analysis and direc-

tion of information flow (Kelso et al. 2013). Previous behavioral

studies have shown that whether humans perceive VP behavior

as cooperative or competitive is modulated by coupling strength

(coupling strength is a function of the parameters A and B in the

HKB model. Drever et al. (2011) used β =0.2 and 0.5, respectively,

for weak and coupling strength) (Drever et al. 2011). Interest-

ingly, however, automatic imitation processes (i.e., visuo-motor

interference) seem to be present in both competitive and coop-

erative scenarios (Era et al. 2018a). Using the HDC, success-

ful sensorimotor coupling (i.e., stably coordinated movements)

and attribution of humanness to the VP have been associated

with increased emotional arousal (Zhang et al. 2016). Moreover,

under certain conditions, such as competing task requirements,

humans spontaneously endow the VP with intention and goal-

directedness (Kelso et al. 2009; Drever et al. 2011). This is in line

with the broad literature on “intentional stance,” describing how

humans have a seemingly irresistible disposition to attribute

beliefs, desires, and intentions to the actions of others, including

virtual agents (Gallagher et al. 2002; Dennett 1971).

The present work aims to elucidate so-called top-down

and bottom-up perspectives of social behavior using real-time

interaction between a human and a VP in conjunction with
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neurodynamical analyses of spatially resolved high-density

electroencephalography (EEG) recordings. A benefit of using the

HDC is that the evolving brain dynamics can be correlated with

both human and VP movements as well as their coordination.

In addition, the paradigm enables an evaluation of how humans

reflect on their interaction with the VP and assess their (virtual)

partner’s humanness and intention. The goal is to expose the

brain circuitry hypothesized to relate real-time coordination and

ongoing cognitive and emotional aspects of social behavior.

As noted above, various neurophysiological markers have

been implicated in social processes. Accordingly, EEG analyses

were conducted across all frequencies and without predeter-

mined judgment regarding regions of interest. Via this strategy,

we aimed to: 1) quantify how the dynamics of social coordi-

nation with a VP affects human subjective reports (coopera-

tion∼ competition); 2) identify neuromarkers (local oscillations,

transiently coupled functional networks) associated with sen-

sorimotor coupling (i.e., integration of movements from self

and other); and 3) investigate the neural correlates of human-

ness and intention attributed to a VP. Overall, our analyses

and results at both neural and behavioral levels go some dis-

tance toward resolving previous antagonisms between online

and offline modes of social cognition, and rather attest to their

complementary nature.

Materials and Methods

Participants

About 20 volunteers, 12 males, and 8 females aged between

18 and 33 years (mean=24.2, STD=4.5) took part in the study.

All were right-handed (Edinburgh Handedness Inventory) with

reported normal or corrected-to-normal visual acuity and with-

out self-reported history of neuropsychiatric disease or move-

ment disorder. Participants provided informed consent prior to

the research. The study was approved by the Internal Review

Board at Florida Atlantic University and conformed to the prin-

ciples expressed in the Declaration of Helsinki.

Material and Apparatus

Participants were seated in a dark Faraday room, with the ulnar

side of the right forearm resting against a U-shaped support

(21.5×8× 4 cm) positioned parallel to a table (Fig. 2A). Partici-

pants supported their right hand by grasping a vertical wooden

cylinder (4.5× 3 cm), leaving only the right index finger in exten-

sion. The hand was oriented in the sagittal plane, and the distal

part of the index finger was inserted into the circular orifice (2-

cmdiameter) of anotherwooden block.The latterwas connected

through two metallic bars to a vertical, freely rotating metallic

stem (18-cm length) whose angular displacement was captured

by a linear potentiometer placed atop. The entire arrangement

constituted a manipulandum, which was fixed on the top of a

Plexiglas box (30.5× 31.5×20 cm), positioned to the right of a

screen, about 50 cm away from the midline of the participant.

Themanipulandum restricted themovement of the index finger

to the horizontal plane and allowed a full-range of friction-free

flexion-extensionmotion about the metacarpophalangeal joint.

The output of the potentiometer was sampled at 1000 Hz

in step with the EEG, using a National Instruments A/D con-

verter. The signal was down-sampled offline to 500 Hz for online

computational efficiency, and used as a continuous input into

a computer, which ran the HDC program implemented on C++

Figure 2. Schematic of the Human Dynamic Clamp paradigm. (A) Schematic

of the HDC experimental apparatus. Human participants coordinate finger

movementwith a VP displayed on a screen.Movements are digitized and fed into

a computer, where the HDC software computes in real time the corresponding

position of the VP following the Haken-Kelso-Bunz (1985)model. The key param-

eters of the HKB model are the VP’s intrinsic frequency (ω =1.6 Hz), and terms

that control movement shape and various dynamical properties of the oscillator

for behavioral realism (Van der Pol α =0.641, Rayleigh β =0.007095, and damping

γ =12.457), the coupling (A=−0.5 and B=−0.25), and the in-phase/anti-phase

preference (µ=+/−1). (B) Summary of the experimental paradigm (a nonverbal

Turing test) showing the structure of trial blocks (see text for details).

using the cross-platform IDE Code Blocks and the open source

library OpenFrameworks (code available at https://github.com/

GHFC/SoNeTAA). A java script version of the HDC is available

on GitHub: https://github.com/crowd-coordination/web-vpi and

can be tested online at http://www.morphomemetic.org/vpi/.

The velocity of the human finger was numerically computed

using a three-point differentiation algorithm and together with

position data plugged into the VP equation (cf., Dumas et al.

2014a for details). The differential equation returned instanta-

neous VP acceleration, which was integrated using a fourth-

order Runge–Kutta method at 500 Hz to provide VP velocity

and position. We compared digital timestamps and analog trig-

gers with an oscilloscope to ensure that a maximum delay of

2 ms occurred between data acquisition and computation of the

model output (0.3% of typical movement cycle length).

To create the animation of VP finger movement used in the

experiment, a series of position-indexed images was created

and stored (cf., Kelso et al. 2009). The images were recorded

with a high-speed camera while a human male hand produced

flexion-extension finger motions in the horizontal plane. A

complete cycle of movement provided 119 images (17×13 cm)
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indexed by their position. The instantaneous position of the VP,

as computed in real time during the experiment, was iteratively

used to select one of the 119 position-indexed images, which

was displayed in the center of the screen (59-cm diagonal). The

screen animationwas refreshed at 100Hz during the experiment

and looked just like an ordinary video display of a real finger in

repetitive motion. An auditory tone of 440 Hz and 0.1 s duration

was used as a pacing signal to constrain the initial frequency

difference between human and VP and to minimize intertrial

and intersubject variability accordingly.

Experimental Design

Participants interacted with the VP during a session composed

of 80 pseudo-randomized trials (Fig. 2B). During the instruction

phase, the experimenter demonstrated the ability of a second

manipulandum,placed in participant’s view just outside the EEG

chamber, to provide real-time control of fingermovement.While

demonstrating the ability of the second manipulandum to con-

trol the VP on the participants’ screen, the experimenter told a

cover story pretending that the VP will sometimes be controlled

by another participant (even if it was all the time controlled by a

computational model). The addition of this manipulandum not

only assisted in conveying task instructions but also provided

a basis for the participant to attribute observed finger move-

ments to another human. Trials were arranged in blocks of 10

trials, during which participants were tasked to coordinate their

movement either in-phase or anti-phase with the VP. The order

of blocks was counterbalanced across participants.

