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Summary 

Cryo-electron microscopy (cryo-EM) has become a mainstream technique for determining the 
structures of complex biological systems. However, accurate integrative structural modeling has been 
hampered by the challenges in objectively weighing cryo-EM data against other sources of information 
due to the presence of random and systematic errors, as well as correlations, in the data. To address 
these challenges, we introduce a Bayesian scoring function that efficiently and accurately ranks 
alternative structural models of a macromolecular system based on their consistency with a cryo-EM 
density map and other experimental and prior information. The accuracy of this approach is 
benchmarked using complexes of known structure and illustrated in three applications: the structural 
determination of the GroEL/GroES, RNA polymerase II, and exosome complexes. The approach is 
implemented in the open-source Integrative Modeling Platform (http://integrativemodeling.org), thus 
enabling integrative structure determination by combining cryo-EM data with other sources of 
information. 
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Introduction 

Over the last two decades, cryo-electron microscopy (cryo-EM) has enabled the structural 
characterization of complex biological systems beyond the capabilities of traditional techniques, such 
as X-crystallography and nuclear magnetic resonance (NMR) spectroscopy (Callaway, 2015; 
Kuhlbrandt, 2014; Nogales, 2016). This progress has been fueled by the continuous advances in both 
instrumentation and software for cryo-EM image processing (Bai et al., 2015; Glaeser, 2016; Li et al., 
2013). As a result, the resolution of the structures from cryo-EM is rapidly approaching that of X-ray 
crystallography. Most importantly, cryo-EM does not require crystallizing the system prior to data 
acquisition, needs a small amount of sample, does not require isotopic labeling, and is applicable to 
systems larger than ~100 kDa. Furthermore, cryo-EM has the potential of identifying multiple different 
structural states in a single experiment (Bai et al., 2015; Callaway, 2015; Glaeser, 2016; Nogales, 
2016), provided that they can be disentangled during image classification. 

A number of approaches have been proposed to model macromolecular structures based on cryo-EM 
density maps (Lopez-Blanco and Chacon, 2015; Schroder, 2015). Generally speaking, these techniques 
can use one or more of the following strategies: rigid-body fitting of components of known structures, 
flexible refinement, use of homology modeling or de novo protein structure prediction of the 
components, and integrative modeling based on multiple types of experimental data. The most popular 
software packages for cryo-EM-based modeling include Chimera (Pettersen et al., 2004), EMfit 
(Rossmann et al., 2001), Modeller (Sali and Blundell, 1993), SITUS (Wriggers, 2012), MultiFit 
(Lasker et al., 2009), EMFF (Zheng, 2011), MDFF (Trabuco et al., 2008), Flex-EM (Topf et al., 2008), 
γ-TEMPy (Pandurangan et al., 2015), COAN (Volkmann and Hanein, 1999), MDFIT (Ratje et al., 
2010), Fold-EM (Saha and Morais, 2012), ROSETTA (DiMaio et al., 2009), EM-fold (Lindert et al., 
2012), IMP (Russel et al., 2012), RELION (Scheres, 2012a), ISD (Habeck, 2017), and Phenix (Adams 
et al., 2011). The majority of these approaches generate structural models that minimize the deviation 
between observed and predicted cryo-EM density maps, including by molecular dynamics (MD), 
Monte Carlo (MC) or normal modes analysis techniques (Lopez-Blanco and Chacon, 2015).  

Several methods have been developed with the purpose of fitting the components of large 
macromolecular complexes into low-resolution density maps. A subset of these of methods use scoring 
functions based on cross-correlation (CC) or Laplacian-filtered CC between a target map and a 
simulated map, sampling using three-dimensional (3D) Cartesian FFT coupled with exhaustive 
rotational samples, such as COLORES (Chacon and Wriggers, 2002), gEMfitter (Hoang et al., 2013), 
and PowerFit (van Zundert and Bonvin, 2015). These methods are normally used incrementally, i.e. by 
fitting one subunit at the time. In contrast, other modeling software packages simultaneously assemble 
multiple components of the complex. ATTRACT-EM (de Vries and Zacharias, 2012), for example, 
uses Gaussians positioned at the center of each voxel of the map, a coarse-grained representation of the 
model structure, and a gradient vector matching as energy function. 

Despite the success of these methods, the translation of cryo-EM density maps into structural models 
still presents several challenges, especially in integrative structural modeling, where cryo-EM data are 
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combined with other sources of information. First, cryo-EM density maps are affected by random and 
systematic errors (Bonomi et al., 2017; Schneidman-Duhovny et al., 2014). In particular, radiation 
damage to the sample upon prolonged exposure to the electron beam often results in regions of the 
density map at resolution lower than the average. Second, despite progress in methods for 2D 
classification and 3D reconstruction, the final maps might still average out images of particles in 
different conformations (Bonomi et al., 2016). Finally, cryo-EM maps are typically defined by a set of 
data points, or voxels, representing the electron density on a grid in real space. Neighbouring voxels do 
not provide independent information on the system, but instead are affected by a certain degree of 
spatial correlation. Accounting for correlation as well as the presence of noise in the data is crucial 
when integrating cryo-EM with other experimental data (Ward et al., 2013), as the information and 
noise content of each piece of data needs to be accurately quantified to avoid biasing a model 
(Schneidman-Duhovny et al., 2014).  

Here, we introduce a Bayesian approach (Rieping et al., 2005) to model the structure of a 
macromolecular system by optimally combining cryo-EM data with other input information. Bayesian 
inference and maximum-likelihood methods are not novel to the cryo-EM field (Scheres, 2012b; 
Sigworth et al., 2010), as they were initially introduced for aligning structurally homogenous sets of 2D 
images (Sigworth, 1998), and they are now widely used by software packages such as RELION 
(Scheres, 2012a) for single-particle reconstruction. In our approach, we use Bayesian inference in a 
way similar to that discussed in a recent paper (Habeck, 2017), i.e. to determine the optimal weight of 
cryo-EM data in integrative structural modeling.  

Our approach models the structure of the system while simultaneously and automatically quantifying 
the level of noise in the data. Furthermore, the input data are represented in terms of a Gaussian 
mixture model (GMM) (de Vries and Zacharias, 2012; Jonic et al., 2016; Kawabata, 2008; Robinson et 
al., 2015), rather than using the standard voxel representation. This procedure has several advantages: 
a) it alleviates the problem of voxel correlation by decomposing the density map into a set of nearly-
independent GMM components; b) it is computationally efficient; and c) it enables a multi-scale 
representation of the model, from coarse-grained for initial efficient sampling to atomistic for 
refinement of high-resolution maps. By accounting for both data noise and correlation, this approach 
enables an effective use of cryo-EM density maps in integrative structural modeling.   

In the following, we first outline our modeling approach and then benchmark its accuracy using 
synthetic low-resolution data of several protein/DNA complexes. Finally, we apply our approach to the 
integrative modeling of the GroEL/ES complex, as well as the RNA polymerase II and the exosome 
complexes, in which we combine cryo-EM with chemical cross-linking/mass spectrometry (XL-MS) 
data. This method is implemented in the open-source Integrative Modeling Platform (IMP) package 
(http://integrativemodeling.org) (Russel et al., 2012), thus enabling  integrative structure determination 
of biological systems based on a variety of experimental data, including FRET and NMR 
spectroscopies, XL-MS, small angle X-ray scattering, and various proteomics data.  
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Results 

Protocol for low-resolution modeling of cryo-EM density maps  

We implemented in IMP (Russel et al., 2012) a pipeline that enables the multi-scale modeling of 
macromolecular structures based on cryo-EM data and other structural information, given partial 
knowledge of subunits structures. The details of our approach are illustrated in the STAR Methods. 
The general 4-stage protocol proceeds as follows (Fig. 1): 

1) Gather the data, including the sequences of subunits, their structures (eg, from X-ray 
crystallography, NMR spectroscopy, homology modeling, and ab initio prediction), and the 
target cryo-EM density map (Fig. 1.1). 

2) Convert the data into a scoring function for ranking alternative structural models: 

A. Generate a GMM representation of the density map (data-GMM) by using a divide-and-
conquer algorithm (Fig. 1.2A, Fig. 2, and Fig. S1). 

