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ABSTRACT 29	
The finding that the Warburg effect observed in proliferating cancer cells is also observed 30	

during immune responses renewed the interest in the study of metabolic reprogramming of 31	

immune cells, a field of investigation called immunometabolism. However, the specific 32	

mechanisms and processes underlying metabolic changes of host cells upon bacterial 33	

infection remain poorly understood. Several recent reports have reported that mammalian 34	

cells infected with intracellular bacteria have an altered metabolism that resembles the 35	

Warburg effect seen in cancer cells. In this Review, we will summarize current knowledge on 36	

metabolic reprogramming and discuss putative causes underlying the preferential remodelling 37	

of host cells to Warburg-like metabolic programs during infection by intracellular bacteria. 38	

 39	
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umbilical vein endothelial cell. 60	
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Introduction 63	

Cellular metabolism	is at the crossroads of diverse disciplines, such as immunity, cancer and 64	

aging [1-3]. It comprises i) the biochemical reactions leading to the generation of energy (in 65	

the form of ATP) by breaking down biomolecules (catabolism) and ii) the reactions leading to 66	

the biosynthesis of biomolecules to build up cellular components (anabolism) (Fig. 1). In 67	

mammals, a bi-directional relationship between the functions and the metabolic status of each 68	

single cell in the organism exists. Therefore, different metabolic programs are executed in 69	

non-differentiated stem cells versus differentiated cells or in proliferating vs. non-proliferating 70	

cells (Fig. 2). The metabolic program executed by a cell at a certain time is hence essential for 71	

its functional status [4-6]. Recent evidences suggest that mammalian cells infected by bacteria 72	

also develop different metabolic programs compared to their non-infected counterparts [7-17].  73	

Most non-proliferating, differentiated mammalian cells (such as somatic cells in tissues) 74	

have a quiescent metabolic state characterized by a low catabolic and anabolic activity and an 75	

efficient generation of ATP by the catabolic process known as mitochondrial respiration. 76	

Such cells convert glucose to pyruvate via anaerobic glycolysis most of which is then routed 77	

to mitochondria, where pyruvate is completely oxidized to CO2 via the tricarboxilic acid 78	

(TCA) cycle (Fig. 1). Oxygen is the final acceptor of an electron transport chain (ETC) 79	

composed of five assembled complexes (CI to CV) that generate an electrochemical gradient 80	

in the mitochondria that facilitates ATP production by Complex V (the F1-FO-ATPase), a 81	

process termed oxidative phosphorylation (OXPHOS) (Fig. 1). Under these conditions, a non-82	

proliferating, differentiated mammalian cell have a total energy gain of 36 ATP molecules per 83	

molecule of absorbed glucose [6,18]. OXPHOS is therefore the most important metabolic 84	

pathway used by differentiated, non-proliferating cells. 85	

On the other hand, proliferating mammalian cells (such as embryonic stem cells or 86	

activated lymphocytes) require a high catabolic and anabolic activity, which requires an 87	

increased glucose uptake and the rapid (although less efficient) generation of ATP driven by 88	

glycolysis coupled to fermentation. In the proliferating state, cells convert glucose to pyruvate 89	

through glycolysis, and then pyruvate is fermented to lactate, process taking place in the 90	

cytosol (Fig. 1). In this case, only 2 ATP molecules are generated per molecule of glucose. 91	

Proliferating cells thus rely on a high rate of glycolysis and a high glucose uptake to support 92	

the doubling of their components during cell division. An outstanding question is why 93	

proliferating cells use a glycolytic metabolism although this metabolic pathway is less 94	

efficient than OXPHOS (at least in terms of ATP production)[18].  95	
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Several reports have claimed that mammalian cells infected by intracellular bacteria 96	

such as Mycobacterium tuberculosis [12-16], Legionella pneumophila [11], Brucella abortus 97	

[7], Chlamydia trachomatis [8,9] or Chlamydia pneumoniae [10] have an altered metabolism 98	

consisting in an increment of glucose uptake and/or glycolysis, which resembles the 99	

metabolic program widely seen in proliferating cancer cells known as the “Warburg effect” 100	

(or aerobic glycolysis). Here, we review current knowledge on metabolic reprogramming and 101	

discuss putative causes underlying the preferential remodelling of host cells to Warburg-like 102	

metabolic programs during infection by intracellular bacteria. 103	

The Warburg effect is a hallmark of cancer cells 104	

Cancer cells are the most prominent example of glycolytic-based proliferation. Tumour cells 105	

convert the majority of their absorbed glucose to lactate, even under oxygen-rich conditions, 106	

and this dependency on a high glycolytic rate and high glucose uptake was termed the 107	

“Warburg effect” in honour of Otto Warburg, who discovered this altered metabolism that 108	

tumour cells have compared to differentiated cells in tissue [20]. Elevated glucose uptake and 109	

lactate secretion are, since then, considered as two general, metabolic hallmarks of solid 110	

tumours as they have been observed in a wide variety of cancers. These seminal findings by 111	

Otto Warburg have also led to improved diagnosis and planning of an appropriate cancer 112	

therapy by using 18F-DeoxiGlucose Positron Emission Tomography (FDG-PET), an imaging 113	

method that allows to measure the increased uptake of the marked glucose analogue FDG 114	

prior to PET scanning of tumours [19]. Otto Warburg also suggested that this metabolic 115	

alteration was an essential cause of cancer and that mitochondrial defects inhibiting the ability 116	

of cancer cells to fully oxidize glucose to CO2 were the cause of this metabolic switch to a 117	

glycolytic metabolism in cancer cells [20-22].  118	

Nowadays is widely accepted that a switch to a glycolytic metabolism (the Warburg 119	

effect) is a core hallmark of cancer cells. However, contrary to what was suggested by 120	

