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Abstract
The transfer distance (TD) was introduced in the classification framework and stud-
ied in the context of phylogenetic tree matching. Recently, Lemoine et al. (Nature
556(7702):452–456, 2018. https://doi.org/10.1038/s41586-018-0043-0) showed that
TD can be a powerful tool to assess the branch support on large phylogenies, thus
providing a relevant alternative to Felsenstein’s bootstrap. This distance allows a ref-
erence branch β in a reference tree T to be compared to a branch b from another
tree T (typically a bootstrap tree), both on the same set of n taxa. The TD between
these branches is the number of taxa that must be transferred from one side of b to the
other in order to obtain β. By taking the minimum TD from β to all branches in T we
define the transfer index, denoted by φ(β, T ), measuring the degree of agreement of T
with β. Let us consider a reference branch β having p tips on its light side and define
the transfer support (TS) as 1 − φ(β, T )/(p − 1). Lemoine et al. (2018) used com-
puter simulations to show that the TS defined in this manner is close to 0 for random
“bootstrap” trees. In this paper, we demonstrate that result mathematically: when T is
randomly drawn, TS converges in probability to 0 when n tends to ∞. Moreover, we
fully characterize the distribution of φ(β, T ) on caterpillar trees, indicating that the
convergence is fast, and that even when n is small, moderate levels of branch support
cannot appear by chance.
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1 Introduction

The transfer distance or R-distance was introduced in the classification framework by
Day (1981) and Régnier (1965), as a measure of (dis)similarity between partitions of a
set. It is defined as the minimum number of elements that need to be transferred from
one class to another (or removed), in order to transformone partition into the other. This
distance possesses some desirable properties, for example its low computational cost
in comparison with other metrics, as established by Day (1981). Charon et al. (2006)
studied other characteristics of this distance such as the maximum transfer distance
that can be obtainedwhen comparing two partitionswith a fixed, but possibly different,
number of classes. As highlighted by Denœud (2008), it proves challenging to study
the theoretical properties of the transfer distance, so the author used simulations to
approximate its distribution and mean on random partitions.

The interest in using the transfer distance to compare phylogenetic trees started
with a seminal paper by Day (1985). In the field of computational biology, problems
involving tree comparison have remained amajor challenge formanyyears.A common
concern is to define biologically meaningful metrics on trees. The transfer distance is
a measure to compare bipartitions, and a phylogenetic tree is unambiguously defined
by the set of bipartitions induced by its branches. Then, a logical question to ask is
whether we can define a metric on trees based on this transfer distance on bipartitions.
However, there aremultiplesways to define such ametric. Day (1985) proposes several
algorithms and methods to solve related tree problems, in particular the construction
of tree consensus. As discussed by Day (1985), this task requires the optimization of
a consensus index, which can be defined using the transfer distance or other metrics,
such as the well-known Robinson–Foulds (RF) metric (Robinson and Foulds 1981).
The latter is probably the most widely used distance between trees and is defined as
the number of bipartitions belonging to one tree but not to the other. However, the
RF metric is known to have several drawbacks, including its lack of robustness, since
it is highly sensitive to small tree changes, as pointed out by Lin et al. (2012) and
Bogdanowicz and Giaro (2012).

Boc et al. (2010) used RF and a transfer-based dissimilarity to compare gene trees
to species trees and detect horizontal gene transfers. They showed that the transfer
approach provides better results than RF. However, their transfer-based dissimilarity
is not a metric, since it violates the triangle inequality in some cases (Boc et al. 2010, p.
197, Proposition 1). Lin et al. (2012) addressed this problem using the minimum-cost
matching between the two sets of bipartitions induced by both trees. For that metric,
also relying on the transfer distance, the triangle inequality holds. Moreover, Lin et al.
(2012) proposed a low-polynomial time algorithm to compute this new tree metric
and demonstrated its robustness compared to RF.

Recently, we proposed a new bootstrap method for large phylogenetic trees that
relies on branch comparisons based on the transfer distance (Lemoine et al. 2018).
The aim was to use a more fine-grained measure for the presence of a branch in a tree,
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Asymptotic behavior of the phylogenetic transfer distance 487

rather than the binary values used in Felsenstein’s classical phylogenetic bootstrap
technique (Felsenstein 1985). In this approach, we compare a reference branch β in a
reference tree T to another tree T , typically a bootstrap tree, by taking the minimum
of the transfer distance from β to any branch b in T , which is called the transfer index
and denoted by φ(β, T ). Next, the average of φ over a set of bootstrap trees is used to
define, after appropriate normalization, the so-called transfer bootstrap expectation
(TBE). We explored the behavior of TBE as a measure of support for the branches of
a phylogenetic tree, compared to that of Felsenstein’s support (FS). In a number of
experiments using both real and simulated data, we found that TBE outperformed FS.
This was particularly noticeable for deep branches and large values of n, where FS
often failed to detect the phylogenetic signal in the trees. Unstable taxa are inevitable
(sequence and reconstruction errors, recombination, etc.) under these conditions, and
nearly correct branches are seen as absent by the standard bootstrap, thus yielding
low support values, while TBE is able to detect the few misplaced taxa and provides
high support values for those branches. In view of those results, TBE shows promise
as a useful tool in phylogenetic analysis. Lemoine et al. (2018) studied and discussed
several of its properties, but there was still a need for further mathematical work to
fully understand the transfer index and TBE. Themainmotivation for the present work
is therefore to study the properties of the transfer index and support, and characterize
their asymptotic behavior when the reference branch is compared to a tree T drawn
randomly according to some null model, reflecting in a bootstrap context the absence
of phylogenetic signal in the analyzed data set.

To be more specific about the results obtained here, let us fix n ≥ 4 and consider
phylogenetic trees on a set X of n taxa. To distinguish the two sides of the reference
bipartition β, we say that its light side contains p ≥ 2 taxa while its heavy side
has n − p ≥ p taxa. The TBE proposed by Lemoine et al. (2018) is the average,
over all the bootstrap trees, of the transfer support function (TS), which is defined as
1 − φ(β, T )/(p − 1). Equivalently, we can compute the average of φ(β, T ) over all
boostrap trees and apply the same linear normalization to obtain TBE. It is not hard
to see that 0 ≤ φ(β, T ) ≤ p − 1 and thus TS ∈ [0, 1].