B. Assign a representation to the different components of the complex (Fig. 1.2B). 
Subunits are represented by spherical beads to coarse-grain the atomic degrees of 
freedom. For a given domain, the beads are either constrained into a rigid body or 
allowed to move flexibly, depending on the uncertainty about the domain structure. The 
beads represent one or more contiguous residues, depending on the level of coarse-
graining (Erzberger et al., 2014; Fernandez-Martinez et al., 2016; Robinson et al., 
2015).  

C. The electron density of the model is also described by a GMM (model-GMM) and is 
used to compute the fit of the model to the cryo-EM density map (Fig. 1.2C). 

D. The scoring function that ranks the models according to how well they fit the input 
information is derived from the posterior probability, which includes a likelihood 
function for the cryo-EM data (Fig. S2), and prior terms such as the bead sequence 
connectivity and excluded volume (Fig. 1.2D). 

3) Sample models using MC and replica exchange methods (Swendsen and Wang, 1986), with an 
iterative approach to maximize sampling exhaustiveness (Fig. 1.3 and Fig. S3).  

4) Analyze the sampled models in terms of their variability by clustering. (Fig. 1.4). 

 

Benchmark of the divide-and-conquer fit of the data-GMM 

We assessed the accuracy of our divide-and-conquer approach by determining the data-GMM of 20 
experimental density maps at different resolutions (Liu et al., 2016; Malet et al., 2010; Wang et al., 
2007), ranging from 3.6 Å to 25 Å (Table 1). This benchmark revealed that the number of Gaussian 
components needed to achieve a given accuracy of the optimal data-GMM varies with the resolution of 
the map and molecular weight of the complex (Fig. 3A). Indeed, for a given number of components 
and molecular weight, the data-GMM correlation coefficient is lower for higher-resolution maps. In 
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other words, high resolution maps and maps of high molecular weight complexes contain more 
information and therefore require additional components to describe the ensemble of their features. 

We used this benchmark to calculate the resolution of the cryo-EM density maps as a function of the 
number of Gaussians per mass-unit of the optimal data-GMM (Fig. 3B). This relationship can be used 
to: a) estimate the resolution of a GMM generated from a known structure, and b) estimate the number 
of Gaussians needed to fit a cryo-EM density map of a given mass and resolution. 

Our divide-and-conquer approach allowed us to overcome the computational inefficiency of the 
traditional expectation-maximization algorithm for fitting GMM with a large number of components. 
For example, in the case of the yeast cytoplasmic exosome at 4.2 Å resolution (EMDB code 3366) (Liu 
et al., 2016), our approach required 24 minutes and less than 1 GB to generate GMMs with 4, 16, 64, 
256, 1024, and 4096 components. In contrast, a serial implementation on a single computer required 
over 48 hours and 182 GB of memory for fitting with 4096 components. 

  

Benchmark of the modeling protocol  

We assessed the accuracy of the modeling protocol using a benchmark of 21 protein/DNA complexes 
consisting of 2 to 7 subunits (Table 2) (Velazquez-Muriel et al., 2012) and simulated cryo-EM density 
maps with a resolution of ~10 Å. No additional experimental data beside the crystal structure of the 
individual components were included, as our aim was to explore the performance of the cryo-EM 
scoring function alone. The detailed results of the benchmark are reported in Table S1.  

The average accuracy p(10) (STAR Methods) of the whole benchmark was 88%. We classified the 
outcomes of our benchmark into three categories. We defined a full positive result when the global root 
mean square deviation (rmsd) with respect to the reference structure along with the rmsds of all the 
individual subunits were lower than 10 Å. A partial positive result was achieved when the global rmsd 
was lower than 10 Å but some of the subunits were misplaced, resulting in a rmsd greater than 10 Å for 
at least one subunit. A negative result was obtained when the global rmsd was greater than 10 Å. Out 
of the 21 complexes, we obtained 16 full positives (2UZX, 3R5D, 1CS4, 2WVY, 2DQJ, 1VCB, 2GC7, 
2BO9, 2BBK, 1GPQ, 3V6D, 3SFD, 3PDU, 3NVQ, 2Y7H, and 1SUV), 3 partial positives (1Z5S, 
3LU0, and 1MDA), and 2 negatives (3PUV and 1TYQ) (Table 2 and Fig. 4).  

The majority of the complexes belonged to the full positive category and were accurately modeled, 
with an average global rmsd from the reference structure equal to 2.2 Å. In the following, we discuss 
the few partial positive and negative results, highlighting the reasons behind their lower accuracy. 

The best-scoring model of the 4-subunits 1Z5S had a rmsd of 9.0 Å, p(10) of 0.86, APS of (1.8 Å, 
32.1°), and CC of 0.87. All best scoring models are grouped into a single cluster. The origin of the 
inaccuracy was subunit B, which was mis-rotated by almost 180°. The reason was that this subunit has 
a cylindrical shape and therefore the expected density is nearly invariant under rotations around the 
main axis. 



 

6 

The best-scoring model of the 5-subunits 3LU0 had a rmsd of 9.3 Å, p(10) of 0.85, APS of (4.3 Å, 
5.7°), and CC of 0.74. The best scoring models were grouped into two clusters. In the first cluster 
containing the best scoring model, the lower accuracy of the models was due to subunits A, B, and E. 
Subunits A and B, while positioned in the correct region of the density map, were displaced by 10.9 Å 
and 7.3 Å and mis-rotated by 33.7° and 24.1°, respectively. Subunit E was also displaced by 13.5 Å 
and mis-rotated by 34.6°. In the second cluster, the situation was similar, with subunit E displaced even 
farther apart in the incorrect region of the density, with a Placement Score of (72.6 Å, 151.7°).  

The best-scoring model of the 6-subunits 1MDA had a rmsd of 8.1 Å, p(10) of 0.85, APS of (3.2 Å, 
34.0°), and CC of 0.75. All best scoring models were grouped into a single cluster. The origin of the 
inaccuracy was the orientations of subunit A and M, which were both mis-rotated by almost 180°. The 
reason was that these subunits have near cylindrical shape and therefore their expected densities are 
almost invariant under rotations around the main axis. 

The best-scoring model of the 5-subunits 3PUV had a rmsd of 23.4 Å, p(10) of 0.64, APS of (8.0 Å, 
31.1°), and CC of 0.74. All best scoring models were grouped into a single cluster. In the best-scoring 
model, subunits E, F, and G were correctly positioned. Subunits A and B were instead both misplaced 
and mis-rotated, with APS of (17.6 Å, 17.7°) and (18.1 Å, 136.7°), respectively. The reason was that 
these subunits formed a closed dimer of roughly cubical shape, whose density could be fit also by an 
incorrect model in which the positions of the domain of subunits A and B were swapped. 

The best-scoring model of the 7-subunits 1TYQ had a rmsd of 19.8 Å, p(10) of 0.65, APS of (4.1 Å, 
58.2°), and CC of 0.65. The best scoring models were grouped into 3 clusters. In all clusters, subunits 
D and F were both misplaced and mis-rotated. The most likely reason for this inaccuracy was that these 
subunits formed an elongated helical bundle of about 40 residues in length, making sampling more 
challenging due to steric effects. In the first cluster containing the best scoring model, subunit E was 
also mis-rotated by almost 180°, due to its globular shape. 

 

Modeling of the GroEL/ES complex 

The ADP-bound GroEL/ES is a 21-subunit molecular chaperone that assists protein folding in bacteria. 
We used cryo-EM data at 23.5 Å resolution (EMDB code 1046) (Ranson et al., 2001) and the 
crystallographic structures of the subunits (PDB code 1AON) (Xu et al., 1997) (Fig. S4). 

The 100 best-scoring models grouped into 3 clusters, which were mainly different in the orientation of 
the GroEL-trans subunit (Fig. 5 and Table S2). All three clusters presented a misrotation of the GroES 
subunit, which was due to the small size of the subunit and the low resolution of the map (de Vries and 
Zacharias, 2012; Habeck, 2017; Kawabata, 2008). The rmsd of the best scoring model (Fig. S4) with 
respect to the reference structure was 9.0 Å, with p(10) of 0.98 and data-model CC of 0.85. Notably, 
GroES and GroEL-cis proteins were determined with lower precision than GroEL-trans. 
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Integrative modeling of the RNA polymerase II 

The yeast RNA polymerase II is a 12-subunit complex that catalyzes DNA transcription to synthesize 
mRNA strands (Armache et al., 2005). To model this complex, we used the structures of all its subunits 
as determined in the RNA polymerase II X-ray structure (PDB code 1WCM) (Armache et al., 2005). 
We incorporated a low-resolution cryo-EM map of the RNA polymerase II-Iwr1 complex (EMDB 
code 1883) (Czeko et al., 2011) and two XL-MS datasets (Fig. 6, Fig. S5, and Fig. S6). 

