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The findings compiled here also raise the
intriguing possibility that the IFN-I-led
immunoregulatory network is initiated
as early as malaria pre-erythrocytic
infection, tipping the balance against
long-term protection. In fact, pre-erythro-
cytic infection with the rodent malaria
parasite Plasmodium berghei has been
demonstrated to prompt IFN-Is in hep-
atocytes [10]. Another consequence of
the activation of this immunoregulatory
network, as noted by Montes de Oca [68_TD$DIFF]et
al. [4], is its potential involvement in the
lack of long-term protection afforded by
the RTS,S/AS01 human malaria vaccine
in endemic areas [11]. Indeed, it is con-
ceivable that the circumsporozoite pro-
tein-based malaria vaccine was unable
to overcome this immunoregulatory net-
work, leading to a hindered generation of
antibodies directed against the pre-
erythrocytic cycle of P. falciparum in
humans. A better understanding of the
factors influencing this immunoregula-
tory pathway elicited during natural
malaria infections and its subsequent
response to specific vaccinations might
therefore pave the way to a new gene-
ration of optimised human malaria
vaccines.
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Theoretical
Implications of a
Pre-Erythrocytic
Plasmodium vivax
Vaccine for
Preventing Relapses
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Preventingmalaria infectionthrough
vaccination requires preventing
every sporozoite inoculated by
mosquito bite: a major challenge
for Plasmodium falciparum.
[60_TD$DIFF]Plasmodiumvivaxsporozoitescon-
sist of tachysporozoites causing
primary infection and bradysporo-
zoites leading to relapses. We
hypothesise that a candidate
P. vivax vaccine with low efficacy
against primary infection may sub-
stantially reduce transmission by
preventing relapses.
Considerable effort has been invested in
the development of pre-erythrocytic vac-
cines for the prevention of P. falciparum
infection, with several candidates demon-
strating significant efficacy against infec-
tion in controlled human malaria infection
(CHMI) studies [1]. One candidate vac-
cine, RTS,S/AS01, has recently com-
pleted phase 3 trials in young children
in sub-Saharan Africa [2], receiving a pos-
itive opinion from the EuropeanMedicines
Agency and recommended for pilot
implementation studies by the World
Health Organization. In the month follow-
ing vaccination, RTS,S/AS01 prevents
approximately 50% of infections in
malaria-naïve adults bymounting humoral
and cellular immune responses targeting
the circumsporozoite (CS) antigen [1].
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Figure 1. Example of a Bite from a [60_TD$DIFF]Plasmodium vivax Infectious Mosquito Inoculating 15 Sporozoites
Consisting of 10 Tachysporozoites That Immediately Develop into Exoerythrocytic Schizonts, and 5 Brady-
sporozoites That Develop into Hypnozoites[61_TD$DIFF].–> In an unvaccinated individual, the 10 tachysporozoites will
cause a single primary blood-stage infection, and the hypnozoites will cause up to five relapses. Some
hypnozoites may die within liver hepatocytes or activate in batches, giving rise to fewer than five relapses. In an
individual receiving a vaccine that immobilises 90% of sporozoites, the efficacy against primary infection will be
0.910 = 35%. However, every hypnozoite immobilised may potentially lead to a relapse prevented, and
consequently an efficacy against relapses of up to 90%.
Protection is strongly associated with
vaccine-induced anti-CS IgG antibodies
[3] which are believed to immobilise spor-
ozoites, preventing their invasion from the
skin into blood vessels [4]. Based on the
delayed time to detectable blood-stage
parasitemia in vaccinated volunteers
who were not protected, it has been esti-
mated that RTS,S/AS01 immobilises 90–
95% of sporozoites, with the 5–10% of
breakthrough sporozoites being sufficient
to allow infection half of the time [3].

Similarly to P. falciparum, infection with
P. vivax begins with the inoculation of
sporozoites from an infectious mosquito.
P. vivax sporozoites can be categorised
into tachysporozoites which immediately
develop into exoerythrocytic schizonts,
and bradysporozoites which develop
into hypnozoites where development is
arrested for weeks to years until activation
to cause relapses [5]. An antibody-medi-
ated pre-erythrocytic P. vivax vaccine is
likely to target both tachysporozoites and
bradysporozoites in the skin. Similarly to
P. falciparum, a single tachysporozoite
that evades the vaccine-induced immune
response will lead to a breakthrough
infection, thus we would expect low to
modest efficacy against primary infection
even for a vaccine that prevents a large
proportion of sporozoites. However, it is
possible that every bradysporozoite
immobilised may lead to a relapse pre-
vented, thus efficacy against relapses
may be comparable to the proportion of
sporozoites prevented. This hypothesis is
illustrated further via the example in
Figure 1.

The contribution of relapses to sustaining
P. vivax transmission has been investi-
gated in epidemiological studies, with
studies incorporating treatment with
primaquine for the elimination of hypno-
zoites from the liver providing a particu-
larly rich source of information. In
treatment-reinfection studies in southeast
Asian and western Pacific populations
exposed to P. vivax, where participants
were randomised to receive blood-stage
drugs (e.g., chloroquine or artemether-
lumefantrine) or blood-stage drugs plus
primaquine, it has been demonstrated
that approximately 80–90% of new infec-
tions are attributable to relapses [6,7].
This suggests that interventions that
target hypnozoites, either by elimination
from the liver through treatment or
preventing their development in the
first place, may cause substantial reduc-
tions in population-level transmission of
P. vivax.