Each trialwas composed of three periods (Fig. 2B): pacing (3 s),

interaction (10s), and self-report. Participants were instructed

to maintain coordination with the VP during the interaction

according to block-wise instructions (i.e., in-phase or anti-

phase). Before each trial, a brief screen presentation indicated

the instruction of the current block followed by a fixation-

cross at the center of the screen. Then, the pacing period

started, and an auditory tone cued the required movement

frequency (1.6 Hz). Participants were instructed to produce

peak flexion on each beat while fixating upon the cross and

then to maintain the frequency throughout the rest of the trial.

As soon as the pacing signal was turned off, the interaction

phase began, and the moving VP finger appeared on the screen.

During the interaction phase, participants were instructed to

continue their finger movement while coordinating in-phase

or anti-phase with the VP finger. The VP also had an intrinsic

frequency of 1.6 Hz and a phase randomized and locked relative

to the auditory metronome. The VP was randomly assigned

a cooperative or competitive behavior for two halves of each

trial (i.e., 4 s subperiod), giving four pseudo-randomized types

of trials: cooperation throughout, competition throughout,

switch from cooperation to competition, and finally switch

from competition to cooperation. This cooperative/competitive

behavior was parameterized using the in-phase/anti-phase

preference (µ=+/−1), thus creating either VP’s sharing or

antagonism to the participant’s goal. After the interaction

period, the participants were reminded of the Task instruction

(“your task was in-phase.” or “your task was anti-phase.”).

Furthermore, theywere asked to judge the VP using rating scales

presented on the screen. In details, participants reported the

degree to which the VP was cooperative or competitive early

and later on during the trial (questions: “early on, the partner

was . . .?” and “then, later on, the partner was . . .?”; continuous

value from 0: competitive to 1: cooperative). At the end, they

judged the humanness of the VP (question: “overall, how was

the partner like?”; binary choice with 0: machine and 1: human).

All reports were done using a scale on the screen which was

controllable by the finger motion of participants. Since the

resulting values were in a limited range and non-Gaussian, such

data were analyzed bymeans of aWilcoxon rank test. After each

choice was dialed on themanipulandum,participants employed

a short acquiescing sound to signal validation of their selection

without talking, and the experimenter moved the program to

the next trial. The nasopharyngeal sound (resembling/ C/but
without the labial component) had previously been established

in pilot experiments to minimize muscular and movement

artifacts at the sites of EEG recording.

Behavior Analysis

Potentiometer signals corresponding to human finger displace-

ment and position of the VP’s finger were mean-centered,

detrended, low-pass filtered using a second-order dual-pass

Butterworth with a cutoff frequency of 20 Hz and normalized.

After this preprocessing, we quantified the coordination

between human and VP by calculating the continuous relative

phase (RP) between their movements (phase estimated with

continuous Hilbert transform). To avoid transients and thus sep-

arate the inhomogeneous neural activity occurring at onset and

offset of the interaction, we removed the first and last seconds

of interaction, leaving 8 s of each trial for analysis. For each of the

two halves of the trials, mean RP and the corresponding circular

variability were calculated, in order to assess the produced

pattern (e.g., in-phase, anti-phase, or some other pattern) and

its stability, respectively. For each participant, subjective reports

of humanness and cooperativeness were Z-score normalized,

and performances were quantified through two indices: a

phase coordination score equal to the normalized absolute

difference between ongoing RP and the RP corresponding to

the task condition (i.e., 0 rad for in-phase and pi rad for anti-

phase); an intention attribution score equal to the normalized

difference between perceived cooperativeness and real VP

behavior, thus quantifying if the human participant was able

to perceive VP’s helpfulness (or not) toward achieving his/her

goals. Behavioral variables were analyzed through a repeated

measures 2×2×2×2 ANOVA in JASP (JASP Team 2018) having

as factors Trial-Part (First-Half/Second-Half), Behavior of the VP

(Cooperative/Competitive), Transition during the trial (Yes/No),

and Task (in-phase or anti-phase). Results were corrected for

multiple comparisons using Bonferroni tests (significance level

at P< 0.05).

High-Density EEG Recording

The experiment was conducted in a sound-proof Faraday cham-

ber. High-density EEG was recorded using 128 channel EEG caps

with Ag-AgCl electrodes (Falk Minow Services) arranged accord-

ing to an extension of the 10–20 system (Jasper 1958; Oosten-

veld and Praamstra 2001). The signals were fed to an amplifier

(Synamp2; Neuroscan) equipped with high-level port to ensure

the recording of triggers from the HDC software and to obtain

temporally precise analysis of brain-behavior dynamics. EEG

signals were measured with the respective ground located on

the left shoulder and referenced at the Cz electrode. Impedances

were maintained below 10 k∧. The signals were analog fil-

tered (Butterworth, band pass from 0.05 Hz (−12 dB per octave)

to 200 Hz (−24 dB per octave)), amplified (gain of 2010), and
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digitized at 1000 Hz with a 24-bit ADC in the range±950 µV

(vertical resolution of 0.11 nV).

Skin Potential Response

Emotional arousal was quantified with a bipolar montage of two

passive Ag/AgCl electrodes capturing sympathetic changes (one

on the left palm and one on the left epicondyle as a reference,

both placed on the immobile hand). We extracted the skin

potential response (SPR) normalizedmagnitude by following the

method described in Zhang et al. (2016) (where the main results

from this experiment with respect to emotional arousal are

reported).

Artifact Correction and Data Preprocessing

Following visual inspection, any noisy EEG channel was marked

as bad (average=4.5, min=0, max=10) and interpolated using

a spherical spline algorithm (Perrin et al. 1989) with an inter-

polation order m=3, a Legendre polynomial order n=50, and a

regularization parameter λ=10e−8 (Kang et al. 2015). Correction

of eye blink artifacts in the EEG data was performed using a

classical PCA filtering algorithm (Wallstrom et al. 2004) on 800-

ms windows with 400-ms overlap. A Hamming window was

used to control for artifacts resulting from data splicing. EEG

signals were then visually checked to exclude from analysis all

trials contaminated by residual eye blinks, unwanted swallow-

ing, coughing, or movement artifacts. Following correction, EEG

data were re-referenced to a common average reference. More

than 70 artifact-free trials were obtained for all participants, and

there were no differences in the overall quality of the data and

the number of unrejected trials per condition.

Single-Trial EEG Source Estimation

Source reconstruction was performed with the free open-source

application Brainstorm (http://neuroimage.usc.edu/brainstorm;

Tadel et al. 2011). Sensors were registered for each participant

using head points and fiducial landmarks (nasion and preau-

ricular points) digitized with a Polhemus Isotrak system and

projected on the scalp surface of the standard Montreal Neuro-

logical Institute (MNI) template space (Holmes et al. 1998). The

lead field was then computed using a boundary element model

in OpenMEEG (BEM) (Kybic et al. 2005; Gramfort et al. 2010) with

a cortical surface tessellated with 2000 vertices. A noise covari-

ancematrix was estimated from a 2-min resting state condition.

The inverse solution was estimated for each individual using a

standardized low-resolution brain electromagnetic tomography

method (sLORETA) (Pascual-Marqui 2002) with unconstrained

source orientation. Thus, cortical sources were estimated at

each vertex of the cortex surface with three orthogonal dipolar

sources.

Brain Analyses

The estimated cortical source dynamics was then processed

for each trial by taking the interaction period without the first

and last 1 s transients, since brain activity was expected to

be nonstationary near these boundaries. The remaining 8 s

were tapered with a 1-s Hamming window, and discrete Fourier

transforms used to estimate spectra at the source level. We

used Student t-test with false discovery rate correction for the

statistical analyses of powermodulations. Reports of anatomical

regions followed the Tzourio-Mazoyer atlas (Tzourio-Mazoyer

et al. 2002).