997 of the 1000 best scoring models grouped in the first cluster. The rmsd of the best scoring model 
with respect to the reference structure was 32.9 Å, with a p(20) of 0.80 and a data-model CC of 0.52. 
The major contribution for the inaccuracy was the misplacement of subunit Rpb8. The reason for the 
misplacement was that Rpb8 was not cross-linked with the rest of the complex. Excluding Rpb8 from 
the rmsd calculation yielded a rmsd of 21.2 Å. 

We analysed the position of each subunit of the complex (Fig. 6D). Subunits 1 to 5 (81% of the mass 
of the complex) had a rmsd with respect to the reference structure under 20 Å. The following subunits 
had a rmsd over 20 Å with respect to the reference structure: Rpb6 (32.0 Å), Rpb 7 (28.1 Å), Rpb 8 
(133.3 Å), Rpb9 (51.9 Å), Rpb 10 (27.3 Å), Rpb 11 (25.5 Å) and Rpb 12 (29.0 Å). Note that Rpb1 was 
correctly localized in the cryo-EM map but the domain corresponding to residues 1275-1733 was 
misplaced. Another reason for the inaccuracy is that subunits Rpb8, Rpb9, and Rpb12 were weakly 
cross-linked with the rest of the complex, forming 0, 1 and 3 cross-links respectively. 

There was a total of 9 violated cross-links (3.5% of the total dataset), which involved the following 
subunits: Rpb1-Rpb1 (2 cross-links) Rpb1-Rpb2 (2 cross-links), Rpb1-Rpb4 (1 cross-link), Rpb1-Rpb6 
(1 cross-link), and Rpb2-Rpb2 (3 cross-links) (Fig. 6E). 

 

Integrative modeling of the exosome complex 

The 10-subunit yeast exosome complex is a macromolecular machine responsible for processing and 
degrading RNA in eukaryotic cells (Houseley et al., 2006). To model this complex, we used the 
structures of all subunits of the complex in one state, the crystal structure of the RNA-bound exosome 
(PDB code 4IFD). We also incorporated independent data collected in another state, the low-resolution 
cryo-EM map of the RNA-free exosome (EMDB code 3367) (Liu et al., 2016) and a dataset of 98 
cross-linked residue pairs obtained by XL-MS  (Shi et al., 2015) (Fig. 7, Fig. S7, and Fig. S8). 

To the best of our knowledge, no high-resolution structure of the RNA-free 10-subunit exosome 
complex alone is available. We thus used the structure of the RNA-free exosome in complex with Ski7 
(PDB code 5G06) as a reference to test the accuracy of our models. We expected our models to differ 
from the reference, especially in the region at the top where the complex interacts with Ski7. Here, for 
instance, when one rigidly fits the entire reference structure to the RNA-free density map, the Csl4 
subunit extends outside the density map (Fig. 7D), most likely as a consequence of the interaction with 
Ski7. On the other hand, the lower region in which Dis3 is located is expected to be structurally similar 
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to the reference. In addition, cross-links were extracted from whole-cell lysate and therefore might 
reflect a mixture of different compositional and conformational states (Shi et al., 2015). 

The 1000 best scoring models grouped into a single cluster. The rmsd of the best scoring model with 
respect to the reference structure was 29.4 Å, with a p(10) of 0.47 and a data-model CC of 0.79. 	 We 
analysed the position of each subunit of the complex (Fig. 7D). Strikingly, each domain of Dis3 was 
properly placed in its respective density region (Fig. 7D). Subunit Csl4 was localized entirely inside 
the density map, at variance with the reference structure. Subunits Rrp45, Ski6, Rrp46, Rrp40, and 
Rrp4 occupied the correct regions of the density map. Subunits Rrp42, Rrp43, and Mtr3 were 
misplaced, but still occupied the upper region of the density map. The majority of the cross-links were 
satisfied, with measured distance between cross-linked residue pairs always below 35 Å, with a few 
exceptions. The cross-link between residue 71 of Rrp43 and residue 104 of Rrp42 was violated (Fig. 
7E). Three other cross-links involving Dis3 were found to be inconsistent with the cryo-EM map and 
therefore were violated. These distance restraints might be satisfied in the RNA-bound exosome form, 
which we expect to be present under the conditions in which the XL-MS data were collected.  

 
 
Discussion 

A major problem in integrative structure modeling, in which data of different types are combined to 
model the structure of a biological complex, is to determine the relative weight of each piece of 
information. Inaccurate weighing results in models biased towards a particular source of data, thus 
reducing the accuracy of the model and under- or over-estimating its precision. To optimally weigh 
each piece of information, two main factors need to be considered: the accuracy or level of noise in the 
data and the correlation between data points. 

Our Bayesian approach addresses these challenges by introducing several technical features. First, 
building on the gmconvert utility (Kawabata, 2008), we developed a divide-and-conquer strategy to 
efficiently compute GMM with a large number of components in order to reduce the correlation 
between voxels. Second, our approach accounts for the presence of variable level of noise across the 
experimental map and weighs each component of the GMM accordingly. Third, we created a multi-
scale modeling approach, as the scoring function can be adapted to any coarse-grained representation 
of the model and any resolution of the experimental density map. Fourth, we used a combination of 
flexible and rigid degrees of freedom in the modeling: each domain with a known structure is 
constrained into a rigid-body, while all missing parts (loops, termini, or unknown regions) are 
represented by flexible strings of beads. Finally, we developed an enhanced-sampling technique based 
on an iterative replica exchange strategy and a MC mover that randomly swaps rigid-bodies with 
similar shape.  
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Comparison with existing approaches 

To compare our approach with state-of-the-art methods for modeling macromolecular complexes using 
low- and intermediate-resolution cryo-EM maps, we first examined the results of the benchmark 
carried out with γ-TEMPy (Pandurangan et al., 2015). This method scores the models using mutual 
information between model and experimental densities and uses a genetic algorithm to accelerate 
sampling. In the following, we compare our approach with γ-TEMPy in terms of accuracy of the 
scoring function, sampling efficiency, and computational performances. 

In order to compare the accuracy of the two approaches, we examined our best scoring model (Table 
2) and the γ-TEMPy high scoring model (HS in Table 1 of Ref. (Pandurangan et al., 2015)) on a subset 
of 9 test cases of our benchmark that were also included in the γ-TEMPy benchmark (PDB codes 
2DQJ, 2BO9, 2BBK, 2GC7, 1VCB, 1TYQ, 1MDA, 1GPQ, and 1CS4). In all cases, our approach 
produced models that were significantly more accurate. Particularly striking is the 3-subunits complex 
1VCB, which our method and γ-TEMPy modeled with rmsd of 2.2 Å and 25.3 Å, respectively.  

To assess sampling efficiency, we compared our best rmsd model with the γ-TEMPy best prediction 
(BP in Table 1 of Ref. (Pandurangan et al., 2015)). In 8 out of 9 cases, our approach was capable to 
sample more native-like models. Only in the case of 1TYQ, our best rmsd model was less accurate 
(19.1 Å) than the BP model generated with γ-TEMPy (16.9 Å). 

To assess the performances of the two approaches, we monitored the computational cost to run the two 
benchmarks, defined by the total number of core hours required to complete one test case. Our 
benchmark was executed in parallel on 48 cores on a compute cluster equipped with 2.50 GHz Intel(R) 
Xeon(R) E5-2670 v2 processors. The minimum, maximum, and average computational cost across all 
test cases was 320, 6840, and 2166 core hours, respectively. Furthermore, this computational cost 
depends on the number of components of the data-GMM, which is particularly advantageous with 
over-sampled low-resolution maps. Each computation of the γ-TEMPy benchmark was instead run on 
160 cores distributed on 40 AMD 4-core 2.6 GHz processors. As the time measurements for the 
benchmark with 10 Å-resolution maps were not reported, we used the timings of the 20 Å-resolution 
benchmark to estimate the computational cost. The reported minimum, maximum, and average cost 
across all test cases were 640, 7840, and 2720 core hours, respectively.  