Warburg, we know today that mitochondria of tumours are not defective and therefore are not 121	

the cause of the observed metabolic reprogramming. Compelling evidences indicate that the 122	

metabolic reprogramming of cancer cells to aerobic glycolysis is a direct response to the 123	

activation of growth factor signalling, even in the absence of extracellular growth-factors [23-124	

25]. The signalling hubs regulating the metabolic responses to growth factor signalling are 125	

mainly i) the PI3K/AKT axis; ii) the transcription factors HIF1, p53 and MYC; iii) the 126	

metabolic sensors AMPK and mTORC1; iv) the Ras proteins and v) the alternatively spliced 127	
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isoforms of pyruvate kinase (reviewed in [23,26]). Thus, activation of growth factor 128	

signalling even in the absence of extracellular growth factors is the main cause of the 129	

Warburg effect in cancer cells, and not defective mitochondria. In fact, mitochondria are not 130	

defective in most of the tumours. During the Warburg effect mitochondria of cancer cells are 131	

repurposed from the bioenergetic role of OXPHOS-mediated ATP generation (OXPHOS 132	

metabolism) to a biosynthetic role where mitochondrial enzymes are used in the synthesis of 133	

nucleotides, amino acids and lipids (FIG. 1). Therefore, although the question of why cancer 134	

cells rely on the Warburg effect is still a matter of debate [27], it has been suggested that the 135	

reprogramming of cellular metabolism towards macromolecular synthesis is critical for a 136	

proliferating cell and that aerobic glycolysis (the Warburg effect) is a well-suited metabolic 137	

program for this aim [18,26,27]. The Warburg metabolism is thus an anabolic program, 138	

essential for cell growth and proliferation, which is not focused on maximizing ATP 139	

production such as OXPHOS.  140	

In order to fulfill the requirements of proliferation, the Warburg metabolism (Fig. 3A) 141	

leads to i) an increase of the reduced carbon uptake (glucose) to fuel glycolysis, which 142	

generates pyruvate and other glycolytic intermediates that are used in biosynthetic pathways; 143	

ii) an increase of the reduced nitrogen uptake (glutamine) for the biosynthesis of nucleotides 144	

and non-essential aminoacids, a process that involves mitochondria; iii) divert citrate from the 145	

TCA cycle towards the generation of acetyl-CoA in the mitochondria, which is exported to 146	

the cytosol and used in lipid synthesis; and iv) generate enough NADH and NADPH in the 147	

cytosol through glycolysis and the pentose phosphate pathway (PPP), respectively, to be used 148	

in these reductive biosynthetic reactions [18,26,27]. Aerobic glycolysis coupled to 149	

fermentation fulfils all these requirements by a fast process that is easy to regulate. Thus, the 150	

metabolic program known as aerobic glycolysis (Warburg metabolism) maximizes 151	

biosynthetic pathways by redirecting cytosolic glycolysis and mitochondrial TCA cycle to the 152	

biosynthesis of nucleotides, aminoacids and lipids. One outcome of the switch to this program 153	

is the fast withdrawal of pyruvate and TCA intermediates in the mitochondria that were 154	

previously dedicated to the OXPHOS program. This explains the reduction of oxygen 155	

consumption observed during the Warburg metabolism. Moreover, OXPHOS seems not 156	

completely shut down in cancer cells. It has been suggested in tumours that, although the 157	

Warburg metabolism uses 85% of pyruvate, 5% of pyruvate is still normally routed to 158	

OXPHOS [18]. 159	

 160	



	 6	

Immunometabolism focuses on the metabolic reprogramming of immune cells 161	

Metabolic changes alter functions of immune cells, a field of investigation called 162	

immunometabolism. Some interesting historical reports in this discipline [28-31] already 163	

anticipated the renewed interest on immunometabolism. New tools to study cellular 164	

metabolism, such as extracellular flux assays [32] or mass spectrometry-based metabolomics 165	

[33], have recently boosted the field by allowing researchers to study metabolic dynamics of 166	

immune cells upon activation.  167	

In the following paragraphs we will briefly delineate how the immune system works 168	

upon bacterial infection, and then we will present the current working models on 169	

immunometabolism. The theory of immunity during infection states that the first line of the 170	

immune defence against bacteria is the innate immune system, composed of immune cells 171	

such as monocytes, macrophages, dendritic cells (DCs) and neutrophils. As they reside in 172	

tissues or patrol the blood, these cells are the main immune cells encountering bacteria. 173	

Moreover, once bacteria are detected, dozens of these cells are recruited to the site of 174	

infection. They can be activated by microbial-derived compounds that are sensed by pathogen 175	

recognition receptors (PRRs), which are located either on the cell surface, in phagosomal 176	

membranes or in the cytosol of innate immune cells. The most studied example is the 177	

activation of monocytes and macrophages by the PRR called Toll-like receptor 4 (TLR-4). In 178	

this case, the binding of the outer membrane component of gram negative bacteria called 179	

lipopolysaccharide (LPS) to TLR-4 in innate immune cells mainly leads to i) an increase of 180	

phagocytosis; ii) the secretion of bactericidal compounds; iii) the secretion of immune 181	

mediators (i.e. interleukins and other cytokines) that in turn activate and recruit other immune 182	

cell types; and iv) the upregulation of antigen presentation. In this way, bacterial attachment 183	

or phagocytosis leads to PRR signalling activation of the so-called professional antigen-184	

presenting cells (APCs), mainly macrophages and DCs, which trigger the secretion of specific 185	

cytokines such as interleukin-8 (IL-8) that recruits neutrophils to the site of infection. 186	