For functional connectivity, following Maris et al. (2007),

the coherence between all pairs of sources was calculated

for frequency bands of interest (cf., Table 1) according to the

formula:

COHi,j(f) =
si,j(f)

√

si,i(f)sj, j(f)
With Si,j(f) =

1

N

∑N

n=1
Fi(f)Fj(f), (1)

where i and j are the sources index, Si,j(f) is the cross-spectrum,

N is the number of windows (i.e., equals to 8), Fi(f) is the complex

Fourier component at frequency f for source i, and denotes

complex conjugate.

We then averaged the power and coherence values across

trials and eliminated potential statistical bias due to the non-

Gaussian distribution of coherence values and unequal sample

sizes by using Z-Coherence (Maris et al. 2007).

The Z-Coherence is defined as:

Zi,j(f) =

((∣

∣

∣COHA
i,j (f)

∣

∣

∣

)

−

(

1
dfA

− 2
) )

−

((∣

∣

∣COHB
i,j (f)

∣

∣

∣

)

−

(

1
dfB

− 2
) )

√

(

1
dfA

− 2
)

+

(

1
dfB

− 2
)

,

(2)

where dfA and dfB are the degrees of freedom in conditions A

and B, and COHA
i,j (f) and COHB

i,j(f) are coherences in conditions

A and B between sources i and j at frequency f . The sign of Z

indicates whether coherence in condition A is higher (positive)

or lower (negative) than in condition B.To target large-scale brain

dynamics links with high-level cognition, we tested whether

attribution of humanness and cooperative/competitive actions

from the VP were associated with whole-brain network connec-

tivity variations.

Brain-Behavior Analyses

We also computed coherence between movement velocity

and reconstructed cortical sources. In this case, the formula

described for neural coherence in equation (1) still holds except

that the source j is not another cortical source but either

the human or the VP movement velocity. To compute the Z-

Coherence, we used as control condition (i.e., condition B, in

equation (2), a phase scrambled behavior. We averaged the

coherence maps over participants and contrasted the two

conditions.

Statistical Analyses

Student t-tests were computed for both power and Z-Coherence

comparisons. All difference maps were thresholded at P< 0.05

by using group-level (n=20), two-tailed paired permutation

tests, which randomly exchanged the estimated values of

coupling between conditions for each participant. We used

exhaustive permutations (2∧20) to estimate the empirical

distribution under the null hypothesis of no difference between

the two conditions (Pantazis et al. 2005; Maris and Oostenveld

2007). For cluster-based statistics, the connectivity matrix

across the vertices was extracted from the BrainStorm MNI

mesh previously used for source reconstruction analysis (i.e.,

vertices that are part of the same face of the mesh are

considered as neighbors). The alpha level was adjusted to

the maximum statistical distribution to control for type I
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Table 1 Frequency bands of interest with their respective lower and higher bounds. All values in Hz.

Frequency band Lower bound Higher bound

F0 (fundamental of the movement frequency±1 Hz) 0.6 2.6

F1 (1st harmonics of the movement frequency±1 Hz) 2.2 4.2

Delta 1 4

Theta 4 7

Low-alpha 7 10

High-alpha 10 13

Beta 13 30

Gamma 30 60

family-wise error rate due to multiple comparisons over the

entire brain surface. Unless otherwise stated, all coherence

and power plots presented here were obtained with group-

level (n=20) statistical inference based on paired permutation

tests. All randomizations were done for the rejection of the

null hypothesis and to control the family-wise error rate at

P=0.05.

Results

Behavior

Behavioral analysis focused on subjective reports (accuracy in

cooperative or competitive intention attribution) and coordina-

tion measures (stability of the RP during the interaction).

Participants Accurately Judged Partner’s Intention

During the coordination task, both partners had to settle on a

common frequency while being instructed to coordinate with

each other either in-phase or anti-phase, two modes known to

be stable (Haken et al. 1985; Kelso 1984). In agreement with an

experimentally chosen parameter of strong coupling from the

VP, the RP was mostly stable and followed the intention of VP.

After each trial, participants were asked to judge the

intention of the partner, that is, was (s)he cooperative or

competitive (cf., Fig. 3). Overall, they correctly attributed VP’s

intention 80.3% of the time (P< 0.001, permutation test against

chance; 10.6% false-cooperation, 9.1% false-competition), and

their subjective reports were successfully modulated by the

behavior of the VP during the interaction. The 2× 2×2 repeated-

measures ANOVA (VP Behavior [Cooperative/Competitive] by

Transition [Yes/No] by Task [In-phase/Anti-phase]) on subjective

reports of cooperativeness revealed a main effect of VP behavior

(F(1, 19) = 579.49, P<0.001, ηp2 =0.650), showing that the VP was

rated more cooperative in the cooperative condition compared

with the competitive one. The transition factor also reached

significance (F(1, 19) = 4.25, P=0.04, ηp2 =0.013), showing that a

change in VP behavior during the trial resulted in the VP being

rated less cooperative. Finally, there was a main effect of Task

(F(1, 19) = 9.71, P=0.002, ηp2 =0.030), as well as an interaction

between VP behavior and Task (F(1, 19) = 10.80, P=0.001,

ηp2 =0.033). Post-hoc tests revealed that VP was judged less

cooperative for the task anti-phase than in-phase (t(19) =−3.4,

P< 0.001), especially when the trials started with a cooperative

VP (Fig. 3).

One notable exception occurred when the human task to

move in-phase led to a VP deemed less cooperative than when

the human was tasked to move anti-phase (Fig. 3, left panel).

This happened during the second part of trials with a compet-

itive VP intending anti-phase, following initial segments when

VP co-operated in-phase (“treachery”). In such cases, VP was

deemed the most competitive of all (Fig. 3, left panel). Over-

all, the results already suggest that sensorimotor coupling and

intention attribution are linked: the better able participantswere

in coordinating together, the more aware they were of their

partner’s intention.

Stability of VP Intention and Coordinative Stability
Modulate Social Cognition

The 2×2×2×2 repeated-measures ANOVA (VP Behavior

[Cooperative/Competitive] by Transition [Yes/No] by Task [In-

phase/Anti-phase] by Trial-Part [First-Half/Second-Half]) on RP

stability revealed that coordinative stability depended: 1) on

the cooperativeness of the VP (F(1, 19) = 42.45, P< 0.001, ηp2

= 0.123) with competitive being less stable than cooperative

behavior; 2) on the organization of the trial, with the first half

of the trial less stable than the second (F(1, 19) = 15.97, P< 0.001,

ηp2 = 0.050); and 3) on the presence of a transition in VP behavior,

with the presence of a transition resulting in less stability (F(1,

19) = 19.34, P< 0.001, ηp2 = 0.060). The transition × trial-part

interaction (F(1, 19) = 20.47, P< 0.001, ηp2 = 0.063) indicated that

RP stability was lowest in the second half of the trials, in cases

where VP switched behavior atmid-trial (ps< 0.001).Note that in

all cases, stability was assessed in each half of the trial and after

a transient to discard effects from the appearance of the partner

and a switch in VP intention. Interestingly, accurate intention

attribution was correlated with the stability of the interaction

(r=0.51, P=0.02), pointing toward a link between the pattern of

sensorimotor coordination and socio-cognitive assessment of

the other.