We then compared our approach with other integrative modeling tools in the case of the GroEL/ES 
complex (Table S3). The accuracy of our approach was: i) similar to that of Attract-EM (de Vries and 
Zacharias, 2012), IQP (Zhang et al., 2010), and γ-TEMPy (Pandurangan et al., 2015), ii) superior to 
MultiFit (Lasker et al., 2009) and gmfit (Kawabata, 2008), and iii) worse than ISD (Habeck, 2017). 
Non-integrative modeling tools, which fit proteins into the map sequentially such as gEMfitter (Hoang 
et al., 2013) and PowerFit (van Zundert and Bonvin, 2015), performed equivalently or better, thanks to 
their exhaustive search and/or prior map segmentation. It has to be noted, however, that exhaustive 
search might not be amenable for large multi-component complexes, sequential fitting might bring bias 
to the final models, and segmentation might be incorrect. 
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Our approach shares the same philosophy of the Bayesian cryo-EM restraint recently developed in ISD 
(Habeck, 2017). However, it is distinct from it because the weight of the restraint in the ISD case is 
dependent on the sampling of the density map as it does not consider spatial correlation between 
voxels. In contrast, in our method, the number of Gaussians, and thus the weight, is independent from 
the grid-sampling of the density map. 

 

Current limitations 

In the few cases in which our approach produced results of accuracy lower than the average, we 
identified two sources of error: a) positional ambiguity, where multiple placements result in the same 
score, and b) inefficient sampling of rigid body configurations in crowded environments. For example, 
helical bundles are difficult to model at low resolution because they only define a cylindrical shape in 
which two or more helices can be positioned in multiple ways. Similarly, pseudo-spherical subunits can 
be rotated around their center of mass or swapped with only minimal penalty. In addition, the 
placement of DNA helices is degenerate, because their expected density is symmetric by rotation. 
Finally, macromolecular complexes present a crowded environment in which sampling of rigid body 
configurations might be inefficient due to steric hindrance.  

In applications with actual experimental density maps, we foresee an additional source of error that 
could affect the accuracy of the modeled complex. This error is associated with the fact that not all 
components of the modeled complex might have a corresponding experimental density or that the 
experimental density might represent more components than those explicitly modeled. Our approach 
currently assumes that all data-GMM components can be explained by a corresponding density of the 
model. This assumption is encoded in the scoring function by assigning the same total electron density 
to the data-GMM and the model-GMM, i.e. the two GMMs are normalized to the same value. It should 
be notated that this challenge, along with the two previously described, is not specific to the modeling 
protocol presented here, but it is faced by all the techniques to model architectures from low-resolution 
cryo-EM data. 

 

Dissemination 

We implemented our modeling protocol in a series of scripts based on IMP.pmi (Webb et al., 2018), a 
module of the Integrative Modeling Platform (IMP, http://integrativemodeling.org) (Russel et al., 
2012) that can be used to build the system representation, setup the scoring function, define the degrees 
of freedom to sample, and finally analyze the solutions. Our approach was also implemented in the 
PLUMED-ISDB module (Bonomi and Camilloni, 2017) of the open-source PLUMED library 
(www.plumed.org) (Tribello et al., 2014). Thanks to the differentiability of the scoring function, this 
implementation can be used for real-space, flexible refinement of individual models using molecular 
dynamics at atomistic resolution or, in combination with metainference (Bonomi et al., 2016), to model 
ensemble of structures representing the conformational heterogeneity hidden in low-resolution areas of 
atomistic density maps  (Bonomi et al., 2018; Vahidi et al., 2018). 
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Figure legends 
 
Figure 1: Workflow for multi-scale modeling of cryo-EM data. (1) The input information for the 
modeling protocol consists of: an experimental cryo-EM density map (left), the structures of the 
subunits (center), and the sequences of the subunits (right). (2A) The density map is fitted with a GMM 
(ie, the data-GMM) using our divide-and-conquer approach. (2B) The atomistic coordinates of the 
subunits are suitably coarse-grained into large beads. Regions without a known atomistic structure are 
represented by a string of large beads, each representing a set of residues. (2C) GMM for the subunits 
(ie, the model-GMMs) are also computed from the atomistic coordinates. (2D) The Bayesian scoring 
function encodes prior information about the system and measures the agreement between the data-
GMM and the model-GMM. (3) Structural models are sampled by MC coupled with replica exchange, 
with or without the iterative sampling protocol. (4) The generated models are analysed. 

Figure 2: Divide-and-conquer approach for fitting cryo-EM density maps with a Gaussian 
mixture model (GMM). (A) The input map is thresholded according to the recommended threshold. 
(B) The resulting map is initially fitted using a GMM with 2 components. (C) Each component of the 
GMM is used to partition the map into overlapping sub-maps. (D) Each sub-map is fitted using a GMM 
with 2 components, similarly to step B. (E) The sum of all the GMMs of the sub-maps results in a data-
GMM that approximates the original map. The accuracy of approximation increases at every iteration. 
(F) The fitting procedure is iterated until the data-GMM reaches an optimal accuracy. The green arrow 
indicates a branch that was stopped because the local CC was higher than 0.95. 

Figure 3: Benchmark of the divide-and-conquer fit of the data-GMM. (A) The accuracy of the 
divide-and-conquer approach is measured using the correlation coefficient between the input map and 
the corresponding data-GMMs obtained at different iterations. The accuracy increases with the number 
of components in the mixture, and the saturation point (ie, the number of components beyond which 
the accuracy does not increase significantly) depends on the resolution of the experimental map (red 
and blue curves are low and high resolutions, respectively). (B) Relationship between map resolution 
and number of components of the data-GMM. For all the density maps of panel A, the experimental 
resolution is plotted as a function of the optimal number of components of the data-GMM normalized 
by the molecular weight of the complex (solid circles). The points are fitted using a power law (blue 
line). The orange and purple circles correspond to maps whose resolution was determined by the 
Fourier Shell Correlation 0.143 and 0.5, respectively. (B, inset) For each density map, the optimal 
number of components is computed as the minimal absolute relative deviation |𝛥𝑟|/𝑟 between the 
data-GMM resolution and the density map resolution. 

Figure 4: Benchmark of the modeling protocol. Examples of each of the three possible outcomes of 
the benchmark: positive (first column, PDB code 3NVQ), partial positive (second column, PDB code 
3LU0), and negative (third column, PDB code 1TYQ). (A) Native structures and simulated 10 Å 
resolution cryo-EM density maps. (B) 50 best scoring models displayed with the simulated cryo-EM 
density maps. (C) Residue-wise accuracy of the best scoring models: residues whose positions deviate 
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from the native structure less than 10 Å, between 10 and 20 Å, and above 20 Å are coloured in blue, 
green, and red, respectively. (D) Total score of all the sampled models as a function of the total rmsd 
from the native structure. 

Figure 5: Modeling of the GroEL/ES complex. (A) Native structure of the GroEL/ES complex (PDB 
code 1AON). (B) Cryo-EM density map of GroEL/ES (EMDB 1046). (C) Residue indexes are color-
coded using a rainbow palette, where the N-terminus is violet, the C-terminus is red, and intermediate 
residues are green and yellow. The three columns on the right are the representative structures of the 
three best-scoring clusters color coded using the rmsd from the native structure per residue (D), the 
per-residue precision (E), and the same color coding as in (C) to emphasize the orientation of the 
subunits. The color bar on the left refers to the panels (D) and (E).  

Figure 6: Integrative modeling of the RNA polymerase II. (A) Absolute relative deviation between 
data-GMM and experimental map resolutions |"#|

#
, plotted as a function of the number of components 

of the data-GMM. The minimum (blue arrow) corresponds to the optimal number of components used 
in the modeling (64 Gaussians). (B) The experimental cryo-EM density map (transparent grey surface) 
is represented with the optimal data-GMM (colored ellipsoids). The color gradient (from green to red) 
is proportional to the weight 𝜔$,& of the corresponding Gaussian. The length of the three axes and their 
orientation represent the 3-dimensional covariance matrix 𝛴$,&. (C) Representation of the best-scoring 
model. Coarse-grained subunits are represented by the strings of beads: the small beads and large beads 
represent 1- or 20-residue fragments, respectively. As for the data-GMM in panel B, the model-GMM 
is represented by ellipsoids. (D) All subunits of the model (red) and reference structure (PDB code 
1WCM, blue) are represented along with the experimental cryo-EM map. For each panel, the name of 
the subunit is indicated in bold, together with the placement score of that subunit. (E) Histogram of the 
distance between cross-linked residues. The histogram bins corresponding to satisfied and violated 
cross-links are represented in blue and red, respectively. 