Bacterial phagocytosis by these APCs also stimulates the loading of lysosome-derived 187	

antigens from ingested bacteria into the antigen-presenting adaptors that are the MHC class II 188	

molecules, which are expressed on APC cell surface. Upon activation, APCs migrate to 189	

nearby lymph nodes for antigen presentation to CD4+ T-helper cells, the main effectors of the 190	

adaptive immune system during bacterial infection. In the lymph node, the specific matching 191	

of antigen-loaded MHC molecules expressed on APC to antigen-specific T-Cell receptors 192	

(TCRs) expressed on T-cell surfaces, create an immune synapse that triggers the activation of 193	
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antigen-specific CD4+ helper T-cells. Then, activated CD4+ helper T-cells start to i) secrete 194	

cytokines such as IL-2 and interferon gamma (IFN-γ) and ii) proliferate (clonal expansion). 195	

The specific context of APC-secreted cytokines, such as the presence of IL-12, also 196	

modulates (polarizes) the immune response of T-helper cells to specific subtypes of responses, 197	

where the TH1 and the TH17 responses are the most important during bacterial infection. T-198	

cells also orchestrate the production of antigen-specific antibodies by B-cells. IFN-γ secreted 199	

by TH1-polarized T-cells reinforces the activation of macrophages to phagocytose and digest 200	

intracellular bacteria, and to activate iNOS to produce nitric oxide (NO) from L-arginine to 201	

directly kill intracellular bacteria. Although the role of adaptive immunity during bacterial 202	

infection is well established, most of the non-symptomatic cases of bacterial infection are 203	

successfully resolved by the sole action of innate immune cells such as macrophages and 204	

neutrophils [34]. 205	

The current model of immunometabolism proposes that innate or adaptive näive (non-206	

activated) immune cells mainly rely in an OXPHOS metabolism that is shifted to Warburg 207	

metabolism upon immune activation (Fig. 2), a metabolic switch that is essential for the 208	

immune functions of these activated cells [6]. For instance, specific subsets of effector T-cells 209	

switch to Warburg metabolism upon activation by APCs [35], including TH1 and TH17cells 210	

[36,37]. A switch to Warburg metabolism has also been observed upon immune activation of 211	

other immune cells, such as macrophages [38,39], DCs [39,40], neutrophils [41], B-cells [42] 212	

and natural killer cells [43]. Key examples of metabolic reprogramming from OXPHOS to 213	

Warburg upon immune activation are i) macrophages activated by PRRs [38,39], ii) T-cells 214	

activated by cytokine receptors [44] or iii) B-cells activated by antigen receptors [42]. This 215	

metabolic remodelling seems essential for the exertion of immune functions by these 216	

activated cells. Examples of immune functions directly depended on the switch to a Warburg 217	

metabolism are i) phagocytosis and IL-1β production by macrophages [39]; ii) acquisition of 218	

co-stimulatory capacity by DCs [39]; iii) TH17 polarization by activated T-cells [45] or iv) 219	

formation of nets by neutrophils [41]. 220	

An important advance made during the last years has been the delineation of precise 221	

metabolic programs that specific immune cells develop upon activation [6,41]. Although the 222	

term “Warburg metabolism” has been widely used to describe the prominent use of aerobic 223	

glycolysis by activated immune cells, cell type-specific metabolic programs seem to exist 224	

among cells of the immune system performing aerobic glycolysis upon activation. For 225	

instance, despite the clear glycolytic program displayed by macrophages upon activation, a 226	



	 8	

broken TCA cycle was also observed in murine macrophages activated by bacterial LPS, 227	

where TCA intermediates such as succinate and citrate accumulates in the cell (discussed 228	

below, Fig. 3B, [46-48]). This broken TCA cycle, however, has not been observed in other 229	

immune cells such as DCs, which also shift to aerobic glycolysis upon activation. This 230	

indicates that cell-type and context-specific particularities might exist and, therefore, it might 231	

be more appropriate to consider that several Warburg-like metabolic programs can be 232	

activated in immune cells depending on the cell type concerned and the specific context of 233	

activation.  234	

Macrophages are the best-studied examples of immune cells performing metabolic 235	

reprogramming. As a first-line guard, macrophages have a key role in host defence during 236	

bacterial infection. Macrophages phagocytose bacteria to clear infection and secrete 237	

antimicrobial compounds to directly kill pathogenic bacteria. However, several intracellular 238	

pathogens such as M. tuberculosis or L. pneumophila infect preferentially macrophages and 239	

are able to replicate within them, albeit macrophages are one of the main immune cells to kill 240	

pathogenic bacteria. Several lines of evidence suggest that intracellular bacteria trigger 241	

specific metabolic programs during infection of macrophages (discussed below) and that this 242	

metabolic remodelling might be key for bacterial replication within these immune cells 243	

[49,50]. Interestingly, certain pathogenic bacteria induce metabolic programs that favour their 244	

replication, while others induce metabolic programs that are restrictive for bacterial 245	

replication [49,50]. Thus, the study of the macrophage metabolism during bacterial infection 246	

should shed light on how pathogenic bacteria subvert macrophage functions and cause disease.  247	

The metabolism of macrophages and monocytes is reprogrammed upon stimulation 248	

with microbial compounds 249	

The specific metabolism of macrophages and of their precursor cells, monocytes, studied in 250	

several early reports showed an increased glycolytic activity and decreased OXPHOS upon 251	

exposure to microbial compounds [28,30,31,51,52]. Recent reports confirmed these early 252	

observations and show that specific metabolic programs are activated in monocytes and 253	

macrophages upon exposure to microbial products or to whole-bacteria lysates [38,46,47,53].  254	