Cooperative VPs Were Judged More Human

Consistent with earlier reports that endowed VPs with inten-

tionality (perceived as the VP trying to trick the human

to achieve goals opposite to his/her, Kelso et al. 2009), we

found that (objectively) cooperative VPs scored higher in

humanness ratings than competitive ones (Wilcoxon rank

test Z=2.62, P=0.008). Despite this prominent dependency

on objective variables of cooperativeness, the humanness

rating was independent of subjective judgment of cooperation.

Indeed, subjective ratings of cooperativeness in both periods

of interaction did not show any differences between trials

associated with judgments of humanness (Wilcoxon rank

test with Z=−0.53, P=0.6 for the first part of the trial, and

Z=−0.20, P=0.84 for the last). Similarly, trials with both parts

judged as cooperative did not demonstrate differences in
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Figure 3. Judgment of cooperation and competition between human and VP. Subjective reports show how participants perceived the VP across the different conditions.

Red and blue plots represent, respectively, the in-phase and anti-phase tasks, shaded areas represent standard errors, and stars indicate statistically significant

differences (P< 0.05, corrected). See details in text.

humanness rating compared with trials with both parts judged

as competitive (Wilcoxon rank test, Z=−1.5, P=0.13). In contrast

to intention attribution, judgment of humanness did not depend

on RP stability (Wilcoxon rank test, Z=0.64, P=0.52). However,

statistical analysis revealed a significant correlation between VP

behavior and transition in the judgment of humanness (Fig. 4A),

indicating that the latter depends on both cooperative behavior

and how this behavior changes over time.

The 2× 2×2 (VP Behavior [Cooperative/Competitive] by

Transition [Yes/No] by Task [In-phase/Anti-phase]) repeated-

measures ANOVA on humanness ratings showed a main

effect of VP behavior (F(1, 19) = 7.022, P=0.008, ηp2 =0.022) as

well as an interaction between VP behavior and transition

(F(1, 19) = 7.022, P=0.008, ηp2 =0.022), suggesting that a drop

in humanness rating occurred when VPs were acting in a

competitive fashion and, specifically, when VPs sustained their

competitive intention throughout the trial (cf., Fig. 4B).

Right Parietal Activity during Human ∼ VP Coordination

Power analyses on estimated cortical sources revealed well-

known mu suppression in the upper alpha band over primary

motor areas during movement (maximum difference over

precentral left with t(19) =−5.58, P< 0.0001; Fig. 5A) and also

revealed a joint suppression of high-alpha band (maximum

difference over parietal superior right: t(19) =−10.38, P< 0.001;

Fig. 5B) and an increase in gamma band activity over right

posterior cortex during active coordination with VP (maximum

difference over temporal superior right: t(19) = 2.95, P< 0.05;

Fig. 5C). Interestingly, the emotional response of participants

(as quantified by SPR) was also linked to a strong modulation of

high-alpha activity in the same anatomical regions (maximum

difference over supramarginal right: t(19) = 3.55,P< 0.05; Fig. 5D).

Neural Dynamics Coordinated with Self- and Other
Behavior

Analysis of cortico-motor coherence with velocity of human

movement (“self”) revealed the significant involvement of con-

tralateral primary motor cortex (red colored region of the brain,

maximum difference over precentral left: t(19) = 3.53, P< 0.005;

Fig. 6). In contrast, when cortico-motor coherence was based on

VP (“other”) velocity, an antero-posterior network was observed

(blue colored regions of the brain, maximum difference over

right cuneus: t(19) = 4.56, P< 0.0001; Fig. 6). Both brain networks,

for self and other, span the fundamental frequency ofmovement
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Figure 4. Humanness assessment during the interaction with the VP. (A) Transitions in VP behavior modulated the subjective feeling of interaction with another

human, measured by normalized Humanness score (Z-scores, raw values were between 0 and 1, respectively, corresponding to the judgment of VP as a Robot or a

Human). Shaded area indicates 95% confidence interval. (B) Modulation of perceived humanness by the presence of transition in VP behavior and its initially perceived

cooperativeness. Star indicates statistically significant differences (P<0.05, corrected).

and the first 2 or 3 harmonics (see distribution in the insert

spectra, Fig. 6), roughly corresponding to the delta/theta bands.

Besides pointing to significant differences in corticomotor

coherence between brain regions associated with self- and

other movement, we can investigate how the two networks

are integrated via an analysis of their overlap (Fig. 7). Joint self-

and other-movement coherence activities were found over right

parietal areas (purple) with four ROIs: cuneus right, angular

right, parietal inferior right, and supra-marginal right (Fig. 7,

pink color). Very few parts of the cortex were indifferent to both

self and other’s movement (black color, restricted to superior

frontal areas). The region that was specific for self-movement,

again, was the contralateral motor cortex (red color). In contrast,

a large expanse of the cortex was concerned with the other’s

movement (blue color).

Modulation of Functional Connectivity by Attribution
of Humanness and Cooperation

Functional connectivity in the low-theta band was explored

in order to understand how self- and other-related informa-

tion may be related to cooperative/competitive behaviors or

humanness judgment during social interaction. The two con-

trasts revealed a similar pattern: sensorimotor hubs in the pos-

terior part of the brain, predominantly in the right hemisphere

(e.g., Cuneus), were coordinated with anterior areas (e.g., Frontal

Superior). Figure 8A–D illustrates the anatomical distribution of

the most important changes due to coupling, revealing that

both the attribution of humanness to the VP and cooperation of

VP are associated with a coherence increase between posterior

and anterior brain structures in the delta/theta band (1–5 Hz).

Figure 8E,F provides further details on the brain areas involved

in this increase (or decrease) of coherence according to the

Tzourio-Mazoyer atlas.

Discussion

The present study used the HDC to investigate the neural under-

pinnings of social interaction and in particular how the brain

integrates its own behavior with that of others to support the

attribution of humanness and intention. We recorded high-

density EEG in humans interacting with a VP parameterized

to act in a cooperative or a competitive way. At the behavioral

level, our results suggest a link between sensorimotor coupling

and intention attribution as shown by the correlation between

individual phase coordination scores (stability) and accuracy in

detecting VP’s goals (i.e., to compete or to cooperate).At the brain

level, we highlight the recruitment of networks associated with

self–other integration, demonstrating a key overlap over right

parietal areas.

Attribution of Intention to a VP

At the behavioral level, our results first demonstrate how inter-

action with the HDC leads to the successful attribution of inten-

tion. Indeed, participants accurately judged the intention of

the VP despite the confounding factor of task difficulty arising

from the performance of in-phase versus anti-phase coordi-

nation (more difficult). The experimental protocol also led to

attribution of humanness, although the partner was always a

computational model. Participants judged the VP to be human

47.3%of the time.Our data show that the presence of a transition

in VP behavior (i.e., from cooperation to competition or vice-

versa) modulated the attribution of humanness to the VP (cf.,

Fig. 3) and that global joint coordination (i.e., RP stability) was

correlated with the accurate attribution of intention to the VP.