Importantly, computer simulations showed that TS(β, T ) converges towards zero
when T is random. In other words, the branch support is null in the absence of phy-
logenetic signal, while it is equal to 1 when all bootstrap trees contain the reference
branch. These two properties are highly desirable for defining a meaningful branch
support. However, the convergence to zero with random“bootstrap” trees is somewhat
surprising, as it means that the expected value of φ(β, T ) converges to its upper bound,
p − 1, for large random trees. To illustrate this finding, we reproduce in Fig. 1 the
results obtained from computer simulations by Lemoine et al. (2018), wherewe looked
at four random tree models for T . We considered (1) two simple, extreme cases for
the topology of T : caterpillar trees and perfectly balanced binary trees; and (2) two
classic random tree models: the Proportional to Distinguishable Arrangements (PDA)
and Yule-Harding models (see Sect. 2 for further details). For each of these models,
we performed simulations for different values of n (128, 256, 512, and 1024) and all
the possible values of p for each n (i.e. 2 ≤ p ≤ �n/2�). Then, for each value of
(n, p) and for each model, we randomly generated a set of reference bipartitions and
a set of random trees to be compared to the reference bipartitions. Results are shown
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Fig. 1 Simulations of TS and TBE for random trees. The four panels correspond to the four tree models:
caterpillar, fully balanced, PDA, and Yule-Harding. For each of these models, we considered 4 different
values of n and used the following color codes to distinguish them: 128 (red), 256 (green), 512 (blue), and
1024 (purple). For each model and for each value of n and p (from 2 to �n/2�), we randomly drew 100
reference bipartitions and 1000 trees to be compared to the reference bipartition. We plotted against p the
mean of the 100 × 1000 TS values obtained for each n and for each model (bold lines), and the standard
deviation σ observed among these 100,000 values (shaded areas). The mean value for TS also corresponds
to the mean value of TBE, assuming the corresponding null model (TBE is obtained by averaging TS among
the “bootstrap” trees). We also plot (dashed line) that mean value plus 3.09 × σ/10, corresponding to a
one sided p-value of 10−3 to reject the null model with 100 bootstrap replicates (see Sect. 6). We see from
these results that not only is TS close to 0 (e.g. ∼ 0.05 or less when n = 1024), but also that the standard
deviation is small, especially with large n. Moreover, even with moderate n = 128, TS remains relatively
close to 0 from a branch support perspective, and TBE = 0.15 is sufficient to reject the null model with
100 replicates (color figure online)

in Fig. 1, where we plotted the TS values thus obtained against the different values of
p. We see striking evidence that, on average, TS stays close to 0 with random trees,
so the transfer index stays close to its upper bound p − 1 for all p. Additionally, we
observe that the maximum value of the TS attained over all possible values of p seems
to be obtained at p = �n/2� and to decrease when n increases. Moreover, this asymp-
totic behavior seems to be independent of the topology/model considered for the tree
T . These initial observations justify the simple normalization by p − 1 proposed by
Lemoine et al. (2018) and motivate the questions we address here.
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Our first result consists in the characterization of the asymptotic behavior of the
transfer index φ(β, T ) for a random bipartition β of the set X and any given tree T . We
prove that the transfer index converges in probability to p−1when p is fixed (or grows
slower than

√
n) and n tends to ∞. The proof relies on the comparison of the transfer

indexwith the parsimony score of a binary character, and a result from (Steel andPenny
2005). We then use concentration inequalities to characterize the asymptotic behavior
of the transfer index when p grows faster, depending on n (e.g. when p = �n/2�).
Lastly, when T is a caterpillar tree, we fully characterize the probability distribution
of the transfer index based on a one-to-one correspondence between these trees and
North-East (NE) lattice paths, a common technique for counting combinatorial objects
(Mohanty 1979). All of these results show that p − 1 is the appropriate normalization
constant for the TS and TBE, as proposed by Lemoine et al. (2018).

The paper is organized as follows. In Sect. 2, we give the main definitions and prop-
erties of the concepts described earlier. Section 3 is devoted to the results concerning
the parsimony score, and Sect. 4 presents the asymptotic results using concentration
inequalities. Details on the specific case of the caterpillar tree are given in Sect. 5.
In Sect. 6, we discuss the impact of our findings on the phylogenetic bootstrap, and
propose several conjectures and directions for further work.

2 Preliminaries

In this section, we give the main definitions and general properties on phylogenetic
trees that are needed for the rest of the paper. We refer to Semple and Steel (2003) for
an extensive mathematical treatment of this subject.

Let us fix n ≥ 4 and X , a set of n taxa. We consider phylogenetic trees on X , that is,
trees whose leaves are mapped one-to-one to X . These trees are called phylogenetic
X-trees or simply phylogenies. For simplicity of notation, we shall always take X =
{1, 2, . . . , n}. Denote byUB(n) the set of all unrooted binary phylogenetic trees (every
interior vertex has degree 3) on n leaves. For a phylogenetic tree T , we use E(T ),V(T )

to denote respectively the set of edges (or branches) and the set of vertices (or nodes)
of the tree.

For any X -tree T , a branch b ∈ E(T ) can be encoded in several equivalent ways,
that we will use indistinctly depending on the context. First, any branch b defines a
bipartition (or split), and we can associate b to a vector v(b) in {0, 1}n by assigning
the same number (e.g. 0) to all the elements on the same side of the split induced
by this branch. Notice that b is also encoded by v(b), the negation of v (i.e. the 0
values are turned into 1 and vice versa). Likewise, we can identify a bipartition, with a
bicoloration of the leaves, that is a function that assigns one of two colors (black = B
or white = W) to each leaf label. Notice however, that we can consider a bipartition
or a bicoloration on a tree that does not correspond to any branch in this tree. To make
the distinction, we say b ∈ E(T ) for the bipartitions induced by branches on the tree
T , and we use X := {χ : X → {B,W}} to denote the set of all possible bicolorations
of the tips of T . Then, an element of X does not necessarily correspond to a branch
in T , but to a bicoloration of its tips.
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(a) (b)

Fig. 2 a An example of a reference branch β dividing X in p = 5 black tips, and n − p = 6 white tips.
b Another X -tree T in which the closest bipartitions to β are b and b′, both giving a transfer distance
δ(β, b) = δ(β, b′) = 3, and thus φ(β, T ) = 3

We will leverage the visual aspect of the two-color representation and, throughout
the rest of the article, we associate the p taxa of the light side in the reference bipartition
with the black color B and the n − p (≥ p) taxa of the heavy side with the white color
W (Fig. 2, left). The set of bicolorations satisfying that |{i ∈ X : f (i) = B}| = p will
be denoted by Xp. A tree T endowed with a bicoloration is called a bicolored tree.