Tannahill et al. showed that 2-deoxyglucose (2DG)-mediated inhibition of glycolysis in 255	

mouse bone-marrow-derived macrophages (BMDMs) specifically inhibits LPS- and 256	

Bordetella pertussis-induced transcription of IL-1β, while other cytokines such as TNF-α and 257	
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IL-6 remain transcriptionally unaffected. This suggests that metabolic reprogramming to a 258	

glycolytic Warburg program is necessary for the transcription of IL-1β by LPS-activated 259	

BMDMs, a process depended on LPS-induced HIF-1α expression [46]. A key observation in 260	

this study was that, although an overall decrease in TCA cycle activity and mitochondrial 261	

respiration occurred at 24 h post-LPS-treatment, there was an accumulation of succinate, a 262	

key TCA cycle intermediate, that was derived from glutamine. Therefore LPS-induced 263	

succinate can act as a signal to increase IL-1β expression through HIF-1α [46]. Later studies 264	

from this and other groups revealed further clues about the metabolic reprogramming upon 265	

exposure of BMDM to LPS (Fig. 3B), specifically that i) LPS-induced succinate oxidation by 266	

succinate deshydrogenase (Complex II of the electron transport chain, ETC) leads to an 267	

elevated mitochondrial membrane potential that seems sustained by reverse flow of the ETC, 268	

which produces mitochondrial reactive oxygen species (mROS) that drive HIF-1α-mediated 269	

IL-1β expression [54]; ii) pyruvate kinase M2 (PKM2) is also determinant for HIF-1α-270	

mediated IL-1β expression [38]; and iii) LPS-induced expression of the mitochondrial citrate 271	

carrier diverts citrate from mitochondrial TCA cycle to the cytoplasm, which accumulates in 272	

the  cytoplasm and seems then to be used to generate NO, ROS and prostaglandins by 273	

macrophages, as well as to produce the antimicrobial metabolite itaconate [47,55,56]. Thus, 274	

exposure of mouse macrophages to the TLR-4 agonist LPS reprograms their metabolism from 275	

OXPHOS to glycolysis and rewires TCA cycle intermediates such as citrate and succinate to 276	

biosynthetic pathways.  277	

However, by using human monocytes isolated from blood, a recent report showed that a 278	

shift from OXPHOS to glycolysis was observed only in monocytes stimulated with LPS, and 279	

not in monocytes stimulated with the TLR-2 ligand Pam3Cys or other whole-pathogen lysates. 280	

In monocytes stimulated with Pam3Cys, increased glycolysis was accompanied by increased 281	

OXPHOS that was needed for retention of their phagocytic capacity and cytokine production 282	

[53]. Interestingly, elevated succinate, itaconate and citrate levels were only observed in LPS-283	

stimulated monocytes and redirection of these TCA intermediates was not observed in 284	

Pam3Cys-stimulated monocytes.  Moreover, the same study showed that stimulation of 285	

human monocytes with whole-pathogen lysates of Escherichia coli, Staphylococcus aureus or 286	

M. tuberculosis increased glycolysis, while OXPHOS only increased after exposure to E. coli 287	

or S. aureus. Exposure of monocytes to M. tuberculosis whole-bacteria lysates did not affect 288	

OXPHOS, which remained at the same level as unstimulated monocytes, in contrast to 289	

OXPHOS reduction upon LPS exposure [53]. These findings challenge the notion that a shift 290	
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from OXPHOS to glycolysis is a general response of all immune cells activated upon 291	

stimulation with bacterial components, suggesting that induction of specific metabolic 292	

programmes depends on individual stimuli. In addition, this study opens the question of 293	

whether these immunometabolic responses of host cells to bacterial components are cell-type 294	

specific (e.g. monocytes vs. macrophages), host-species specific (e.g. mouse vs. human) 295	

and/or bacterial-species specific (e.g. bacterial components from S. aureus vs. those from 296	

M. tuberculosis). Clarification of these pending questions is crucial. Furthermore, the fact that 297	

exposure of human monocytes to whole-bacterial lysates from M. tuberculosis did not affect 298	

OXPHOS [53] but infection of the same cell type with living M. tuberculosis clearly reduced 299	

OXPHOS [14] raised the questions whether the immunometabolic responses elicited by 300	

bacterial components can be translated into an understanding of metabolic reprogramming of 301	

host cells during infection. Indeed, metabolic responses to living bacteria seem more complex 302	

than the sum of metabolic responses to individual bacterial components. 303	

The metabolic reprogramming of macrophages is more complicated than the M1/M2 304	

model 305	

Another level of complexity in the study of macrophage immunometabolism is the metabolic 306	

rearrangements that occur during macrophage polarization. Similarly to T-cells, polarization 307	

of macrophages is driven by the presence of different cytokines in the microenvironment, and 308	

it is thought that this process determines macrophage immune functions. In vivo, the source of 309	

these polarizing cytokines could be surrounding activated cells. As different experimental 310	

models exist for in vitro macrophage polarization, the nomenclature of polarized macrophages 311	

is confusing [57]. The traditional nomenclature is a binary classification of polarized 312	

macrophages into two distinct phenotypes: M1 or “classically-activated” by TH1 cytokines, 313	

and M2 or “alternatively-activated” by TH2 cytokines. For instance, a widely used model for 314	

in vitro polarization of murine macrophages is to expose them to the combination of IFN-γ 315	