These behavioral results therefore confirm the ecological valid-

ity of HDC and demonstrate the influence of a VP’s behavior on

human social cognition. Previous human–machine interaction

paradigms using gaze pattern have shown how contingency and

taskmodulate humanness attribution (Pfeiffer et al. 2011). Other

psychosocial parameters such as gender similarity between the

VP and the humanparticipant can also impact subjective reports

(Guadagno et al. 2007). Previous findings show how the HDC

allows a new exploration of relational patterns during real-

time sensorimotor coordination and how the latter modulates

subjective judgment (Kelso et al. 2009; Dumas et al. 2014a) and

emotional responses (Zhang et al. 2016). Building upon those

results and combining the HDCwith high-density EEG recording

provides an opportunity to uncover the neural dynamics under-

lying a nonverbal Turing test during real-time social interaction.
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Figure 5. Modulation of spectral activity of cortical sources. High-alpha suppression over motor regions during the execution of movement without VP (A), joint

decrease of high-alpha activity (B) and increase of gamma activity (C) over right parietal cortex during interaction with VP, and modulation of high-alpha activity by

the emotional responses of the participants as measured by SPR (D). Color indicates clusters of cortical sources which were significantly modulated in each contrast.

Coordination of Self- and Other-Neural Networks
and the Role of the Right Parietal Cortex

At the brain level, source analysis reveals multiple brain

networks involved in social coordination operating at different

frequencies. Motor areas are recruited, as highlighted by a

significant decrease of high-alpha/mu (10–13 Hz) power over

contralateral and medial Rolandic regions during execution of

movement compared with rest (Fig. 5A). This result is consistent

with numerous reports of mu desynchronization during action

execution (Salenius et al. 1997; Babiloni et al. 1999; Pfurtscheller

et al. 2006; Dumas et al. 2014c; Hobson and Bishop 2016).

Furthermore, in line with previous studies targeting reciprocal

exchange of movement information during social interactions

(Dumas et al. 2010; Novembre et al. 2016), the present EEG results

exhibit decreases in high-alpha power over the superior aspect

of right posterior parietal areas during social coordination in

comparison to similar movement produced without a partner

(Fig. 5B). The topography observed here is evocative of a body

of work in monkey relating posterior parietal cortex to online

control of visually guided movement (Buneo and Andersen

2006; McGuire and Sabes 2011)—with the caveat that caution

is warranted due to task (individual goal-directed actions

vs. social coordination) and species differences (monkey vs.

human). Nevertheless, the present results are suggestive that

posterior parietal alpha suppression reflects the visual coupling

governing movement coordination between partners, whether

virtual or not. Our data also expand current knowledge on

parietal dynamics during on-line social interaction (Tognoli

et al. 2007; Era et al. 2018a) by highlighting an increase of

source-resolved gammapower over right temporo-parietal areas

during social coordination compared with solo actions (Fig. 5C).

Finally, interactions marked with high levels of emotional
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Figure 6. Self- and other-related cortico-motor coherence modulation. Graphs show cortico-motor coherence (Jerbi et al. 2007) across frequencies for key task-related

brain structures. 3D brain figures represent statistical differences between cortico-motor coherence of human and VP movement velocities and neural activity in the

delta/theta band (1–5 Hz). Red and blue indicate sources which were statistically more associated with (respectively) self- or other movement. Notice the increase for

self-movement in the left motor cortex and for other movement in right parieto-occipital, left frontal and midline regions. Notice also the absence of coherence with

time-scrambled movements (green and orange in the graphs). Shaded areas in 2D graphs represent standard errors.

Figure 7. Overlap of self- and other-related brain networks. The networks related to self- and other-movement overlap on both rTPJ and right STS. Color stands for

significance (−log(p)) of theta cortico-motor coherence contrasts (P< 0.05) for Real versus Scrambled behavior. Red and blue colors component code, respectively,

for the “Self- versus Scrambled” and “Other- versus Scrambled” contrasts. We attract the attention to the bright magenta area which corresponds to cortical sources

related to both Self- and Other behaviors.
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Figure 8. Right parietal cortex as a hub between self- and other-sensorimotor brain networks. Humanness attribution and cooperation are related to changes in

large-scale brain dynamics. Coherence between posterior and anterior brain structures in the delta/theta band (1–5 Hz) increased when participants judged the VP as

human rather than machine (A, C, P<0.05 noncorrected) and when VP was cooperative rather than competitive (B, D, P<0.05 noncorrected). Panels (E) and (F) show,

respectively, the networks of brain structures implicated in (A, C) and (B, D). Line width and circle size indicate the modulation strength of coherence and power in the

theta band.
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responses elicited increased alpha in a similar right parietal-

temporal-insular complex (Fig. 5D; cf., Zhang et al. 2016). These

results not only highlight the key role of right parietal areas

in social coordination but also point toward a link between

sensorimotor neuromarkers and affective dimensions of human

social cognition.

Previous research has identified the involvement of right

parietal cortex, specifically the TPJ for the integration of self

and others’ actions (Sowden and Catmur 2015). TPJ is known

to integrate inputs from subcortical (e.g., thalamus) and cortical

(e.g., occipital, temporal, and prefrontal) regions (Decety and

Lamm 2007). Functional neuroimaging studies have repeatedly

linked activity over right TPJ (rTPJ) with socio-cognitive pro-

cesses (Decety and Chaminade 2003), including theory of mind

and empathy (Jackson et al. 2006), and joint-attention (Red-

cay et al. 2010). Moreover, research by Bzdok et al. (2013) has

revealed the presence of two antagonistic clusters within rTPJ

that is connected to networks processing external versus inter-

nal information. Reverse and forward inference meta-analyses

linked the anterior cluster of rTPJ to “sensorimotor control [. . .]

integrating supramodal stimulus-guided attention and action

initiation during externally structured tasks,” whereas the pos-

terior cluster was linked to social cognition, theory of mind, and

deception tasks. In our study, areas within the posterior rTPJ

were part of a network significantly modulated by subjective

judgments of humanness, and areas within the anterior rTPJ

partook to a network affected by VP cooperation. Interfering

with brain activity using Transcranial Magnetic Stimulation has

shown a causal role of rTPJ in numerous processes relevant to

social interaction, ranging from self-centered (i.e., body owner-

ship; Tsakiris et al. 2008) and other-centered socio-cognitive pro-

cesses (mentalizing and theory ofmind; Bardi et al. 2017) to self–

other integration in imitative actions (Sowden andCatmur 2015).

Crucially, enhancement of rTPJ activity (using tDCS) improves

online interactions by boosting the ability to switch between

self- and other representations in both perspective-taking and

the control of imitation (Santiesteban et al. 2012). Furthermore,

Era et al. (2019) suggest that rTPJ supports the ability to perform

jointmovements onlywhen self- and other-movement planning

overlaps. The present research adds the understanding that rTPJ

is the site of integration of corticomotor frequencies in the theta

range for self and other, and that it is accompanied by higher

frequencies in the gamma band for sensorimotor coordination.

Cortico-motor coherence in the theta band also reveals how

right parietal sources are coordinated with shared movement

velocity (Fig. 7), extending our previous results revealing amotor

equivalence between the theta neural dynamics in motor cortex

and velocity of self-generated movements (Kelso et al. 1998).

The similar topography of the gamma increase, the alpha

decrease, and the cortico-motor coherence in the theta band

suggest a multifaceted integration of self- and other behaviors

and a polyvalent role of right parietal areas in supporting

sensorimotor coordination. While gamma increase of activity

reflects local “processing,” alpha desynchronization has been

previously linked to “gating” information (Varela et al. 1981;

Busch and VanRullen 2010), in particular by routing information

to task-relevant regions through inhibition of task-irrelevant

ones (Jensen and Mazaheri 2010). Here, the joint increase of

gamma and decrease of alpha in rTPJ was found to colocalize

with the overlap of information about self- and other behavior,

thus reflecting a change in the ongoing processing of self-

and other-associated information. Activity in the theta band

is usually associated with long-range connectivity and large-

scale coordination of distant cortical areas (Moreau et al. 2018).