As described in the Introduction, the transfer distance is used to compare a branch
β in the reference phylogeny T , to a second branch b in another phylogeny T , both on
the same taxa set X . This distance can easily be defined using the Hamming distance
H between two vectors of equal size.

Definition 1 (Transfer distance)

δ(β, b) := min{H (v(β), v(b)) , H (v(β), v(b))}.

Based on this definition, notice that δ(β, b) = 0 if and only if β and b define the
same bipartition. To measure the degree of presence of β in T , we define the transfer
index, denoted by φ(β, T ), which is the minimum of the transfer distance over all
branches in T (Lemoine et al. 2018).

Definition 2 (Transfer index)

φ (β, T ) := min
b∈E(T )

δ(β, b).

As mentioned before, we are interested in the case where the reference tree T and
a branch β on this tree are fixed. The core idea proposed by Lemoine et al. (2018) is
to measure the presence of this reference branch in a set of bootstrap trees by using
the following transfer support function.
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Definition 3 (Transfer support)

TS (β, T ) := 1 − φ(β, T )

p − 1
.

The transfer index and support functions satisfy simple properties that are included
here for completeness:

(i) φ (β, T ) = 0 ⇐⇒ β ∈ T ,
(ii) φ (β, T ) ∈ [0, p − 1] or equivalently TS (β, T ) ∈ [0, 1].
The first statement can be deduced directly from the definition of δ(β, b), which is 0
if and only if v(β) = v(b) or v(β) = v(b). Thus, φ (β, T ) = 0 if and only if we can
find the bipartition induced by β in T . Moreover, we say that a bipartition is trivial
when it has a single leaf on one side, and the remaining n − 1 leaves on the other. For
a trivial bipartition b defined by a taxon that belongs to the light side in β, we obtain
that δ(β, b) = p − 1, and since φ is defined as the minimum taken over all possible
branches in T , we obtain the statement (ii).

Null models

The aim of this study is to characterize the distribution and the asymptotic behavior of
the transfer index and transfer support when the reference bipartition β is compared
to a binary phylogenetic X -tree T that follows a certain null model. We are interested
mainly in unrooted trees, but it should be noted that the existence of a root has no
influence on transfer distance values: both branches adjacent to the root define the
same bipartition.

There are two ways to define the probabilistic models we are considering. First,
we can suppose that we have a fixed bicoloration χp ∈ Xp and that we draw a tree T
from UB(n), following some specific probabilistic model. Another way is to consider
that the tree is fixed and a bicoloration of its tips is uniformly chosen from Xp. In
the first case, an interesting question is to consider the probabilistic models that are
most commonly used in the field of phylogenetics, such as the Yule-Harding or PDA
models. For a fixed tree, a natural question is to look at the two extreme cases for the
topology regarding balance. The most imbalanced tree is called the caterpillar tree,
which is defined as a binary phylogenetic tree for which the induced subtree on the
interior vertices forms a path graph (if the tree is rooted, then the root is at one end
of the path). On the other side, we have perfectly balanced trees, that is rooted binary
phylogenetic trees with n = 2h leaves (for some h ∈ N), each of which is at a distance
of exactly h edges from the root. We refer to Semple and Steel (2003) and Steel (2016)
for further details on these tree models.

As explained in the Introduction, we performed computer simulations for these
four models to exhibit their asymptotic properties. In Fig. 1, we observe that the
asymptotic behavior of the TS seems to be independent of the model considered. This
is explained in the following sections. Then, a full theoretical treatment is carried out
for the caterpillar tree topology.
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3 Comparing the transfer index to the parsimony score

We are now interested in comparing the transfer index to the widely used parsimony
score introduced by Farris (1970), Fitch (1971), and Hartigan (1973). We show that
the transfer index is lower-bounded by the parsimony score minus one, and use this
result to obtain our first characterization of the asymptotic behavior of the transfer
index.

Definition 4 (Parsimony score) Consider a phylogenetic tree T and a bicoloration of
its tips χ ∈ X . Consider an extension of this bicoloration to all the nodes in T and
denote it by χ (each internal node is also assigned one of the two colors). Define

ps (χ, T ) := min
χ

∑

b∈E(T )

diff(b, χ),

where diff(b, χ) is 0 if both nodes connected by b have the same color in the extension
χ , and 1 otherwise. The extensions reaching the minimum in the above equation
correspond precisely to the ancestral reconstruction of internal node coloration, as
obtained using Fitch-Hartigan and related algorithms.

By using a simple argument, one can prove the following result from Lemoine et al.
(2018), given here for the sake of completeness.

Lemma 1 For any given X-tree T and any bicoloration χ ∈ X , we have that

ps (χ, T ) ≤ φ (χ, T ) + 1. (1)

Proof Consider a branch b in T , and suppose it defines a bipartition having respectively
Bl(b), Wl(b), Bh(b), Wh(b) black andwhite tips on its light and heavy sides.We know
from the definition that

δ (χ, b) = min{Wl + Bh, Wh + Bl}. (2)

Suppose, without loss of generality, that the minimum is Wl + Bh . We will now look
at the parsimony score for this bicoloration. We put a character change at each of the
Wl white leaves on the light side of b and at each of the Bh black leaves on its heavy
side (parents take the opposite color). Then the internal nodes on the light side are
colored in black and those on the heavy side in white. The number of color changes
of this extension is Wl + Bh + 1 because we have to add an extra change at branch
b. Since the parsimony score of the bicoloration is the minimum taken over all the
possible extensions, we have that

ps (χ, T ) ≤ Wl + Bh + 1 = δ (χ, b) + 1.