(TH1 cytokine) and LPS to polarize macrophages from M0 “resting macrophages” to M1 316	

“classically-activated” macrophages, or to expose them to IL-4 (TH2 cytokine) to polarize 317	

macrophages from M0 to M2 “alternatively-activated” macrophages. In vitro polarized M1 318	

and M2 macrophages have different functional characteristics: whereas M1 macrophages 319	

have pro-inflammatory microbicidal and tumoricidal properties, M2 macrophages promote 320	

tissue homeostasis, wound healing and anti-helminth immunity [58]. Importantly, in vitro 321	

polarized M1 and M2 macrophages have also different metabolic programs. M1 macrophages 322	

have increased glycolytic flux and reduced OXPHOS compared to M0 cells [59], as well as a 323	
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broken TCA cycle as explained above [6,55,60]. On the other hand, M2 macrophages have 324	

higher OXPHOS than M0 cells, an intact TCA cycle, increased mitochondrial fatty acid 325	

oxidation (FAO), a glutamine-depended production of α-ketoglutarate and the UDP-GlcNAc 326	

pathway is activated [6,55,59-61].  327	

However, the binary model of M1/M2 macrophages has some limitations [62-64]. First, 328	

M1/M2 is mostly a model for in vitro differentiation of macrophages. Most of the markers 329	

observed for murine macrophages do not translate to human macrophages, probably because 330	

murine macrophages are generally differentiated from bone marrow cells while human 331	

macrophages are obtained by in vitro differentiation of blood monocytes [57]. An example of 332	

the heterogeneity in the methods used to polarize human macrophages is the utilization of 333	

GM-CSF or M-CSF to differentiate blood monocytes to M1 or M2 macrophages, respectively 334	

[57,65]. As GM-CSF and M-CSF are growth factors instead of cytokines or microbial 335	

products, it is very difficult to know whether the obtained cells are indeed the human 336	

counterparts of murine M1/M2 macrophages. Thus, intuitively murine LPS+IFN-γ-activated 337	

M1 macrophages and human GM-CSF-differentiated M1 macrophages might be quite 338	

different cell types. An additional difficulty is that polarization seems to be reversible both in 339	

vivo and in vitro [64]. Thus, these limitations in the M1/M2 model reveal the necessity to 340	

improve the model of macrophage polarization. Such improvement should then be applied to 341	

the study of the specific metabolic signatures of polarized macrophages.  342	

A first approach for improving the M1/M2 model has been the suggestion to use a new, 343	

more appropriate nomenclature for in vitro polarized macrophages, which implies naming 344	

macrophages according to the specific polarization stimulus used, e.g. M (LPS), M(IFN-γ), 345	

M(LPS+IFN-γ), M(IL-13), M(IL-4), etc [57]. It was also recommended to abandon the use of 346	

M-CSF or GM-CSF as polarization factors and only use them as differentiation reagents [57]. 347	

By using this new nomenclature, the metabolic reprogramming delineated before for M1 and 348	

M2 macrophages now corresponds to M(LPS+IFN-γ) and M(IL-4) murine macrophages, 349	

respectively, highlighting the lack of information on the metabolic reprogramming of other 350	

macrophage subtypes or on human macrophages [46,61]. Moreover, recent reports indicate 351	

that the polarization process, both in vitro and in vivo, results in a spectrum of macrophage 352	

phenotypes rather than a few discrete and separate subsets [58,64,66]. This suggests that a 353	

continuum of polarized macrophages can be found in any specific situation and might mean 354	

that the dynamic plasticity of macrophage functions exceeds our current tools for phenotyping 355	

macrophages.  356	
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Therefore, similarly to the study of metabolic reprogramming of macrophages upon 357	

stimulation with single bacterial components, the adscription of specific metabolic programs 358	

to macrophage subtypes might not be very helpful to understand the metabolic 359	

reprogramming of macrophages during bacterial infection. It seems that the complexity of 360	

host-pathogen interactions, and particularly bacteria-macrophage interactions, cannot be 361	

mimicked by stimulation or polarization using single or combined stimuli and, consequently, 362	

caution should be taken when studying the metabolic responses of macrophages during 363	

infection with living bacteria. 364	

Metabolic reprogramming of host cells upon infection with intracellular bacteria seems 365	

pathogen-specific 366	

Infection of host cells with living bacteria is instrumental to understand metabolic 367	

reprogramming upon bacterial infection and to study metabolism during host-pathogen 368	

interactions. As intracellular bacteria, such as Mycobacterium, Chlamydia or Legionella, 369	

infect and replicate inside host cells, the energy and nutrients needed to support their 370	

replication can only be obtained from the infected host cell. Thus the investigation of the 371	

metabolism of cells infected by intracellular bacteria is an exciting “closed system” of host-372	

pathogen interactions that can be, for instance, isolated after in vivo infection or studied at the 373	

single cell level while maintaining the biological and pathological relevance. 374	

Importantly, to study the host metabolism during infection it is key to choose relevant 375	

host cells as model. Given the fact, that most of the extensively used cell lines are derived 376	

from cancer cells that have already an altered metabolism and an enhanced Warburg 377	

metabolism due to their tumour nature, it seems instrumental to use primary cells as host cells 378	

for such analyses [17]. Gillmaier et al. nicely showed this, by studying the infection of 379	

primary murine BMDM and of murine macrophage-like J774A.1 cells with the intracellular 380	

bacteria Listeria monocytogenes, the causative agent of a serious food-borne and invasive 381	

disease called listeriosis [67]. They show that a high induction of glucose uptake and of 382	

glycolysis was only observed upon infection of primary BMDMs, but not in the J774A.1 cells, 383	

as they already exhibit altered glucose transport and glycolysis due to their cancer origin [67]. 384	