Figure 7: Integrative modeling of the exosome complex. We report the same information as in Fig. 6 
for the case of the yeast exosome complex, with the following differences:  (A) the optimal number of 
components used in the modeling is 784; (D) the reference structure is taken from PDB code 5G06. 
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EMDB 
code reference 

molecular 
weight 
[kDa] 

resolution 
[Å] 

resolution 
method 

optimal 
number of 

components 

GMM 
resolution 

[Å] 
CC 

1439 (Wang et al., 
2007) 300 23.0 FSC 0.5 64 21.6 0.97 

1438 (Wang et al., 
2007) 400 19.0 FSC 0.5 184 19.5 0.97 

1708 (Malet et al., 
2010) 400 14.0 FSC 0.5 304 14.7 0.97 

3368 (Liu et al., 
2016) 350 13.0 FSC 0.143 256 10.8 0.93 

3367 (Liu et al., 
2016) 350 11.5 FSC 0.143 784 11.6 0.97 

3371 (Liu et al., 
2016) 350 11.0 FSC 0.143 844 10.5 0.96 

3370 (Liu et al., 
2016) 350 6.7 FSC 0.143 1023 6.5 0.92 

3372 (Liu et al., 
2016) 350 6.3 FSC 0.143 1023 5.7 0.90 

3369 (Liu et al., 
2016) 420 5.8 FSC 0.143 1024 6.2 0.85 

3366 (Liu et al., 
2016) 420 4.2 FSC 0.143 12219 3.9 0.95 

6231 (Booth et al., 
2014) 457 25.0 FSC 0.143 64 24.2 0.97 

1753 (Vannini et al., 
2010) 700 21.0 FSC 0.5 100 24.0 0.98 

1883 (Czeko et al., 
2011) 550 20.9 FSC 0.5 64 19.1 0.82 

1711 (Julian et al., 
2011) 380 13.0 FSC 0.5 640 13.9 0.98 

3198 
(Fernandez-
Leiro et al., 

2015) 
256 8.0 FSC 0.143 256 7.8 0.78 
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2923 
(Martinez-

Rucobo et al., 
2015) 

540 7.2 FSC 0.143 1012 6.8 0.90 

2784 (Plaschka et al., 
2015) 570 6.6 FSC 0.143 1024 6.9 0.84 

3056 (des Georges et 
al., 2015) 450 6.0 FSC 0.143 1024 6.2 0.83 

3202 
(Fernandez-
Leiro et al., 

2015) 
256 7.3 FSC 0.143 256 7.5 0.80 

3219 (Bernecky et 
al., 2016) 590 3.6 FSC 0.143 14225 3.6 0.94 

 

 

Table 1: Benchmark of the divide-and-conquer approach for GMM fitting. For each of the system 
studied, we report: the EMDB accession code, the reference paper, the molecular weight of the 
complex, the resolution of the map, the method used to quantify the experimental resolution, the 
optimal number of components, the resolution of the optimal GMM, the CC between the experimental 
cryo-EM map and the optimal GMM. 
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     best rmsd model                      best scoring model 

PDB code reference 
# 

subuni
ts 

# 
cluste

rs 

time / 
frame 

[s] 
rank rmsd   

[Å] 
rmsd  
[Å] p(10) CC APS [Å,°] 

 

2UZX (Niemann et 
al., 2007) 2 1 1.6 551 1.1 1.5 1.00 0.90 0.7 2.9  

3R5D (Schnell et al., 
2012) 3 1 1.1 63 1.4 1.9 1.00 0.93 1.1 2.6  

1CS4 (Tesmer et al., 
2000) 3 1 0.7 159 2.6 3.5 1.00 0.79 0.8 1.1  

2WVY (Zhu et al., 
2010) 3 1 3.0 480 0.9 1.3 1.00 0.98 0.5 0.6  

2DQJ (Shiroishi et 
al., 2007) 3 3 0.4 89 2.0 2.5 1.00 0.93 1.6 3.0  

1VCB (Stebbins et 
al., 1999) 3 1 0.2 453 1.8 2.2 1.00 0.82 1.0 2.7  

2GC7 unpublished 4 1 0.6 817 1.3 2.0 1.00 0.94 0.9 1.8  

2BO9 (Pallares et 
al., 2005) 4 1 0.8 502 1.3 1.6 1.00 0.95 0.9 1.4  

2BBK (Chen et al., 
1998) 4 1 0.9 857 2.1 2.4 1.00 0.90 1.7 1.0  

1GPQ (Abergel et 
al., 2007) 4 1 0.5 805 1.7 2.2 1.00 0.90 1.4 1.5  

3V6D (Das et al., 
2012) 4 2 1.0 686 1.6 2.1 1.00 0.92 1.0 5.2  

3SFD (Zhou et al., 
2011) 4 1 1.3 385 1.4 1.5 1.00 0.94 0.7 1.0  

3PDU (Zhang et al., 
2014) 4 1 1.3 802 1.3 1.6 1.00 0.93 1.3 0.9  
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3NVQ (Liu et al., 
2010) 4 1 2.1 903 0.9 1.0 1.00 0.97 0.6 0.7  

2Y7H (Kennaway et 
al., 2009) 5 1 1.9 465 1.7 2.2 1.00 0.88 1.9 1.5  

1SUV (Cheng et al., 
2004) 6 1 1.4 247 5.2 5.3 1.00 0.77 5.2 0.4  

1Z5S (Reverter and 
Lima, 2005) 4 1 0.3 892 8.7 9.0 0.86 0.87 1.8 32.1  

3LU0 (Opalka et al., 
2010) 5 2 5.1 800 9.0 9.3 0.85 0.74 4.3 5.7  

1MDA (Chen et al., 
1992) 6 2 1.8 4286 7.8 8.1 0.85 0.75 3.2 34.0  

3PUV (Oldham and 
Chen, 2011) 5 1 3.1 698 22.7 23.4 0.64 0.74 8.0 31.1  

1TYQ (Nolen et al., 
2004) 7 3 5.1 599 19.1 19.8 0.65 0.65 4.1 58.2  

 
  

Table 2: Results of the benchmark of the modeling protocol. For each of the system studied, we 
report: the PDB accession code, the reference paper, the number of subunits, the number of clusters, 
the average time needed to produce one model, the rank and rmsd of the model with minimum rmsd 
with respect to the reference structure (best rmsd model). We also report the following information 
about the best scoring model: rmsd, p(10), the data-model correlation coefficient (CC), and the average 
placement scores (APS) with respect to the reference structure. 
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Star Methods 
 
Key resources table 
 
RESOURCE SOURCE IDENTIFIER 

Software and Algorithms 

IMP (Russel et al., 2012) https://integrativemodeling.org 

Chimera (Pettersen et al., 2004) https://www.cgl.ucsf.edu/chimera/ 

Gmconvert (Kawabata, 2008) https://pdbj.org/gmfit/ 

EMAN2 (Tang et al., 2007) http://blake.bcm.tmc.edu/EMAN2/ 

xiNET (Combe et al., 2015) 
http://crosslinkviewer.org 

 
 
 
 

Theory 

In general terms, the Bayesian approach (Rieping et al., 2005) estimates the probability of a model, 
given information available about the system, including both prior knowledge and newly acquired 
experimental data. The posterior probability 𝑝(𝑀|𝐷) of model 𝑀, which is defined in terms of its 
structure 𝑋 and other Bayesian parameters, given data 𝐷 and prior knowledge is: 
 

𝑝(𝑀|𝐷) ∝ 𝑝(𝐷|𝑀) · 𝑝(𝑀)  (1) 
 

where the likelihood function 𝑝(𝐷|𝑀) is the probability of observing data 𝐷 given 𝑀 and the prior 
𝑝(𝑀) is the probability of model 𝑀 given prior information. To define the likelihood function, one 
needs a forward model 𝑓(𝑋) that predicts the data point that would be observed for structure 𝑋 in the 
absence of experimental noise, and a noise model that specifies the distribution of the deviation 
between the experimentally observed and predicted data points. The Bayesian scoring function is 
defined as 𝑆(𝑀) = − 𝑙𝑜𝑔[𝑝(𝐷|𝑀) · 𝑝(𝑀)], which ranks the models in the same order as the posterior 
probability 𝑝(𝑀|𝐷). The prior 𝑝(𝑀) includes the sequence connectivity, the excluded volume, and 
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rigid body constraints. To compute these priors, the domains of the proteins are coarse-grained using 
beads of varying size. The sequence connectivity term is a sum of upper harmonic distance restraints 
that apply to all pairs of consecutive beads in the sequence, implied by the covalent structure of the 
polypeptide/polynucleotide main-chain. The excluded volume is computed from a soft-sphere potential 
where the radius of a bead is estimated from the sum of the masses of its residues. The structures 
derived from X-ray data or homology models are coarse-grained using two categories of resolution, 
where beads are represented either individual residues or segments of up to 10 residues. Beads can be 
constrained into a rigid body, in which relative distances are fixed during sampling. Alternatively, 
strings of beads representing parts without structural information can be flexible with respect to each 
other. In the following, we define the components of the Bayesian scoring function specifically for a 
cryo-EM density map. 