Zhang et al. (2018) described theta waves as “traveling” waves,

crucial for behavior by spatially and temporally organizing

perceptual and cognitive processes across the cortex. In our case,

we observed an increase of low-frequency connectivity across a

large-scale network modulated by both sensorimotor and socio-

cognitive factors, suggesting that the integration of socially

relevant components during social interaction influences global

cortical activity. Conversely, activity in the gamma band is often

associated with the local processing of information (Fries 2009).

Much previous research has reported a coupling of theta and

gamma activity over similar areas thought to form a neural code

for representing sequential order among numerous elements

(Canolty and Knight 2010; Lisman and Jensen 2013). Here,

the colocalization of the theta hub between self- and other

network and the gamma activity associated with active social

coordination points toward a functional cross-frequency link

uniting the two processes.

Social interactions are not solely orchestrated by parietal

regions. Moreau et al. (2018) showed an increase of occipito-

temporal activity when a VP performed unexpected actions

during motor interactions, highlighting the role of occipito-

temporal areas in integrating the behavior of others. In accor-

dance with this,we find that an increase of cortico-motor coher-

ence over posterior sites is related to the partner’s movement

(cf., Fig. 6). The present connectivity analysis revealed a signif-

icant increase of cortico-cortical coherence between bilateral

occipital areas when participants declared they were interacting

with a human partner (Fig. 8C,E).

Brain Dynamics of Social Embodiment

Understanding the intentions of others is a crucial feature of

effective social interaction. The present behavioral results high-

light a correlation between sensorimotor performance and the

correct attribution of intention. Furthermore, we show through

whole-scalp connectivity analysis that large-scale connectivity

modulation is associated with both high- (social cognition) and

low-level (sensorimotor) aspects at play during live interaction.

The attribution of human intentions to the VP is associated with

higher coherence between bilateral occipital areas and between

right occipital and parietal areas (coherent with the location of

rTPJ) (cf., Fig. 8A,C,E), whereas cooperative behavior from the VP

reveals larger right-lateralized fronto-parietal communication

(including prefrontal, motor, right-parietal, right-temporal, and

right-occipital areas) compared with competitive behavior (cf.,

Fig. 8B,D,F). These results confirm the spectral and the cortico-

motor coherence findings, by emphasizing the presence large-

scale brain networks related to the completion of our social task.

Altogether, our results, showing the communication between

visual and parietal areas, appear to fit the nexus model of rTPJ

(Carter and Huettel 2013), which proposes that the visual pro-

cessing of social information by occipital and occipito-temporal

areas coordinates with the integration/segregation of relevant

information in rTPJ. Crucially, both cooperative behavior and

human attribution are associated with the increase of connec-

tivity between posterior areas (occipital, temporal, and pari-

etal) and motor and frontal areas, the latter generally recruited

in decision-making tasks regardless of the presence of others

(Tomlin et al. 2006; Campbell-Meiklejohn et al. 2017; Shaw et al.

2018; Thornton et al. 2019). Hence, our results serve to unpack

the link between social cognition and communication and per-

ceptive, cognitive, and social brain networks. Taken together, the
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present findings call for going beyond the social brain per se

to embrace a more integrative perspective where sensorimotor

abilities and accurate intention attribution are part and parcel

of the same self-organizing coordination dynamics that grounds

social awareness and cognition (Oullier and Kelso 2009; Kelso et

al. 2013; Dumas et al. 2014b).

Limitations

The current study presents several limitations. First, our sam-

ple size (n=20) restricts statistical power. Another limitation

concerns the use of EEG alone for studying the brain’s func-

tional networks. EEG is a technique with an appropriately high-

temporal resolution to conduct the key analyses, especially the

cortico-motor coherence, but with a restricted spatial precision.

Even though high-density EEG provides a better spatial reso-

lution than regular EEG systems (e.g., 64 electrodes), volume

conduction, a biophysical phenomenon defined as the transmis-

sion of electric fields from primary sources through biological

tissues and recorded by several sensors at different locations

(Wolters and de Munck 2007), distorts spatial precision. The use

of a generic brain template instead of individual MRI also con-

tributed to less accurate source estimation.Adding or combining

MEG or fMRI is likely to reinforce the robustness of the study, and

a priori powered sample selection will complement the current

results and improve our understanding of the neural networks

involved in reciprocal social interactions.

Translational Potential and Conclusion

These limitations apart, the current results carry a large trans-

lational potential for neurological and psychiatric disorders.

Ongoing and future studies use the HDC to investigate peo-

ple on the autism spectrum (ASDs), to identify specific fea-

tures affected in ASDs (i.e., ranging from sensorimotor to rep-

resentational skills). The rationale behind this design is that

deep phenotyping (Robinson 2012), from neural dynamics to

social cognition, will help in understanding the heterogene-

ity of ASDs and identify intervention-relevant biomarkers. Fur-

thermore, extending the findings of the current and previous

studies of VP interaction might provide useful tools to help

rehabilitation (e.g., patients recovering from strokes). For exam-

ple, online interactions have shown promising results regarding

motor performance in patients suffering from apraxia (Candidi

et al. 2017). Altogether, the current results have both theoretical

and practical implications, aiming to unite low-level and higher

order frameworks of social interaction.

Funding

National Institute of Mental Health (grant MH080838); the

National Science Foundation (grant BCS0826897); The Davimos

Family Endowment for Excellence in Science; Innovative

Medicines Initiative (IMI) (to G.D.).

Notes

We thank the Brainstorm Team for their software (http://

neuroimage.usc.edu/brainstorm/) and G. de Guzman for help

in implementing the human dynamic clamp. We also thank M.

Zhang for her support in the earlier stages of this research.

References

Apps MAJ, Rushworth MFS, Chang SWC. 2016. The anterior

cingulate gyrus and social cognition: tracking the motivation

of others. Neuron. 90:692–707.

Babiloni C, Carducci F, Cincotti F, Rossini PM, Neuper C,

Pfurtscheller G, Babiloni F. 1999. Human movement-related

potentials vs desynchronization of EEG alpha rhythm: a high-

resolution EEG study. NeuroImage. 10:658–665.

Babiloni F, Cincotti F,Mattia D,Mattiocco M, Fallani FDV, Tocci A,

Bianchi L,MarcianiMG,Astolfi L. 2006.Hypermethods for EEG

hyperscanning. In: Engineering in Medicine and Biology Society,

2006. EMBS’06. 28th Annual International Conference of the IEEE.

IEEE, pp. 3666–3669.

Bardi L, Six P, Brass M. 2017. Repetitive TMS of the temporo-

parietal junction disrupts participant’s expectations in a

spontaneous theory of mind task. Soc Cogn Affect Neurosci.

12:1775–1782.

Buneo C, Andersen R. 2006. The posterior parietal cortex: sen-

sorimotor interface for the planning and online control of

visually guided movements. Neuropsychologia. 44:2594–2606.

Busch NA, VanRullen R. 2010. Spontaneous EEG oscillations

reveal periodic sampling of visual attention. Proc Natl Acad

Sci U S A. 107:16048–16053.

Bzdok D, Langner R, Schilbach L, Jakobs O, Roski C, Caspers S,

Laird AR, Fox PT, Zilles K, Eickhoff SB. 2013. Characteriza-

tion of the temporo-parietal junction by combining data-

driven parcellation, complementary connectivity analyses,

and functional decoding. NeuroImage. 81:381–392.

Campbell-Meiklejohn D, Simonsen A, Frith CD, Daw ND. 2017.