Importantly, many pathogenic bacteria are able to replicate within cancer cell lines such as 385	

THP-1, A549, U937 or RAW 264.7 cells [17,68], suggesting that the Warburg metabolism 386	

exhibited by these cell lines does not inhibit bacterial replication. Indeed, when intracellular 387	

growth of L. monocytogenes in primary BMDM and J774A.1 cells was compared in parallel 388	
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experiments, intracellular bacteria replicated to five fold higher numbers within the cancer 389	

cell line, suggesting that the Warburg metabolism exhibited by cancer cells may even be 390	

beneficial for the pathogen [67]. Thus, in the following paragraphs we will summarize only 391	

metabolic data, obtained during in vivo and in vitro infections of primary cells with 392	

intracellular bacteria, to avoid confusion with results obtained during in vitro infections of 393	

cancer cell lines. 394	

  The best-studied example of bacterial-induced metabolic reprogramming of host cells 395	

is the infection by Mycobacterium tuberculosis, the causative agent of tuberculosis. Several 396	

reports indicate that M. tuberculosis induces a Warburg metabolism in the infected cells, both 397	

in vivo and in vitro [12,13,15,16,53,69,70]. One of the main features of the immune response 398	

to M. tuberculosis is the formation of an organized structure called granuloma through the 399	

recruitment of different cell types to the site of infection, mainly i) macrophages; ii) highly 400	

differentiated cells such as multinucleated giant cells; iii) epithelial cells; iv) “foamy” 401	

macrophages; and v) surrounding lymphocytes. Similarly to the clinical use of FDG-PET 402	

scanning of tumours as a diagnostic tool of cancer and disease progression, the in vivo 403	

imaging of granulomas through FDG-PET scanning of host lungs (human or animal) has been 404	

used to judge the severity of the disease and assess the efficacy of antimicrobial therapy [71]. 405	

This demonstrates that the increased incorporation of the glucose analogue FDG into 406	

granulomas is a surrogate marker for a Warburg metabolism induced by M. tuberculosis 407	

infection. Specifically, the metabolic reprogramming of macrophages exerted by 408	

M. tuberculosis infection includes (Fig. 4A): i) the upregulation of key glycolytic enzymes 409	

and transporters for glucose uptake [12,69]; ii) the downregulation of enzymes participating 410	

in the TCA cycle and OXPHOS [12,69]; iii) the redirection of the glycolytic pathway towards 411	

ketone body and lipid synthesis, which accounts for the classical “foamy phenotype” of 412	

M. tuberculosis-infected macrophages [72,73]; iv) the dependency of the observed Warburg 413	

effect on the recruitment of IFN-γ-activated macrophages to lung granulomas [13]; and v) the 414	

utilization of the Warburg-produced lactate for M. tuberculosis growth [70]. In summary, the 415	

Warburg-like program induced by M. tuberculosis in the infected cells is characterized by the 416	

classical upregulation of glucose uptake and glycolysis coupled to the deviation of glycolytic 417	

intermediates to the synthesis of large lipid bodies, which are accumulated in the macrophage 418	

and feed intracellular bacteria in the form of nutritional fatty acids [72,73]. The lactate 419	

produced by glycolysis can also be used by the pathogen [70], which suggests that the 420	
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benefits of the Warburg-like phenotype for M. tuberculosis might be, like in tumour cells, the 421	

biosynthetic role of aerobic glycolysis.  422	

Another bacterium that has been shown to induce a Warburg-like phenotype in infected 423	

cells is L. pneumophila [11]. This intracellular bacterium is the etiologic agent of 424	

Legionnaires’ disease, a serious pulmonary infection during which the pathogen replicates 425	

within human lung macrophages. By injecting more than 300 bacterial effectors in the host 426	

cell through a type IV secretion system (T4SS), L. pneumophila subverts cellular functions in 427	

order to replicate within eukaryotic cells [74,75]. Some of these L. pneumophila effectors 428	

target mitochondria or mitochondrial functions, such as the bacterial effector LncP that is 429	

targeted to the mitochondrial inner membrane and might function as an ATP transporter, or 430	

the bacterial effector MitF, which promotes the fragmentation of the mitochondrial network 431	

during infection of human primary macrophages [11,76,77]. We recently showed that 432	

L. pneumophila induces a biphasic alteration of the macrophage metabolism at very early 433	

times post-infection [11]. Upon infection, a first phase of increased glycolysis and OXPHOS 434	

that peaks at 1h post-infection is followed by a second phase where glycolysis remains high 435	

while OXPHOS is severely reduced. This second phase is extended, at least, until 5h post-436	

infection, which is prioir to bacterial replication and to the activation of macrophage cell 437	

death pathways. By using mutants deficient in the T4SS that cannot inject bacterial effectors 438	

and therefore cannot replicate within infected cells, we determined that this first phase is 439	

T4SS-independent, while the second phase is T4SS-dependent [11]. As L. pneumophila 440	

infection mainly activates TLR-2 [78-80] and activation of TLR-2 leads to increased 441	

glycolysis and OXPHOS in human primary cells [53], it is possible that the induction of the 442	

first phase, i.e. increased glycolysis and increased OXPHOS, is T4SS-independent but TLR-443	