 

Experimental cryo-EM density map. We represent the experimental density map 𝛹$  in terms of a 
Gaussian mixture model (GMM) 𝜙$

'  with 𝑗 components (ie, data-GMM): 

 

𝜙$
' (𝒙) =<𝜙$,&

' (𝒙) =<𝜔$,&
' ⋅ 𝐺?𝒙|𝒙$,&

' , 𝛴$,&
' A

'

&()

'

&()

(2) 

 

where 𝜔$,&
'  is the (normalized) weight of the i-th component of the GMM and 𝐺  is a normalized 

Gaussian function with mean 𝒙$,&
'  and covariance matrix 𝛴$,&

' : 

 

𝐺?𝒙|𝒙$,&
' , 𝛴$,&

' A =
1

(2𝜋)* +⁄ E𝛴$,&
' E

) +⁄ 𝑒𝑥𝑝 H−
1
2 ?𝒙 − 𝒙$,&

' A
-
?𝛴$,&

' A
.)
?𝒙 − 𝒙$,&

' AI (3) 

 

This description presents three advantages. First, it circumvents the problem of dealing with 
correlations in the data and noise that are typical of voxel-based representations, as each 𝜙$,&

' (𝒙) might 
be regarded as an independent component of the density map. Second, it provides a computationally-
convenient representation of the data in terms of analytical functions. Finally, it allows representing the 
density map at multiple resolutions, which is exploited here to accelerate sampling of structural models 
compatible with the data (ie, see Model Sampling paragraph below).  

The posterior probability of model 𝑀 given the cryo-EM density map 𝛹$ can be written in terms of all 
possible GMMs that can be used to represent the data: 
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𝑝(𝑀|𝛹$) =<𝑝?𝑀E𝜙$
' A𝑝?𝜙$

' E𝛹$A(4)
'

 

 

In the following, we assume that the conditional probability 𝑝?𝜙$
' E𝛹$A selects a single GMM 𝜙$ with 

𝑁$ components, which optimally represents the data. In this situation: 

 

𝑝(𝑀|𝛹$) ∝ 𝑝(𝑀|𝜙$) ∝ 𝑝(𝜙$|𝑀) · 𝑝(𝑀)						(5) 

 

Divide-and-conquer fit of the data-GMM. To fit the experimental density map 𝛹$ with a GMM 𝜙$, we 
used the Expectation Maximization algorithm implemented in the gmconvert software (Kawabata, 
2008). This approach determines the parameters of the GMM (mean, weight, and covariance matrix of 
each Gaussian component) by maximizing the likelihood that the GMM density function generates the 
density of the voxels in 𝛹$. As the resolution of the map increases, the number of Gaussians required 
for the GMM to accurately reproduce all the features of the experimental map increases exponentially 
along with the computational time and memory required to perform the fit. To overcome these 
challenges, we developed a divide-and-conquer approach (Fig. 2). First, the map 𝛹$ is masked and all 
voxels with a density lower than the threshold recommended in the EMDB database are removed. 
Second, a recursive procedure starts from a first iteration in which the map 𝛹$ (Fig. 2A) is fit with a 
GMM consisting of a small number of Gaussians 𝑁$  (typically 2 or 4) (Fig. 2B).  Each of the 
components 𝜙$,& of this initial GMM is used to partition the original map into sub-maps 𝛹$,𝒊 (Fig. 2C):  

𝜳𝑫,𝒊(𝒙) = 𝜳𝑫(𝒙) ⋅
𝝓𝑫,𝒊(𝒙)

∑ 𝝓𝑫,𝒋(𝒙)
𝑵𝑫
𝒋(𝟏

(𝟔) 

This partitioning has two properties: a) each sub-map selects the part of the original map that overlaps 
with the component (𝜙$,&); b) the sum of all sub-maps results in the original density map: 𝛹$(𝒙) =
∑ 𝛹$,&(𝒙)
4"
&() . The process is repeated, and each sub-map 𝛹$,& is again fitted using a GMM with a small 

number of Gaussians 𝑁$  (Fig. 2D), dividing the process into as many branches as the number of 
Gaussians 𝑁$.  

At each iteration the portion of the original map that is fit by a given GMM is reduced, so that a small 
number of Gaussians will eventually be sufficient to accurately reproduce high-resolution details. 
Furthermore, because of property b), the global GMM defined by the sum of all the GMMs obtained at 
any given iteration also fits the original map (Fig. 2E). This procedure is repeated until the global 
GMM reaches the desired accuracy (Fig. 2F). The accuracy of the fit was defined as the correlation 
coefficient CC (Frenkel and Smit, 2002) between the cryo-EM density map 𝛹$and the map generated 
by rasterizing the data-GMM into a 3D grid with the same mesh properties as the original density map 
(ie, voxel size, offsets, and box lengths) (Fig. 3A). The CC was computed using only those voxels 
whose density exceeds the recommended threshold value reported in the EMDB. A given branch was 
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stopped when the local CC between a sub-map and its GMM was greater than 0.95. Since the 
resolution of the original map can vary locally, individual branches will be terminated at different 
iterations. 

This procedure generates at each step a global data-GMM with increasing number of components, thus 
with increasing resolution. To quantify the resolution of each of these global data-GMMs, we 
computed their Fourier Shell Correlations (FSCs) with respect to the original map 𝛹$. By analogy with 
the method of the two half-maps (Rosenthal and Henderson, 2003), the resolution was defined as the 
inverse of the frequency at which the FSC crossed the 0.5 threshold (Fig. S1A). Finally, we defined the 
optimal data-GMM as the fit with resolution closest to the original map 𝛹$ (Fig. S1B). 

The entire process was parallelized to run efficiently on a computer cluster. 

  

The forward model. We developed a forward model to compute a cryo-EM density map from a single 
structural model. As for the data representation above, the forward model 𝜙5  is a GMM with 𝑁5 
components (ie, model-GMM): 

𝜙5(𝒙) =<𝜙5,&(𝒙) =<𝜔5,& ⋅ 𝐺?𝒙|𝒙5,& , 𝛴5,&A
4#

&()

4#

&()

(7) 

 

For high-resolution maps, each atom can be represented by a single Gaussian, whose parameters can be 
obtained by fitting the electron atomic scattering factors for a given atom type (Prince, 2004). For low-
resolution maps or for an efficient initial sampling of high-resolution maps, we use a single Gaussian to 
represent each coarse-grained bead, with the Gaussian width proportional to the size of the bead. If 
multiple coarse-grained beads of the model are part of the same rigid body, the parameters of the 
model-GMM associated to these beads are computed by applying the Expectation-Maximization 
algorithm to the positions of the centers of the beads, weighed by their mass.  

 

The noise model. At variance with our previous effort in modeling cryo-EM data (Robinson et al., 
2015), in this approach we will not use the global correlation coefficient (CC) as measure of agreement 
between predicted and observed density maps, but a likelihood obtained from the product of functions 
of local cross-correlation-like terms, as explained below. First, we define the global overlap between 
model and data density maps as: 

𝑜𝑣5$ = ∫ 𝑑𝒙𝜙5(𝒙)𝜙$(𝒙)(8) 

 The standard CC can then be expressed in terms of the overlap functions as (Robinson et al., 2015): 

𝐶𝐶 =
2𝑜𝑣5$

𝑜𝑣55 + 𝑜𝑣$$
(9) 
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Notably, maximum correlation is obtained with maximum overlap 𝑜𝑣5$, since the quantities at the 
denominator of Eq. 9 do not depend on the coordinates of the particles in the structural model.  