Independent neural computation of value from other peo-

ple’s confidence. J Neurosci. 37:673–684.

Candidi M, Sacheli LM, Era V, Canzano L, Tieri G, Aglioti SM. 2017.

Come together: human-avatar on-line interactions boost

joint-action performance in apraxic patients. Soc Cogn Affect

Neurosci. 12(11):1793–1803.

Canolty RT, Knight RT. 2010. The functional role of cross-

frequency coupling. Trends Cogn Sci. 14(11):506–515.

Carter RM, Huettel SA. 2013. A nexus model of the temporal–

parietal junction. Trends Cogn Sci. 17:328–336.

Chauvigné LAS, Belyk M, Brown S. 2018. Taking two to tango:

fMRI analysis of improvised joint action with physical con-

tact. PLoS One. 13:e0191098.

Chen J, Leong YC, Honey CJ, Yong CH, Norman KA, Hasson U.

2017. Shared memories reveal shared structure in neural

activity across individuals. Nat Neurosci. 20:115–125.

Coey CA, Varlet M, Richardson MJ. 2012. Coordination dynamics

in a socially situated nervous system. Front Hum Neurosci.

6:164.

Decety J, Chaminade T. 2003. When the self represents the

other: a new cognitive neuroscience view on psychological

identification. Conscious Cogn. 12:577–596.

Decety J, Lamm C. 2007. The role of the right temporopari-

etal junction in social interaction: how low-level computa-

tional processes contribute to meta-cognition. Neuroscientist.

13:580–593.

Dennett DC. 1971. Intentional systems. J Philos. 68(4):87–106.

Dikker S, Wan L, Davidesco I, Kaggen L, Oostrik M, McClintock

J, Rowland J, Michalareas G, Bavel JJV, Ding M et al. 2017.

Brain-to-brain synchrony tracks real-world dynamic group

interactions in the classroom. Curr Biol. 27:1375–1380.

Drever J, Guzman GC d, Tognoli E, JAS K. 2011. Agency attribution

in the virtual partner paradigm. In: Riley MA, editor. progress

D
ow

nloaded from
 https://academ

ic.oup.com
/cercor/advance-article-abstract/doi/10.1093/cercor/bhz308/5682427 by guest on 19 January 2020

http://neuroimage.usc.edu/brainstorm/
http://neuroimage.usc.edu/brainstorm/


14 Cerebral Cortex, 2019, Vol. 00, No. 00

in motor control VIII: recent advances in neural, computational and

dynamical approaches. Ohio: Cincinnati.

Dumas G. 2011. Towards a two-body neuroscience. Commun

Integr Biol. 4:349–352.

DumasG, de GuzmanGC, Tognoli E, Kelso JAS. 2014a. The human

dynamic clamp as a paradigm for social interaction. Proc Natl

Acad Sci U S A. 111:E3726–E3734.

Dumas G, Kelso JAS, Nadel J. 2014b. Tackling the social cognition

paradox through multi-scale approaches. Front Psychol. 5:882.

Dumas G, Martinerie J, Soussignan R, Nadel J. 2012. Does the

brain know who is at the origin of what in an imitative

interaction? Front Hum Neurosci. 6:128.

Dumas G, Nadel J, Soussignan R, Martinerie J, Garnero L. 2010.

Inter-brain synchronization during social interaction. PLoS

One. 5:e12166.

DumasG, Soussignan R, Hugueville L,Martinerie J, Nadel J. 2014c.

Revisitingmu suppression in autism spectrumdisorder.Brain

Res. 1585:108–119.

Era V, Aglioti SM, Candidi M. 2019. Inhibitory theta burst stim-

ulation highlights the role of left aIPS and right TPJ during

complementary and imitative human-avatar interactions in

cooperative and competitive scenarios. Cereb Cortex. (forth-

coming 2019).

Era V, Aglioti SM, Mancusi C, Candidi M. 2018a. Visuo-motor

interference with a virtual partner is equally present in

cooperative and competitive interactions. Psychol Res, 1–13,

In Press.

Era V, Candidi M, Gandolfo M, Sacheli LM, Aglioti SM. 2018b.

Inhibition of left anterior intraparietal sulcus shows that

mutual adjustment marks dyadic joint-actions in humans.

Soc Cogn Affect Neurosci. 13:492–500.

Fries P. 2009. Neuronal gamma-band synchronization as a fun-

damental process in cortical computation.Annu Rev Neurosci.

32:209–224.

Frith CD, Frith U. 2012.Mechanisms of social cognition.Annu Rev

Psychol. 63:287–313.

Funane T, Kiguchi M, Atsumori H, Sato H, Kubota K, Koizumi H.

2011. Synchronous activity of two people’s prefrontal cortices

during a cooperative task measured by simultaneous near-

infrared spectroscopy. J Biomed Opt. 16:077011.

Gallagher HL, Jack AI, Roepstorff A, Frith CD. 2002. Imaging

the intentional stance in a competitive game. NeuroImage.

16(3):814–821.

Gramfort A, Papadopoulo T, Olivi E, Clerc M. 2010. OpenMEEG:

opensource software for quasistatic bioelectromagnetics.

Biomed Eng Online. 9:45.

Guadagno RE, Blascovich J, Bailenson JN, Mccall C. 2007. Virtual

humans and persuasion: the effects of agency and behavioral

realism.Media Psychol. 10:1–22.

Haken H, Kelso JAS, Bunz H. 1985. A theoretical model of

phase transitions in human hand movements. Biol Cybern.

51:347–356.

Hari R, Henriksson L, Malinen S, Parkkonen L. 2015. Central-

ity of social interaction in human brain function. Neuron.

88:181–193.

Hari R, Kujala MV. 2009. Brain basis of human social interaction:

from concepts to brain imaging. Physiol Rev. 89:453–479.

Hasson U, Ghazanfar AA, Galantucci B, Garrod S, Keysers C.

2012. Brain-to-brain coupling: a mechanism for creating and

sharing a social world. Trends Cogn Sci. 16:114–121.

Hirsch J, Zhang X, Noah JA, Ono Y. 2017. Frontal temporal and

parietal systems synchronize within and across brains dur-

ing live eye-to-eye contact. NeuroImage. 157:314–330.

Hobson HM, Bishop DVM. 2016. Mu suppression – a good

measure of the human mirror neuron system? Cortex,

82:290–310.

Holmes CJ, Hoge R, Collins L, Woods R, Toga AW, Evans AC. 1998.

Enhancement of MR images using registration for signal

averaging. J Comput Assist Tomogr. 22:324–333.

Jackson P, Meltzoff AN, Decety J. 2006. Neural circuits involved

in imitation and perspective-taking. NeuroImage. 31:429–439.

JASP Team. 2018. JASP (version 0.9)[computer software].

Jasper HH. 1958. The ten twenty electrode system of the

international federation. Electroencephalogr Clin Neurophysiol.

10:371–375.

Jerbi K, Lachaux J-P, N’Diaye K, Pantazis D, Leahy RM, Garnero L,

Baillet S. 2007. Coherent neural representation of hand speed

in humans revealed by MEG imaging. Proc Natl Acad Sci U S A.

104:7676–7681.

Jensen O, Mazaheri A. 2010. Shaping functional architecture

by oscillatory alpha activity: gating by inhibition. Front Hum

Neurosci. 4:186.

Kang SS, Lano TJ, Sponheim SR. 2015. Distortions in EEG inter-

regional phase synchrony by spherical spline interpolation:

causes and remedies. Neuropsychiatric Electrophysiol. 1:9.