2-dependent . On the other hand, as T4SS-deficient mutants are phagocytosed in the same 444	

way as L. pneumophila wild type (wt), and both wt and mutants express LPS and other TLR 445	

ligands, the induction of the T4SS-dependent Warburg-like program observed in the second 446	

phase, i.e. increased glycolysis and reduced OXPHOS (Fig. 4B), cannot be a macrophage 447	

response to bacterial LPS or TLR ligands (present in both wt and mutants). Thus this 448	

Warburg-like program is specifically induced by the pathogen through the injection of T4SS 449	

bacterial effectors. Moreover, T4SS-dependent alteration of mitochondrial dynamics is, at 450	

least partially, responsible for the Warburg-like effect observed in the second phase, thus it is 451	

linking bacterial-induced alteration of mitochondrial dynamics and altered bioenergetics 452	

during infection. Finally, inhibition of glycolysis reduced bacterial replication in human 453	
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primary macrophages, while inhibition of OXPHOS had no effect over bacterial replication, 454	

highlighting the key importance of the induction of glycolysis and reduction of OXPHOS for 455	

the pathogen [11]. However, what may be the benefit of a Warburg-like metabolism for 456	

L. pneumophila replication? We have recently shown that L. pneumophila cannot use glucose 457	

for its own respiration during growth and that the pathogen uses, instead, diverse amino acids 458	

for bacterial respiration, such as serine or alanine, some TCA intermediates, such as pyruvate 459	

or α-ketoglutarate, and fatty acids [81]. This suggests that the induction of glycolysis by 460	

L. pneumophila during infection of human cells is not beneficial for the pathogen due to an 461	

increased availability of glucose. Instead, an increased glycolysis in the infected macrophage 462	

might be used in the synthesis of glycolytic serine, similarly to the pathway used in 463	

proliferating cancer cells [82], therefore providing the main amino acid necessary for growth 464	

of L. pneumophila. Thus the Warburg-like metabolism induced by L. pneumophila in the host 465	

cell might benefit the pathogen due to the biosynthetic role of glycolysis.  466	

Chlamydia trachomatis, an intracellular bacterium that can cause genital or ocular 467	

infections, and that is the leading cause for infectious blinding disease worldwide has 468	

undergone genome reduction and lacks several biosynthetic pathways. Thus, to replicate C. 469	

trachomatis needs to take up nutrients from the infected host cells such as nucleotides, amino 470	

acids, and lipids [83]. It has been shown recently that Chlamydia infection of primary human 471	

umbilical vein endothelial cells (HUVECs) induces a marked downregulation of p53 [8]. As 472	

C. trachomatis depends on the uptake of glucose from the host cells [84] and p53 regulates 473	

cellular metabolism, including the downregulation of glucose transport and glycolysis [85,86], 474	

it was analysed whether glycolysis of C. trachomatis infected cells was regulated by p53. The 475	

results show that, albeit glucose uptake is increased upon infection, glycolysis is not a major 476	

pathway regulated by p53, but p53 downregulation in the host cell leads to the activation of 477	

the pentose phosphate pathway (PPP) (Fig. 4C), a nucleotide biosynthetic pathway [8]. As the 478	

induction of PPP is also part of the Warburg metabolism of cancer cells to provide NADPH 479	

for reductive reactions, it can be considered that also C. trachomatis induces a Warburg-like 480	

metabolism during infection. However, the characteristics are different, as C. trachomatis 481	

induces an increased glucose uptake coupled to an increased PPP that provides nucleotides for 482	

intracellular replication of the pathogen. 483	

Concluding remarks and future perspectives 484	
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Although research on metabolic reprogramming has gained new interest, the mechanisms and 485	

processes underlying metabolic changes of host cells upon bacterial infection remain still 486	

poorly understood. The finding that the Warburg effect observed in proliferating cancer cells 487	

is also observed in immune cells also renewed the interest for the field of immunometabolism 488	

[6], and several studies analysing metabolic changes of host cells, such as macrophages, upon 489	

microbial stimulation have been conducted.  490	

However, we might be facing a scenario where metabolic data obtained using i) single 491	

or combined microbial compounds such as TLR ligands; ii) whole-bacteria lysates; iii) 492	

polarizing cytokines; iv) extracellular bacteria; or v) cancer cell lines as host cells, may 493	

represent confusing models poorly relevant to understand metabolic changes of host cells 494	

upon bacterial infection. To date, the unique relevant in vitro model to study metabolic 495	

changes of host cells upon bacterial infection that may correctly be translated to the in vivo 496	

infection, is probably the study of primary host cells. Unfortunately, there are only few 497	

metabolic studies using living, intracellular bacteria in primary host cells.  498	

The data available suggest that metabolic reprogramming of primary host cells upon 499	

infection with intracellular bacteria is pathogen-specific and that each pathogen induces a 500	

specific metabolic program that fits its respective metabolic needs (Fig. 4). Pathogens such as 501	

M. tuberculosis or L. pneumophila induce a Warburg metabolism in macrophages where 502	

increased glycolysis is accompanied by decreased OXPHOS [11,16], whereas C. trachomatis, 503	

induces a Warburg metabolism with increased glucose uptake that is accompanied by a 504	

routing of glycolytic intermediates to PPP to increase the biosynthesis of nucleotides, to 505	

enhance bacterial replication [8]. However, the specific metabolic programs elicited by each 506	

pathogen are far from being completely uncovered, thus the name “bacterial-induced 507	