The global overlap 𝑜𝑣5$ can be expressed in terms of local overlaps 𝑜𝑣5$,6 between model and the 𝑘-
th component of the data-GMM 𝜙$,6: 

𝑜𝑣5$ =<𝑜𝑣5$,6 =
4"

6()

<∫𝑑𝒙𝜙5(𝒙)𝜙$,6(𝒙)(10)
4"

6()

 

Each local overlap measures the agreement of the model with the part of the experimental density map 
represented by a component of the data-GMM. Because 𝜙5 is also a GMM, we can write the local 
overlap as the sum of overlaps for the individual components: 
 

𝑜𝑣5$,6 =<∫𝑑𝒙𝜙5,'(𝒙)𝜙$,6(𝒙)(11)
'

 

where the overlap between two Gaussians 𝜙5,' and 𝜙$,6 is given by: 

∫ 𝑑𝒙𝜙5,'(𝒙)𝜙$,6(𝒙)

=
𝜔5,'𝜔$,6

(2𝜋)* +⁄ E𝛴5,' + 𝛴$,6E
) +⁄ 𝑒𝑥𝑝 H−

1
2 ?𝒙5,' − 𝒙$,6A

-?𝛴5,' + 𝛴$,6A
.)?𝒙5,' − 𝒙$,6AI (12) 

We treat the 𝑁$ individual components of the data-GMM as independent pieces of information and 
express the data likelihood in terms of local overlaps 𝑜𝑣5$,6, using a log-normal noise model: 

 

𝑝(𝜙$|𝑀) =]
1

√2𝜋𝑜𝑣$$,6𝜎6
∙ 𝑒𝑥𝑝 a−0.5 𝑙𝑜𝑔+ c

𝑜𝑣$$,6
𝑜𝑣5$,6

d 𝜎6+⁄ f
4"

6()

(13) 

 

where 𝜎6 is the unknown tolerance associated with the 𝑘-th component of the data-GMM and 𝑜𝑣$$,6 is 
the overlap of the 𝑘 -th component with the entire data-GMM. It should be noted that a GMM 
represents the experimental data with less correlated components compared to the voxel representation. 
However, we expect a residual correlation among GMM components, which we explicitly neglect 
when writing Eq. 13.  

 

Marginal likelihood. For simplicity, in the following we assume that different parts of the map have the 
same tolerance 𝜎 and we marginalize this variable using an uninformative Jeffreys prior 𝑝(𝜎) = 1/𝜎. 
The resulting marginal data likelihood can be written as: 
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𝑝(𝜙$|𝑀) =
2.

*
+7

4"
+ 𝛤 h𝑁$2 i j∏ 𝑙𝑜𝑔+ j

𝑜𝑣5$,6
𝑜𝑣$$,6

l4"
6() l

.4"/+

𝜋4" +⁄ ∏ 𝑜𝑣$$,6
4"
6()

(14) 

 

Alternatively, one can assume a variable level of noise in the map and marginalize each 𝜎6 using a 
Jeffreys prior. The marginal likelihood in Eq. 14 is maximized when the local overlap 𝑜𝑣5$,6 
reproduces the overlap 𝑜𝑣$$,6 for all data-GMM components (Fig. S2).  

 

Bayesian scoring function.  Omitting constant quantities, the final Bayesian scoring function for a fit of 
a model to a cryo-EM map can be written as: 

 

𝑆(𝑋) = 𝑘9𝑇 ∙ n−𝑙𝑜𝑔[𝑝(𝑋)]+
𝑁$
2 𝑙𝑜𝑔 o<𝑙𝑜𝑔+ c

𝑜𝑣5$,6
𝑜𝑣$$,6

d
4"

6()

pq (15) 

where 𝑝(𝑋) is the structural prior and depends on the resolution of the model. In our coarse-grained 
representation, 𝑝(𝑋)is the sum of an excluded volume potential to avoid steric clashes and a sequence 
connectivity restraint.  

Importantly, the number of components 𝑁𝐷  of the data-GMM determines the overall weight of the 
cryo-EM restraint by increasing the number of log-harmonic functions. On the other hand, the weight 
is less sensitive to the number of components of the model-GMM. As a consequence, the data-GMM 
has to be rigorously fit to the experimental density map with the divide-and-conquer approach, while 
there are no strict guidelines for the maximum number of components of the model-GMM. Here, we 
followed a parsimonious approach and we empirically chose the number of components in the model-
GMM to match the number of Gaussians per unit of mass in the data-GMM. With high-resolution 
density maps and atomistic models, we expect to use one component of the model-GMM per heavy 
atom of the system. 

 

Benchmark of the divide-and-conquer fit of the data-GMM  

We assessed the accuracy of our divide-and-conquer approach to computing a data-GMM by using 20 
experimental density maps of protein complexes at different resolutions, ranging from 3.6 to 25 Å 
(Table 1). We used the divide-and-conquer approach described above to obtain GMMs of each map 
with a number of Gaussians varying from 16 to 16384. At each step of the divide-and-conquer each 
sub-map was fit using a GMM with 4 components. 
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Benchmark of the modeling protocol  

Data generation. We benchmarked our modeling protocol using 21 protein/DNA complexes consisting 
of 2 to 7 subunits (Velazquez-Muriel et al., 2012) (Table 2 and Fig. 4). For each of these complexes, 
we generated a simulated cryo-EM density map, using the structures extracted from the PDB. We used 
one Gaussian for every 1.090 kDa of assembly mass, which corresponded approximately to the mass of 
10 residues and resulted in a resolution of approximately 10 Å, as obtained by extrapolation from the 
stretched-exponential regression (Fig. 3B). For example, the human transferrin receptor complex (PDB 
code 1SUV) (Cheng et al., 2004) consists of 6 subunits and has a molecular mass of 290 kDa. 
Therefore, the simulated map was determined using 262 Gaussians. The simulated GMMs were 
generated from the reference structures using the program gmconvert (Kawabata, 2008). 

 

Subunits representation and forward model. Molecules (protein and DNA chains) were represented by 
a set of spherical beads, each with the volume of the corresponding residue. When available, the 
positions of beads were obtained from the PDB structures and constrained into one or more rigid 
bodies. Missing regions were constructed as strings of flexible coarse-grained beads. When molecules 
were intertwined or if a molecule was composed of structurally independent domains, we defined 
several rigid bodies, one for each domain. Furthermore, in some cases, two domains belonging to 
distinct molecules were merged into the same rigid body, such as the DNA double-strands in 3V6D 
and 2Y7H or the helical bundle of 3PUV. The model-GMM was computed as follows. First, for each 
rigid body defined above, we computed a GMM based on the corresponding atomic coordinates using 
the implementation of the expectation-maximization algorithm available in the scikit-learn python 
library (Pedregosa et al., 2011). The number of Gaussians of a model-GMM was determined by 
dividing the molecular weight of the corresponding rigid body by the average weight of a 10-residue 
peptide (1.09kDa). The center and covariance matrix rotation of each Gaussian were constrained into 
the corresponding rigid body. Second, each flexible bead was treated as an individual spherical 
Gaussian.  

 

Model sampling. The initial positions and orientations of rigid bodies and flexible beads were 
randomized. The generation of structural models was performed using MC coupled with replica 
exchange (Swendsen and Wang, 1986). 48 replicas were used to cover a temperature range between 1 
and 2.5 score units (SU). Intermediate temperatures followed a geometrical progression. Each MC step 
consisted of: A) a series of random transformations of the positions of the flexible beads and the rigid 
bodies, B) rigid body transformation of the whole system, and C) rigid-body swapping moves. In (A), 
each individual flexible bead and rigid body was translated in a random direction by up to 4 Å, and 
each individual rigid body was rotated around its center of mass by up to 0.04 radians about a 
randomly oriented axis. In (B), a rigid-body transformation was applied to the whole system. In (C) we 
swapped the position and orientation of two rigid-bodies, randomly chosen among those with similar 
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shape, to allow efficient sampling of alternative conformations equally consistent with the data. The 
shape similarity was assessed by computing the rmsd of the inertia moments of the two rigid-bodies. 
Each MC step was accepted or rejected according to the Metropolis criterion. 