Since this is true for any branch b ∈ T , we obtain the announced result. ��
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3.1 Asymptotic results for fixed p

In this subsection, we use inequality (1) between the parsimony score and the transfer
index to establish that the transfer index converges to p − 1 when p is fixed and n
grows to infinity. Let us consider a random bicoloration χp fromXp. Let T be a given
binary phylogenetic tree with n tips colored by χp. The larger n, the more dispersed
the black tips in T , and the higher the probability that the parsimony score is equal to
p and the transfer index to p − 1. This is formalized as follows.

Proposition 1 Let T be a given binary phylogenetic tree with n tips, and χp be a
random bicoloration of the tips of T , uniformly chosen from Xp. We have that

P
(
φ

(
χp, T

) = p − 1
) ≥ P

(
ps

(
χp, T

) = p
) ≥ 1 − 4n × p(p − 1)

n(n − 1)
.

Proof The first inequality is an obvious consequence of inequality (1) and upper bound
p − 1 on the transfer index. To demonstrate the second inequality, we use a result by
(Steel and Penny 2005, Proposition 9.4.1), establishing that if the color (state) changes
in a tree are rare enough that any two edges with changes are separated by at least three
edgeswith no changes, then the parsimony score is guaranteed to coincide exactly with
the number of changes within the tree. Since χp contains p black tips, if we color all
internal nodes white, we will have p changes on the external edges leading to the black
tips. If the number of edges separating any pair of two black tips is at least 5, then
the parsimony score ps

(
χp, T

)
is equal to p, as all changes are separated by at least

3 internal edges with white vertices at both ends. Now, recall that the tree T is fixed,
but the bicoloration χp is uniformly chosen from Xp. Thus, we have:

P
(
ps

(
χp, T

) = p
) ≥ P

(
any pair of black tips from χp is at distance ≥ 5 in T

)

≥ 1 − P
(
at least one pair of black tips from χp is at distance ≤ 4 in T

)
.

For any given tip l in the (binary) tree T , the number of tips that are separated from l
by 4 edges or less is at most 8 (2k−1 where k is the edge distance, corresponding to a
fully balanced binary tree of depth k with its root connected to l), and thus the number
of pairs of tips at a distance of 4 edges or less is at most 4n. Moreover, as we have
p(p − 1)/2 pairs of black tips among n(n − 1)/2 pairs of tips in total, the probability
for a given pair to contain two black tips is equal to p(p − 1)/n(n − 1). We obtain
the desired inequality by combining these two statements using the union bound. ��

This result is valid for any given binary phylogenetic tree T as long as the bicol-
oration χp is uniformly distributed in the set Xp. It has the following immediate
consequences.

Corollary 1 For any given tree T , and any χp uniformly distributed in the set Xp, we
have that,

– when p is fixed, the transfer index φ(χp, T ) converges in probability to p − 1
when n → ∞;
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– when p = o(
√

n), we have that φ(χp, T ) − (p − 1) converges in probability to 0
when n → ∞.

4 Behavior of the transfer distance when p grows with n

In the previous section, we showed that, when n tends to infinity, the transfer index
converges in probability to p − 1 for fixed p, and TS converges to 0 when p grows
slowly as o(

√
n). However, simulations in Fig. 1 suggest that the transfer index also

behaves in a similar manner for larger values of p relative to n. For example, for all null
models when p = �n/2�, the expected value of TS is larger than 0.1 with n = 128,
but lower than 0.05 with n = 1024. In this section, we will show that for “all values of
p”, the distribution of the transfer index is concentrated around p − 1, meaning that
the probability of the transfer index being “far away” from p −1 vanishes as n grows.
This explains what we observe in our simulations and motivates the use of p − 1 as
the normalization term in the definition of TS.

The results we obtain in this section are based on concentration inequalities. More
precisely, we make use of the Chernoff-Hoeffding bounds for sums of independent
random variables, as stated by Dubhashi and Panconesi (2009). In his original paper,
Hoeffding (1963) proved that these inequalities also hold for sumsof variables obtained
by sampling without replacement, which is the case of interest here. The following
lemma is a direct consequence of the results in Hoeffding (1963) and Dubhashi and
Panconesi (2009).

Lemma 2 (Chernoff-Hoeffding bound) Let X = ∑m
i=1 Xi where (Xi )1≤i≤m denotes

a random sample drawn without replacement from a finite set of values in [0, 1]. Then,
for any r > 0

P(X ≥ (1 + r)E[X ]) ≤
(

er

(1 + r)(1+r)

)E[X ]
(3)

and for any t > 0, we have

P(X ≥ E[X ] + t) ≤ e
−2t2

m . (4)

We can now state the main theorem of this section.

Theorem 1 Let T be any given binary phylogenetic tree with n tips, and let χp be a
bicoloration of the tips in T chosen uniformly at random from Xp. Then, there exists
N ∈ N, s.t. for all n ≥ N, with probability at least 1 − O( 1n ),

1. if p = O(nα) for some 0 < α < 1, then φ(χp, T ) ≥ p − C for some constant C;
2. if p = cn + o(n) for some 0 < c < 1/2, then φ(χp, T ) ≥ p − C log n for some

constant C;
3. if p = 1

2n − o(n), then φ(χp, T ) ≥ p − C
√

n log n for some constant C.
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These three cases correspond to different growth rates of p, from the slowest (1)
to the fastest (3). Case 1 is already partly covered for 0 < α < 1/2 by Proposition 1
and Corollary 1, which imply that for these values of p,

P
(
φ(χp, T ) = p − 1

) ≥ 1 − O

(
1

n1−2α

)
.

Case 2 corresponds to what we observe in Fig. 1 [see also Extended Data Fig. 1 in
Lemoine et al. (2018)], where for any given ratio p/n (e.g. p/n = 1/4), the expected
value of the TS decreases when n increases. In Case 3, p is as large as possible, and
the difference between φ and p − 1 is the largest among all three cases, as shown in
Fig. 1. Note that the bound in Case 3 also holds when p = n/2 when n is even and
p = n/2 − 1 when n is odd.