The theoretical implications of using vac-
cination to inhibit the build-up of the hyp-
nozoite reservoir in a population were
investigated using a mathematical model
of within-host hypnozoite infection cou-
pled to a model of P. vivax transmission
between humans andmosquitoes [8]. We
consider a hypothetical nonwaning pre-
erythrocytic P. vivax vaccine with efficacy
against primary infection of Vinf and effi-
cacy against relapses of Vrel. Figure 2A
shows the effect of vaccination on the
individual-level in terms of the expected
reduction in time with blood-stage para-
sitemia. The duration of blood-stage par-
asitemia is a proxy for the onwards
transmission potential to mosquitoes
because of the high degree of correlation
between P. vivax parasitemia and game-
tocytemia [9]. As approximately 80% of
infections are assumed to be attributable
to relapses, increasing Vrel is predicted to
cause large reductions in the time spent
with blood-stage parasitemia. The popu-
lation-level impact of a vaccination cam-
paign with 70% coverage is shown in
Figure 2B for a range of scenarios. A
vaccine that does not prevent relapses
is predicted to cause very limited reduc-
tions in P. vivax parasite prevalence. In
contrast, a vaccine with high efficacy
against relapses is predicted to cause
substantial reductions in prevalence,
enough to interrupt transmission in the
simplified scenario represented here.

The potentially high efficacy against relap-
ses of a vaccine with low to modest effi-
cacy against primary infection, coupled
with the crucial role of relapses in sustain-
ing transmission, suggests that pre-eryth-
rocytic P. vivax vaccines be prioritised for
further investigation. However, a number
of factors may count against the outlined
hypothesis, primarily related to knowl-
edge gaps surrounding hypnozoites
and relapses. The factors governing com-
mitment of sporozoites to development
as schizonts or hypnozoites are not
Trends in Parasitology, April 2017, Vol. 33, No. 4 261
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Figure 2. Simulations from aMathematical Model of the Impact of a Hypothetical Nonwaning Pre-Erythrocytic Plasmodium vivax Vaccine. (A) By preventing infection, a
vaccine can reduce the expected duration of blood-stage parasitemia. Efficacy against primary infection of Vinf = 50% and duration of each blood-stage infection
(primary or relapse) of 1 month are assumed. The dashed line indicates the expected duration of blood-stage parasitemia in an unvaccinated individual. (B) Predicted
impact of a vaccination campaign with 70% coverage on population-level transmission. The R computer code for generating this figure is provided in the[62_TD$DIFF], supplemental
information online allowing for simulation with different parameter values.
understood. The precise numbers of
tachysporozoites and bradysporozoites
are not known, although it has been dem-
onstrated that the ratio of schizonts to
hypnozoites is strain-dependent [10]. In
a prescient but largely ignored analysis, a
group of Russian malariologists demon-
strated that the expected number of
relapses is dependent on the ratio of
tachysporozoites to bradysporozoites
[5]. Furthermore, the processes govern-
ing activation of hypnozoites to initiate
relapses are still poorly understood. If
hypnozoites activate independently
(e.g., without external triggers or quorum
sensing) this would suggest one relapse
prevented for every one hypnozoite pre-
vented. External triggers such as fevers
262 Trends in Parasitology, April 2017, Vol. 33, No. 4
may lead to hypnozoite activation in
batches – in which case prevention of
relapse requires preventing every hypno-
zoite in the batch.

In addition to the limitations of our under-
standing of hypnozoites, there is consider-
able uncertainty of the mechanism of
action of pre-erythrocytic vaccines against
any Plasmodium parasite. Whereas anti-
body-mediated responses are likely to tar-
get sporozoites in the skin, cell-mediated
immune responsesaremore likely to target
liver-stage schizonts. A vaccine-induced
cell-mediated response may not be able
to target ahypnozoite until afteractivation–
potentially greater than a year after the
initial infectious mosquito bite, and long
enough for significant waning of vaccine-
induced immunity [1].

In participants in malaria-therapy studies
reinfected with a homologous strain of
P. vivax, large reductions in blood-stage
parasite densities between primary and
secondary infections were observed
[11]. Given the correlation between
parasitemia and gametocytemia [9], this
suggests that a primary infection may
contribute proportionately more to
onwards transmission than a single
relapse. As such, there is a strong case
for the incorporation of additional blood-
stage antigens in a candidate vaccine
to reduce parasitemia and gameto-
cytemia in breakthrough infections.



Acknowledging the limitations of our
understanding of the biology and vacci-
nology, past experience of developing P.
falciparum vaccines with low to moderate
efficacy against infection suggests that it
is also feasible to do so for P. vivax and
subsequently investigate the impact on
relapses. However, there are few P. vivax
vaccine candidates currently under devel-
opment, based on a limited number of
antigens, with most projects still at a
preclinical phase [12]. It is important
that underinvestment doesn’t allow the
potential of P. vivax vaccines to continue
to be overlooked.
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