Our scoring function becomes more rugged at higher resolutions. In fact, as discussed above, the 
number of components for the data-GMM (𝑁$) increases with the resolution, and at the same time their 
variance decreases to better describe high-frequency features. As a consequence, the log-square score 
term (Eq. 15) becomes more peaked, thus increasing the frustration of the total score. To alleviate this 
issue, we implemented an iterative sampling procedure (Fig. S3). The idea is to progressively increase 
𝑁$using all fits obtained at different stages of the divide-and-conquer procedure, from the minimum 
(ie, 4) to the 𝑁$ of the optimal data-GMM. In each iteration, we: 1) sampled the models at a given 
𝑁$;	2) generated a pool of initial models (seeds) for the next iteration; and 3) incremented 𝑁$. During 
step (1), we produced an ensemble of 12,000 models using the MC and replica exchange protocol 
described above. After extracting the 100 best scoring models of the resulting ensemble, we identified 
a subset of models as structurally diverse as possible, using rmsd criterion. The number of models in 
the subset was constrained to the number of replicas (ie, 48). In the first iteration (𝑁$ =4), the score-
landscape is shallow, which allows the system to explore a large variety of conformations. As 𝑁$ 
increases, the structural variability among seeds is reduced.  

Finally, to assess sampling exhaustiveness, at the end of each iterative modeling run we analyzed the 
agreement of the best scoring models with the cryo-EM map by computing the cross correlation 
between the model-GMM and data-GMM. If the resulting cross correlations were below 0.7, we started 
another iteration run. The threshold of 0.7 was chosen by experience, as we noticed that lower cross 
correlation coefficients usually indicate poor agreement of the model with the cryo-EM data with 
clearly misplaced subunits. This procedure was applied to all cases for which the simple replica 
exchange above did not yield satisfying results (PDB codes 1MDA, 1SUV, 1TYQ, and 3PUV in the 
synthetic benchmark and the application to the RNA polymerase II and exosome complexes). 
 

Analysis. All models produced by the modeling protocol described above were ranked by score, and 
the 1000 best scoring models were considered for further analysis. The accuracy of the fit was assessed 
by computing a series of structural metrics, namely the rmsd, p(10), the correlation coefficient between 
the model- and data- GMMs, as well as the average placement score of the best scoring model. These 
metrics are defined in the next paragraph. 
 

Structural metrics. To compare two models, we used several metrics, including the rmsd of residue 
positions, p(10), the Average Placement Score (APS), and the data-model correlation coefficient CC. 
The rmsd of residue positions was defined as the rmsd between the positions of corresponding centers 
of the coarse-grained spheres in two structures, without structural alignment. When multiple copies of 
the same protein were present, the rmsd was defined as the minimum rmsd across all possible 
assignments of the identical components. p(10) was defined as the percentage of residues whose 
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deviation between the two structures is lower than 10 Å. The Placement Score of the model is a two-
number metrics that measures the translation and the rotation needed to optimally align each subunit of 
the model to a reference. The APS is average of the Placement Score calculated over all subunits and 
weighted by the number of residues. The data-model correlation coefficient (CC) was defined by Eq. 9 
and quantifies the agreement of the model with the data. 

 

Clustering. For each complex, the 1000 best scoring models selected for analysis were clustered using 
a hierarchical clustering approach (Johnson, 1967). Initially, all 1000 models were placed in a list ℒ of 
models not yet clustered. Then, we applied the following iterative procedure: 

1. The best scoring model m0 from the list ℒ was selected to define a new cluster Ck and removed 
from ℒ.  

2. All models mi from ℒ with rmsd from m0 lower than 10 Å were defined as members of the 
cluster Ck and removed from ℒ. 

3. We iterated step 1 and 2 until all models were clustered into spheres of radius equal to 10 Å.  

At the end of this iterative procedure, we merged all those pairs of clusters that contained at least two 
elements within 10 Å one from each other. By construction, the first cluster produced by the algorithm 
(labelled as C1) contained the best scoring model. 

 

Modeling of the GroEL/ES complex 

We modeled the architecture of the 21-subunit GroEL/ES ADP-bound complex using cryo-EM data at 
23.5 Å resolution (EMDB code 1046) (Fig. 5). The GroEL/ES complex consists of 2 sequences, the 
chaperonin GroEL and the cochaperonin GroES, with a stoichiometry 14:7. The 14 copies of GroEL 
have two distinct structures, named GroEL-cis and GroEL-trans. The 7 GroES, 7 GroEL-cis, and 7 
GroES-trans are arranged in a C7 symmetry, each one occupying one centro-symmetric ring (Fig. 5). 
The optimal data-GMM contained 256 components (Fig. S4A). We followed the modeling protocol 
and the model representation used for the benchmark with synthetic cryo-EM maps (Fig. S4B).  The 
coordinates of the beads used to represent our system were obtained from PDB code 1AON (Armache 
et al., 2005). Each protein was constrained into a rigid-body based on the crystallographic structure, 
and a C7 symmetry constraint is applied. The number of residues per coarse-grained bead was set to 
20, and the number of residues per component of the model-GMM was set to 10. The quality of the 
resulting models was assessed using the same structural metrics as in the benchmark with synthetic 
data, using the structure of PDB code 1AON as reference.  
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Integrative modeling of the RNA polymerase II complex 

We modeled the architecture of the 12-subunit RNA polymerase II using cryo-EM data at 20.9 Å 
resolution (EMDB code 1883) (Czeko et al., 2011) and two datasets of 108 (Chen et al., 2010) and 157 
(Robinson et al., 2015) cross-links (107 inter- and 158 intra-molecular)  (Fig. 6 and Fig. S5). The RNA 
polymerase II complex consists of 12 subunits, named Rpb1 to Rpb12. The optimal data-GMM 
contained 64 components (Fig. 6A). We followed the modeling protocol and the model representation 
used for the benchmark with synthetic cryo-EM maps (Fig. S6). The coordinates of the beads used to 
represent our system were obtained from PDB code 1WCM (Armache et al., 2005). Based on a prior 
domain analysis of Rpb1 and Rpb2, we constrained the coordinates of these two large subunits into 
four rigid-bodies corresponding to: 1) residues 1141-1274 of Rpb1, 2) residues 1275-1733 of Rpb1, 3) 
residues 1-1102 of Rpb2, and 4) residues 1-1140 of Rpb1 together with residues 1103-1224 of Rpb2. 
The number of residues per coarse-grained bead was set to 20, and the number of residues per 
component of the model-GMM was set to 10. The quality of the resulting models was assessed using 
the same structural metrics as in the benchmark with synthetic data, using the structure of PDB code 
1WCM as reference. The XL-MS data was encoded using a previously developed Bayesian scoring 
function (Shi et al., 2015).  

 

Integrative modeling of the exosome complex 

We modeled the architecture of the 10-subunit yeast exosome complex using cryo-EM data at 11.5 Å 
resolution (EMDB code 3367) (Liu et al., 2016) and a dataset of 98 cross-links (26 inter- and 72 intra-
molecular)  (Shi et al., 2015) (Fig. 7 and Fig. S7). The exosome complex consists of a core complex of 
9 proteins (Csl4, Mtr3, Rrp4, Rrp40, Rrp42, Rrp43, Rrp45, Rrp46, and Ski6), and an RNase protein 
(Dis3). The top of the core complex recruits RNAs that are then transferred to Dis3 through a central 
channel in the core complex. The optimal data-GMM contained 784 components (Fig. 7A). We 
followed the modeling protocol and the model representation (Fig. S8) used for the benchmark with 
synthetic cryo-EM maps, with few variations. We split the largest subunit, Dis3, into three rigid-
bodies, corresponding to residues 1-237, 238-471, and 472-1001, which is the domain organization of 
this subunit based on its structure in PDB code 4IFD (Fig. S7) (Makino et al., 2013). The quality of the 
resulting models was assessed using the same structural metrics as in the benchmark with synthetic 
data. The only difference was that the reference structure used to compute the accuracy (PDB code 
5G06) was different from the structure used to initialize the positions of beads in rigid-bodies (PDB 
code 4IFD) (Liu et al., 2016). As for the modeling of RNA polymerase II, XL-MS data was encoded 
using a Bayesian scoring function (Shi et al., 2015). 

 
Quantification and statistical analysis 
The analysis of the results was performed using the IMP.pmi module of the IMP software (Russel et 
al., 2012). 
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Data and software availability 
Our Bayesian approach for cryo-EM data is implemented in the Integrative Modeling Platform (IMP) 
(Russel et al., 2012), which is freely available at https://integrativemodeling.org. In particular, the 
representations and degrees of freedom of each complex were encoded in a standard way using the 
IMP.pmi topology tables. 
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