Corollary 2 For any given tree T , any χp uniformly distributed in the set Xp, and any
p that grows with n as in cases 1, 2, and 3, the transfer support TS(χp, T ) converges
in probability to 0 when n → ∞.

Remark 1 The convergence established by the previous corollary also holds for TBE,
which is obtained by averaging TS over N “bootstrap trees”, when all those trees
follow the same null model.

Proof of Theorem 1 Consider a given bipartition b ∈ T and let s ∈ {l, h} denote
the light/heavy side of b. Let qs(b) be the number of taxa on side s of b, which is
deterministic since it depends only on b. Let Bs(b) be the number of black taxa on
side s of b. Notice that Bs(b) is a random variable since it depends not only on b, but
also on the bicoloration χp. Then, the transfer distance between b and the bicoloration
χp can be written as

δ(χp, b) = min {p + ql(b) − 2Bl(b), p + qh(b) − 2Bh(b)} .

Consequently, we can write the transfer index as

φ(χp, T ) = min
b∈T ,s∈{l,h} p + qs(b) − 2Bs(b).

For any 1 < u < p, define Bu = {b ∈ T : ql(b) ≥ u}, the (deterministic) set of
bipartitions in T with at least u tips on both sides. We are interested in the set Bu since
only the bipartitions in this set can give δ(χp, b) ≤ p − u. This statement derives
from some simple arguments based on the definition of the transfer distance. Consider
any b′ /∈ Bu , we necessarily have ql(b′) < u < p < qb′h , 0 ≤ Bl(b′) ≤ ql(b′), and
0 ≤ Bh(b′) ≤ p, which implies that

p + ql(b
′) − 2Bl(b

′) ≥ p − ql(b
′) > p − u,

p + qh(b′) − 2Bh(b′) ≥ qh(b′) − p > p − ql(b
′) > p − u.
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As a consequence, we can bound the tail probability of the transfer index using the
union bound over all bipartitions in Bu , that is

P
(
φ(χp, T ) ≤ p − u

) ≤
∑

b∈Bu

P
(
δ(χp, b) ≤ p − u

)

≤
∑

b∈Bu ,s∈{l,h}
P (Bs(b) ≥ (qs(b) + u)/2) . (5)

We will now derive a bound on each of the elements of the above sum. First, notice
that every Bs(b) can be written as

Bs(b) =
qs (b)∑

i=1

Xbsi ,

where Xbsi are Bernoulli random variables being equal to 1 if the i-th leaf on side s of
b is colored black and 0 otherwise. Thus, Bs(b) follows a hypergeometric distribution
and we have

E [Bs(b)] = pqs(b)

n
.

Moreover, Chernoff-Hoeffding inequalities (3) and (4) apply to these hypergeometric
variables and enable us to derive the appropriate bounds.

We now must consider three cases depending on the growth rate of p with respect
to n.

Case 1: p = O(nα) for some α < 1.
Applying the bound in inequality (3) with r = n (qs(b) + u) / (2pqs(b)) − 1, we

get

P

(
Bs(b) ≥ qs(b) + u

2

)
≤

⎛

⎜⎜⎝
e

n(qs (b)+u)
2pqs (b)

−1

(
n(qs(b)+u)
2pqs (b)

) n(qs (b)+u)
2pqs (b)

⎞

⎟⎟⎠

pqs (b)
n

≤ exp

(
pqs(b)

n

(
n(qs(b) + u)

2pqs(b)
− 1 − n(qs(b) + u)

2pqs(b)
log

n(qs(b) + u)

2pqs(b)

))

≤ exp

(
qs(b) + u

2
− pqs(b)

n
− qs(b) + u

2
log

n(qs(b) + u)

2pqs(b)

)

≤ exp

(
−qs(b) + u

2

(
log n − log p + log

(qs(b) + u)

2qs(b)
− 1

)
− pqs(b)

n

)
.

(6)

Since p = O(nα) for some 0 < α < 1, there exist some N1 ∈ N and A > 0 such
that p ≤ Anα,∀n ≥ N1. This implies that for n ≥ N1, we have log n − log p ≥
(1 − α) log n − log A, which, used in inequality (6), gives
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P (Bs(b) ≥ (qs(b) + u)/2)

≤ exp

(
−qs(b) + u

2

(
(1 − α) log n + log

(qs(b) + u)

2qs(b)A
− 1

)
− pqs(b)

n

)
.

Using the fact that qs(b) ≥ u for any b ∈ Bu , we obtain

P (Bs(b) ≥ (qs(b) + u)/2) ≤ exp (−u ((1 − α) log n − log(2A) − 1)) .

Taking u = 2/(1 − α) and using inequality (5), we obtain

P

(
φ(χp, T ) < p − 2

1 − α

)
≤

∑

b∈B2/(1−α),s∈{l,h}
exp (−2 log n + const)

< 2n
g

n2 = 2g

n
,

where g is a constant and we used the fact that |Bu ×{l, h}| < 2n for any u. It follows
that P(φ(χp, T ) ≥ p − 2/(1 − α)) > 1 − O( 1n ) as required.

Case 2: p = cn + o(n) for some 0 < c < 1
2 .

Applying inequality (4) with t = (qs(b) + u)/2− pqs(b)/n = qs(b)( 12 − p
n ) + u

2 ,
we obtain

P

(
Bs(b) ≥ qb + u

2

)
≤ exp

(
−2

[
qs(b)

(
1

2
− p

n

)
+ u

2

]2
/qs(b)

)

= exp

(
−2

q2
s (b)( 12 − p

n )2 + 2qs(b)( 12 − p
n ) u

2 + u2
4

qs(b)

)

= exp

(
−2qs(b)

(
1

2
− p

n

)2

− 2

(
1

2
− p

n

)
u − u2

2qs(b)

)
.

(7)

Dropping the last term in the exponent and again using the fact that qs(b) ≥ u, we
obtain

P (Bs(b) ≥ (qs(b) + u)/2) ≤ exp

(
−2qs(b)

(
1

2
− p

n

)2

− 2

(
1

2
− p

n

)
u

)

≤ exp

(
−2u

[(
1

2
− p

n

)2

+
(
1

2
− p

n

)])
.