Kelso JA. 1984. Phase transitions and critical behavior in human

bimanual coordination. Am J Physiol. 246:R1000–R1004.

Kelso JAS, Fuchs A, Lancaster R, Holroyd T, Cheyne D, Weinberg

H. 1998. Dynamic cortical activity in the human brain reveals

motor equivalence. Nature. 392(6678):814.

Kelso JAS, de Guzman GC, Reveley C, Tognoli E. 2009. Virtual

partner interaction (VPI): exploring novel behaviors via coor-

dination dynamics. PLoS One. 4:e5749.

Kelso JAS, Dumas G, Tognoli E. 2013. Outline of a general theory

of behavior and brain coordination. Neural Netw. 37:120–131.

Kilner J, Hamilton AF d C, Blakemore S-J. 2007. Interfer-

ence effect of observed human movement on action is

due to velocity profile of biological motion. Soc Neurosci.

2:158–166.

Konvalinka I, Bauer M, Stahlhut C, Hansen LK, Roepstorff A,

Frith CD. 2010. Frontal alpha oscillations distinguish leaders

from followers: multivariate decoding of mutually interact-

ing brains. NeuroImage. 94:79–88.

Konvalinka I, Roepstorff A. 2012. The two-brain approach: how

can mutually interacting brains teach us something about

social interaction? Front Hum Neurosci. 6: 215.

Kostrubiec V, Dumas G, Zanone P-G, Kelso JAS. 2015. The virtual

teacher (VT) paradigm: learning new patterns of interper-

sonal coordination using the human dynamic clamp. PLoS

One. 10:e0142029.

Kybic J, Clerc M, Abboud T, Faugeras O, Keriven R, Papadopoulo

T. 2005. A common formalism for the integral formulations

of the forward EEG problem. IEEE Trans Med Imaging. 24:12–28.

Lingnau A, Downing PE. 2015. The lateral occipitotemporal cor-

tex in action. Trends Cogn Sci. 19:1–10.

Lisman JE, Jensen O. 2013. The Theta-gamma neural code. Neu-

ron. 77:1002–1016.

Maris E, Oostenveld R. 2007. Nonparametric statistical testing of

EEG- and MEG-data. J Neurosci Methods. 164:177–190.

Maris E, Schoffelen J-M, Fries P. 2007. Nonparametric statis-

tical testing of coherence differences. J Neurosci Methods.

163:161–175.

McGuire LMM, Sabes PN. 2011. Heterogeneous representa-

tions in the superior parietal lobule are common across

reaches to visual and proprioceptive targets. J Neurosci. 31:

6661–6673.

D
ow

nloaded from
 https://academ

ic.oup.com
/cercor/advance-article-abstract/doi/10.1093/cercor/bhz308/5682427 by guest on 19 January 2020



HumanDynamic ClampReveals the Fronto-Parietal Network Linking Real-Time Social Coordination andCognition Dumas et al. 15

Ménoret M, Varnet L, Fargier R, Cheylus A, Curie A, des Portes

V, Nazir TA, Paulignan Y. 2014. Neural correlates of non-

verbal social interactions_ a dual-EEG study.Neuropsychologia.

55:85–97.doi: 10.1016/j.neuropsychologia.2013.10.001.

Montague PR, Berns GS, Cohen JD, McClure SM, Pagnoni G,

Dhamala M, Wiest MC, Karpov I, King RD, Apple N et al.

2002.Hyperscanning: simultaneous fMRI during linked social

interactions. NeuroImage. 16:1159–1164.

Moreau Q, CandidiM, Era V, Tieri G, Aglioti SM. 2018. Frontal and

occipito-temporal theta activity as marker of error monitor-

ing in human-avatar joint performance. bioRxiv. 402149.

Moreau Q, Galvan L, Nazir TA, Paulignan Y. 2016. Dynamics of

social interaction: kinematic analysis of a joint action. Front

Psychol. 7:2016.

Novembre G, Knoblich G, Dunne L, Keller PE. 2017. Interper-

sonal synchrony enhanced through 20 Hz phase-coupled

dual brain stimulation. Soc Cogn Affect Neurosci. 12(4):

662–70.

Novembre G, Sammler D, Keller PE. 2016. Neural alpha oscil-

lations index the balance between self-other integration

and segregation in real-time joint action. Neuropsychologia.

89:414–425.

Novembre G, Ticini LF, Schutz-Bosbach S, Keller PE. 2014. Motor

simulation and the coordination of self and other in real-time

joint action. Soc Cogn Affect Neurosci. 9:1062–1068.

Oostenveld R, Praamstra P. 2001. The five percent electrode

system for high-resolution EEG and ERP measurements. Clin

Neurophysiol. 112:713–719.

Oullier O, de Guzman GC, Jantzen KJ, Lagarde J, Kelso JAS. 2008.

Social coordination dynamics: measuring human bonding.

Soc Neurosci. 3:178–192.

Oullier O, Kelso JA. 2009. Social Coordination, from the Perspec-

tive of Coordination Dynamics. In: Meyers R. (eds) Encyclope-

dia of Complexity and Systems Science. Springer, New York,

NY.

Pantazis D, Nichols T, Baillet S, Leahy R. 2005. A compar-

ison of random field theory and permutation methods

for the statistical analysis of MEG data. NeuroImage. 25:

383–394.

Pascual-Marqui RD. 2002. Standardized low-resolution brain

electromagnetic tomography (sLORETA): technical details.

Methods Find Exp Clin Pharmacol. 24(Suppl D):5–12.

Perrin F, Pernier J, BertrandO, Echallier JF. 1989. Spherical splines

for scalp potential and current density mapping. Electroen-

cephalogr Clin Neurophysiol. 72:184–187.

PfeifferUJ, Timmermans B, Bente G, Vogeley K, Schilbach L. 2011.

A non-verbal turing test: differentiating mind from machine

in gaze-based social interaction. PLoS One. 6:e27591.

Pfurtscheller G, Brunner C, Schlögl A, Lopes da Silva FH. 2006.

Mu rhythm (de)synchronization and EEG single-trial clas-

sification of different motor imagery tasks. NeuroImage. 31:

153–159.

Prinz AA, Abbott LF, Marder E. 2004. The dynamic clamp comes

of age. Trends Neurosci. 27:218–224.

Redcay E, Dodell-Feder D, Pearrow MJ, Mavros PL, Kleiner M,

Gabrieli JDE, Saxe R. 2010. Live face-to-face interaction during

fMRI: a new tool for social cognitive neuroscience. NeuroIm-

age. 50:1639–1647.

Rizzolatti G, Sinigaglia C. 2016. The mirror mechanism: a basic

principle of brain function. Nat Rev Neurosci. 17:757–765.

Robinson PN. 2012. Deep phenotyping for precision medicine.

Hum Mutat. 33(5):777–780.

Salenius S, Schnitzler A, Salmelin R, Jousmäki V, Hari R. 1997.

Modulation of human cortical rolandic rhythms during nat-

ural sensorimotor tasks. NeuroImage. 5:221–228.

Santiesteban I, Banissy MJ, Catmur C, Bird G. 2012. Enhancing

social ability by stimulating right temporoparietal junction.

Curr Biol. 22:2274–2277.

Schilbach L, Timmermans B, ReddyV, CostallA, BenteG, Schlicht

T, Vogeley K. 2013. Toward a second-person neuroscience.

Behav Brain Sci. 36:393–414.

SebanzN, BekkeringH, Knoblich G. 2006. Joint action: bodies and

minds moving together. Trends Cogn Sci. 10:70–76.
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