Warburg-like programs” instead of induction of the “Warburg effect” might describe the 508	

actual situation the best. For instance, although M. tuberculosis infection induces glycolysis 509	

and reduces OXPHOS, glycolytic intermediates are specifically routed to lipid body synthesis 510	

for the benefit of the pathogen [72,73]. In contrast, L. pneumophila infection increases both 511	

glycolysis and OXPHOS shortly upon infection but OXPHOS activity is reduced later during 512	

infection due to a T4SS-dependent disruption of the mitochondrial network [11]. Thus 513	

glycolysis seems to be the preferred host metabolism for intracellular bacteria, possibly 514	

because glycolysis can create nutrients for bacterial growth. Moreover, intracellular 515	

pathogenic bacteria such as M. tuberculosis, Chlamydia or Legionella use as major energy 516	

sources some host-cell-derived energy-rich carbon substrates such as fatty acids, TCA 517	
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intermediates (malate) or amino acids (serine), respectively, which are less critical carbon 518	

sources than glucose for the host cell. This has been has been called “bipartite metabolism” 519	

and allows the pathogen to avoid unnecessarily depleting of glucose from the host cell to keep 520	

the anabolic reactions running while reducing metabolic stress [50]. Infection-induced 521	

Warburg-like metabolism thus serves the biosynthesis of these metabolites, which are 522	

essential for the survival of the pathogen. 523	

Taken together, we propose a model where specific bacterial-induced Warburg-like 524	

programs within host cells support the growth of intracellular bacteria by providing their 525	

specific nutritional needs. Additional work analysing other intracellular bacteria such as 526	

Salmonella of Brucella that have different metabolic needs may allow to further support this 527	

model. 528	

Why to shift to a Warburg-like metabolism? In other words, what is the benefit for 529	

intracellular bacteria of shifting the infected cell to a Warburg-like metabolism? The answer 530	

might be given when asking, “What is the benefit for cancer cells to shift to a Warburg 531	

metabolism?” Compelling data suggest that, cancer and bacterial-infection have in common, 532	

that enormous biosynthetic requirements are necessary to double a eukaryotic cell (cancer) or 533	

to exponentially multiply a bacterial cell (infection). This can only be provided by metabolic 534	

programs that are based on glycolysis coupled to biosynthetic pathways, where the additional 535	

redirection of TCA intermediates to biosynthetic pathways, shuts down OXPHOS. Thus, in 536	

the coming years, it will be important to use more in vivo assays to study metabolic changes 537	

upon infection. Indeed, in vivo bacterial infection of mice and other animal models has been 538	

useful to show relevant metabolic features during infection [12,15,69], however, we should 539	

keep in mind Robert Koch’s words: “Gentlemen, never forget that mice are not humans” [87]. 540	

In particular, as many important differences have been reported between murine and human 541	

macrophages with respect to the behaviour of these immune cells [88,89].  542	

The only method available today to study metabolic reprogramming to Warburg-like 543	

programs in vivo, both in humans and animals is FDG-PET, but it is still rarely affordable for 544	

research labs. Thus, the study of metabolic reprogramming during in vitro infection will still 545	

remain a key approach in the next years. However, we should consider using primary host 546	

cells and living, intracellular bacteria, which will be instrumental to acquire relevant 547	

knowledge and to open new avenues to understand how pathogenic bacteria subvert host cells 548	

to cause infection, and probably also to uncover new targets to fight bacterial infection. 549	

 550	
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FIGURE LEGENDS 794	
 795	

Figure 1. Overview of cellular metabolism. The major catabolic routes that break down 796	

molecules to generate energy in the form of ATP are indicated whereby oxidative 797	

phosphorylation (OXPHOS) is the most effective in ATP generation (4). Anabolic routes lead 798	

to the biosynthesis of biomolecules (underlined, routes 6, 7, 8). Catabolic and anabolic routes 799	

cooperate to adjust the optimal flow of metabolites to fulfil the metabolic requirements for 800	

cellular functions. Amino acids are synthesized mainly from pyruvate and TCA intermediates 801	

(6). TCA cycle: tricarboxylic acid cycle; PPP: pentose phosphate pathway; CI to CV: 802	

Complex I to Complex V; F6P: fructose 6 phosphate; G6P: glucose 6 phosphate; α-KG: α-803	

ketoglutarate; CoA: coenzyme A. 804	

 805	

Figure 2. Glycolysis and OXPHOS are regulated during proliferation, differentiation 806	

and activation of cells. OXPHOS is relatively inactive in proliferating or differentiating cells, 807	

such as stem cells, cancer cells, activated T-cells, or LPS-stimulated macrophages, where 808	

metabolism relies on aerobic glycolysis (the Warburg effect). OXPHOS is the preferred 809	

metabolism of differentiated cells in tissues. LPS: lipopolysaccharide. 810	

. 811	

Figure 3. Warburg and Warburg-like metabolic programs. (A) Routes activated in the 812	

Warburg metabolic program performed by cancer cells. (B) Routes activated in the Warburg-813	

like metabolic program performed by murine bone-marrow derived macrophages (BMDM) 814	

upon stimulation with bacterial lipopolysaccharide (LPS). LPS challenge generates 815	

mitochondrial reactive oxygen species (mROS) by reverse electron transport (RET) following 816	

the oxidation of succinate [54]. Warburg-induced and LPS-induced additional metabolic 817	

routes are indicated. The anapletoric route of glutaminolysis refills the TCA cycle with α-KG 818	

(A) or succinate (B) derived from the uptake and transformation of the amino acid glutamine. 819	

α-KG: α-ketoglutarate. 820	

 821	

Figure 4. Warburg-like metabolic programs activated upon infection with intracellular 822	

bacteria. Known metabolic routes activated upon infection of primary human cells with (A) 823	

Mycobacterium tuberculosis, (B) Legionella pneumophila, and (C) Chlamydia trachomatis. 824	