Recall that p = cn + o(n). Let c < c + ε < 1/2. For some N2 ∈ N, we will
have that p/n < c + ε for all n ≥ N2, so we can take u = C log n, with C =[
( 12 − (c + ε))2 + ( 12 − (c + ε))

]−1
and use Eq. (5) to obtain that
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P
(
φ(χp, T ) < p − C log n

)
< 2n exp(−2 log n) <

2

n
,

which gives P(φ(χp, T ) ≥ p − C log n) > 1 − O( 1n ) as required.

Case 3: p = 1
2n − o(n)

Since p
n → 1

2 as n → ∞, the first two terms in the exponent on the right-hand side
of inequality (7) tend to 0, so the bound from the previous case is no longer useful.
Based on inequality (7), we can write

P(Bs(b) ≥ (qs(b) + u)/2) ≤ exp

(
− u2

2qs(b)

)
.

Knowing that qs(b) < n for any choice of b, we can take u = C
√

n log n, which gives

P

(
Bs(b) ≥ (qs(b) + C

√
n log n)/2

)
< exp

(
−C2n log n

2n

)
= exp

(
−1

2
C2 log n

)
.

Setting C = 2 and using Eq. (5), we get

P

(
φ(χp, T ) < p − 2

√
n log n

)
< 2n exp(−2 log n) = 2

n
,

which gives us the result. ��

5 Exact distribution of the transfer index on caterpillar trees

In this section, we provide exact formulae for the transfer index distribution on cater-
pillar trees. We shall see in the discussion section that these formulae can be used
to compute p-values for the general case, under suitable assumptions (conjectures).
Moreover, the combinatorial techniques used here could potentially help obtain similar
results with other kinds of trees (e.g. fully balanced).

As a reminder, a caterpillar tree is a binary phylogenetic tree for which the induced
subtree on the interior vertices forms a path graph (see Fig. 3, left). A cherry is a pair of
adjacent tips on a tree. There is a single unlabeled topology for a caterpillar tree with
n leaves. To identify the leaves conveniently, we label them using the natural ordering
induced by the caterpillar tree topology. The tips in the two cherries have labels 1, 2,
n−1 and n, and the other tips are labeled accordingly (Fig. 3, left). In what follows, we
use T to denote the caterpillar tree labeled in that manner. This labeling/ordering is not
unique, but the results are independent of the labeling options for the cherries. Since
we study the distribution of the transfer index φ(χp, T )where χp is uniformly chosen
from Xp, all bicolorations are equally probable, and our results remain identical with
other labeling options. We call the tree T endowed with such labeling and coloration
a bicolored oriented caterpillar tree.
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(a)

(b)

Fig. 3 a A bicolored oriented caterpillar tree on n = 10 tips with p = 4; tips are numbered from 1 to 10,
and branches on the path from tip 1 to tip 10 are denoted b1 to b9. b The associated (F function) NE lattice
path from (0, 0) to (4, 6) (bold lines); the points P4 = (2, 2) and P7 = (2, 5), on the path, correspond
to branches b4 and b7, on the tree; the green path represents the extreme lattice path corresponding to
the bicoloration of black tips first, then white tips; Q′ corresponds to the opposite: white first, then black.
In red the horizontal and vertical distances between P4 and Q (i.e. the Manhattan distance, = 4), which
corresponds to the number of tips to be transferred from one side of b4 to the other (distance between P4
and Q′ = 6). The closest point in the path to any of the two corners Q and Q′ is P7 (distance to Q′ = 3),
which corresponds to the transfer index of the bicoloration in a and the move of 2 black and 1 white tips
across branch b7 (color figure online)

5.1 Correspondence between bicolored caterpillar trees and NE lattice paths

ANE lattice path is a path inZ2 where the only steps allowed are (0, 1) (a step towards
the north) and (1, 0) (a step towards the east). From now on, we call them lattice paths
for short. LetP(p, n − p) denote the p × (n − p)NE lattice, that is the set of all lattice
paths from the origin (0, 0) to the destination (p, n − p). A path in P(p, n − p) can
be encoded in a single vector of length n indicating the sequence of steps of the path,
which is an element on {N , E}n with a total number of east steps equal to p and a total
number of north steps equal to n − p. On the other hand, the set Xp of bicolorations
with p black tips is a subset of {B,W}n .We define the function F : Xp → P(p, n− p)

that associates a lattice path to a bicolored tree by scanning the tips on the tree from
1 to n as follows: whenever we read a white tip, we move towards the north; and
whenever we read a black tip, we move towards the east. Consequently, a bicolored
oriented caterpillar tree on n tips with p black tips, corresponds to a unique path in
P(p, n − p) and vice versa, as represented in Fig. 3. This result can be summarized
as follows.

Lemma 3 The function F is a bijection from Xp to P(p, n − p).

Let us denote the lower right corner in P(p, n − p) by Q = (p, 0) and the upper
left corner by Q′ = (0, n − p). Observe that the two extreme paths going through Q
and Q′ correspond to the only bicolored oriented caterpillar trees T with transfer index
φ(χp, T ) = 0: all black leaves cluster on one side and all white leaves on the other

123



500 M. D. Felipe et al.

side (green path in Fig. 3). Moreover, we are able to retrieve the transfer index for any
bicolored oriented caterpillar tree from the associated lattice path, as we demonstrate
in the following proposition. Use M(A, B) to denote the Manhattan distance between
any two lattice points A, B ∈ Z

2, and by M(γ, B) = minA∈γ M(A, B) theManhattan
distance between any lattice path γ and a lattice point B.

Proposition 2 Consider an oriented caterpillar tree T , a bicoloration χp ∈ Xp of its
tips, and the corresponding path γ ∈ P(p, n − p). We have that

φ(χp, T ) = min
(
M (γ, Q) , M

(
γ, Q′) , p − 1

)
.

Proof Consider an oriented caterpillar tree T , a bicolorationχp, and the corresponding
lattice path γ from (0, 0) to (p, n − p). Let us denote the n − 1 consecutive internal
lattice points in γ by P1 = (x1, y1), . . . , Pn−1 = (xn−1, yn−1). Also, use bi to denote
the internal branch in T between tips i and i + 1, for 2 ≤ i ≤ n − 2. Lastly, let b1 and
bn−1 be the pendant branches of tips 1 and n respectively (Fig. 3, left).

In the same manner that F associates tips in the bicolored tree with steps in γ ,
this function can be extended naturally so it establishes a one-to-one mapping from
a set of branches in T to the interior lattice points in γ . More precisely, if we extend
F to the set of branches in T , it holds that F(bi ) = Pi , for all 1 ≤ i ≤ n − 1.
The transfer distance between χp and an internal branch bi is the number of tips to
be transferred from one side of bi to the other side that results in the bipartition χp.
Fix 1 ≤ i ≤ n − 1 and consider the left side of bi . Use W (bi ) and B(bi ) to denote
respectively the number of black and white tips in this left side. By construction, we
have that W (bi ) = yi and B(bi ) = xi , which, together with (2), leads to the following
identity

δ
(
χp, bi

) = min (xi + n − p − yi , p − xi + yi ) .

On the other hand, if we look at the Manhattan distance between the corresponding
lattice point Pi and the corners Q and Q′, we have that M(Pi , Q) = p − xi + yi

and M(Pi , Q′) = xi + n − p − yi (see Fig. 3). The same argument applies
to any branch bi for 1 ≤ i ≤ n − 1. Hence, the minimum of these distances,
taken over all lattice points Pi in the path γ , corresponds to the minimum of the
transfer distance obtained by any internal branch in T , or by the leaves 1 and
n.

Finally, all branches on the caterpillar tree that are not on the path from
leaf 1 to leaf n, are pendant branches. The minimum over all the pendant
branches is equal to p − 1, obtained on any black leaf, so the transfer index
is at most p − 1, as stated in the proposition. Also notice that, in the case
of a bicolored cherry, the choice of the labels (1 versus 2 and n − 1 versus
n) has no influence on the result since the distance from any of these pendant
branches to the reference bipartition is at least p − 1. Since we have covered
the distance obtained on any branch of the tree, we achieve the desired result.

��
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5.2 Counting bicolorations through lattice paths: the transfer index distribution

Lattice paths under certain restrictions appear in various problems in probability and
statistics, such as the classical ballot problem (for instance, see Feller (1968)), which
leads to counting lattice paths that do not touch the diagonal y = x . Here, we are
interested in a slightly different problem, in the sense that we count NE lattice paths
that are not allowed to touch certain boundaries.

More precisely, for fixed n and p, consider 2 ≤ l ≤ p+1 and letL (n, p, l) denote
the subset of paths inP(p, n − p) that do not touch y = x − l or y = x + (n −2p + l).
Set L(n, p, l) := |L (n, p, l)|. The following result is fromMohanty (1979). Here, we
will give a sketch of the proof that is slightly different from the one given by Mohanty
(1979), since it will be useful for understanding the upcoming results. We use �·�
and �·� to denote respectively floor and ceiling functions, and 1(·) for the indicator
function.

Lemma 4 (Mohanty, 1979) Let c = n − 2p + 2l, then

L(n, p, l) =
� p

c �∑

k=� p−l−n
c �

[(
n

p − kc

)
−

(
n

p − l − kc

)]
.

Proof The proof is based on André’s reflection method (André 1887). First, notice
that a path is uniquely defined by the p east steps it makes (or equivalently the n − p
north steps), which entails that

|P(p, n − p)| =
(

n

p

)
.

Let us count now the paths in P(p, n − p) that touch the line y = x − l. If a path
touching the line y = x − l is reflected from the moment it first touches this line, by
switching north steps into east steps and vice versa, we obtain a lattice path ending at
(n − p + l, p − l). In fact, this reflection yields a bijection between the set of paths in
P(p, n − p) touching the line y = x − l and the set P(n − p + l, p − l), both having( n

p−l

)
elements.

Likewise, paths in P(p, n − p) that touch the line y = x + (n − 2p + l) can be
transformed bijectively into paths in the set P(p − l, n − p + l). Then, by applying
the inclusion-exclusion principle (Fréchet 1940), we have the following identity,

L(n, p, l) =
(

n

p

)
− 2

(
n

p − l

)
+ |L′(n, p, l)|, (8)

where L′(n, p, l) is the set of paths that touch both lines y = x − l and y = x + (n −
2p + l). We can then apply the reflection principle repeatedly and the usual inclusion-
exclusion principle to account for paths touching both lines multiple times, leading to
the above formula after some simplifications. See Mohanty (1979) for further details.

��
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We can now establish the main theorem in this section.

Theorem 2 Let T be an oriented caterpillar tree and χp a bicoloration uniformly
chosen from the set Xp. We have for any 2 ≤ l ≤ p + 1 that

P
(
φ

(
χp, T

) = p − l + 1
) = L(n, p, l) − L(n, p, l − 1)1(l > 2)(n

p

) (9)

and

E
[
φ

(
χp, T

)] = 1(n
p

)
p∑

l=2

L(n, p, l). (10)

Proof It is quite straightforward from the definition of L (n, p, l) and Proposition 2
that for any 2 ≤ l ≤ p+1, the paths avoiding lines y = x −l and y = x +(n−2p+l)
are exactly those that remain at a distance from the corners Q and Q′ greater or equal
to p−l +1, as it is shown in Fig. 4, for l = 2. On the other hand, the paths that do touch
these lines give a distance strictly smaller than p − l + 1. Hence, for 2 ≤ l ≤ p + 1, a
path in the setL (n, p, l)\L (n, p, l −1) (with the conventionL (n, p, 1) = ∅) gives
a distance exactly equal to p − l +1. Since the total number of paths in P(p, n − p) is(n

p

)
, the identity (9) holds. Then, the expectation of the transfer index can be expressed

as follows

Fig. 4 Another example of NE lattice rectangle, with n = 24, p = 11. The lines limiting the shaded areas
are y = x − 2 and y = x + 4. Paths avoiding the shaded areas have a Manhattan distance to the corners Q
and Q′ larger than p − 1. Thus, in the corresponding bicolored caterpillar tree, any internal branch yields a
transfer distance larger than p − 1. However, the transfer index for such a tree is equal to p − 1, as obtained
by any pendant branch leading to a black tip. When a path enters a shaded area, its Manhattan distance
to the corners is less than p − 1, e.g. point A is at distance 6 of Q′ and thus the corresponding path and
bicoloration have a transfer index equal to 6
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E
[
φ

(
χp, T

)] = 1(n
p

)
p+1∑

l=2

[L(n, p, l) − L(n, p, l − 1)1(l > 2)] (p − l + 1),

which can easily be simplified to obtain Eq. (10). ��

6 Discussion

The results we obtained in Sects. 3 and 4 allow us to characterize the asymptotic
behavior of the transfer support when n tends towards ∞, for various growth rates
of p, up to p = �n/2�, and for any given binary phylogenetic tree. These results
demonstrate that the normalisation by p − 1 proposed by Lemoine et al. (2018) is
fully justified for large n and irrespective of the shape of the inferred tree: in the
absence of phylogenetic signal, TBE (i.e. the average of TS over all bootstrap trees)
is close to 0. The same holds for the standard Felsenstein’s phylogenetic boostrap, as
with “random bootstrap trees” the chance of exactly recovering the reference branch
is close to zero, even for small values of p. On the other hand, Lemoine et al. (2018)
used real and simulated data to show that, in the presence of strong phylogenetic
signal, Felsenstein’s supports can be close to zero, whereas TBE reveals the signal
and provides high support to branches that are (nearly) correct. Moreover, the TBE
values can be interpreted in terms of the proportion of stable versus unstable taxa,
and the unstable taxa (e.g. recombinant sequences with virus data) can be identified
in further analysis, and studied to explain their phylogenetic instability.

However, the bounds we obtained in Sect. 4 are not sufficiently tight to justify what
we observe in simulations in Fig. 1. If we think about the applications, these bounds
might not be sufficient to give good estimates for the p-values of the TS and TBE
distributions in the absence of phylogenetic signal. We propose two conjectures that
would allow us to use the exact results obtained for the caterpillar tree as a proxy for
the statistical significance of TS and TBE.

The first conjecture concerns the extreme case p = �n/2�. Based on simulation
results (Fig. 1 and Lemoine et al. (2018)) and the proofs in Sect. 4, we believe that for
any given phylogeny, the expected value of TS attains its maximum over p at �n/2�.
The second conjecture (based on Fig. 1 and other experiments, not shown) is that with
p = �n/2�, the expected value of TS is highest for caterpillar trees, among all possible
tree topologies.

These two conjectures, combined with the fact that TBE is obtained by averaging
TS, and thus has necessarily a small variance compared to its mean (see also Fig. 1),
forms the basis of a simple test to reject that a branch support could be obtained by
chance.

For instance, consider a tree of 128 tips, a bootstrap study with 100 replicates, and
a reference branch with p = n/2 = 64. Using the exact results of Sect. 5, we can
compute the mean and variance of TS distribution in the caterpillar null model, and
apply the Central Limit Theorem to approximate the distribution of TBE; the results
show that when TBE is larger than 0.147, the p-value of the null hypothesis/model is
less than 10−3.With 256, 512, and 1024 tips, the corresponding 0.1%confidence levels
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(for p = n/2) are equal to 0.108, 0.078, and 0.057, respectively (see Appendix B for
more details).When the number of replicates is large (e.g. 1000), the standard deviation
of TBE is nearly null and the 0.1% confidence level is roughly equal to the expected
value of TS, as shown inTable 1 inAppendixB.Any branchwithTBE support less than
or equal to these bounds could have been obtained by chance and might not reflect any
phylogenetic signal. On the opposite, standard levels of branch support using TBE (say
> 70%, following Hillis and Bull (1993)) cannot be observed by chance, and reveal a
strong phylogenetic signal in the data, even with small trees. Such high support does
not tell us that the branch is “true”, but estimates the number of stable versus unstable
taxa, given the reconstruction method used to infer the original and bootstrap trees. As
explained by Felsenstein (1985), an inconsistent method (e.g. subject to long branch
attraction) can produce erroneous trees with high branch supports (TBE as well as
Felsenstein’s bootstrap).

For trees that are not caterpillars, deriving the distribution of the transfer index
under random bicolorations appears to be challenging. It would be relevant for both
theoretical and applicative reasons to characterize this distribution for a randommodel
such as Yule or PDA, which are the most commonly used in phylogenetics.
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Appendix A: Asymptotics of the transfer index on the caterpillar tree

We obtained an additional result describing the asymptotic behavior of the transfer
index when n gets large, in the case of caterpillar trees. Similarly to our results in
Sects. 3 and 4, the following proposition implies that TS tends to 0 when n → ∞ for
random bicolorations. However, the speed of convergence implied by the proposition
below improves the one obtained in Sect. 4. In particular, for p = �n/2�, Theorem 1
implies that the expectation of TS grows at most as

√
log n/

√
n, whereas for the

caterpillar tree it is 1/
√

n as we demonstrate below.

Proposition 3 Let T be an oriented caterpillar tree and χp a bicoloration uniformly
chosen from the set Xp, for 2 ≤ p ≤ �n/2�. The expected transfer support goes to 0
uniformly on p, moreover

max
p≤n/2

(
1 − E

[
φ

(
χp, T

)]

p − 1

)
= O

(
1√
n

)
, when n → ∞. (11)
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Proof For any n, p, l with p ≤ n/2 and 2 ≤ l ≤ p + 1 we have from Eq. (8) that

L(n, p, l) ≥
(

n

p

)
− 2

(
n

p − l

)
.

This inequality, together with Eq. (10), leads to

E
[
φ

(
χp, T

)] ≥ p − 1 − 2(n
p

)
p∑

l=2

(
n

p − l

)
,

or equivalently,

E
[
TS

(
χp, T

)] = 1 − E
[
φ

(
χp, T

)]

p − 1
≤ 2

(p − 1)
(n

p

)
p∑

l=2

(
n

p − l

)
=: G(p).

Let us now prove that G(p) is an increasing function for 2 ≤ p ≤ �n/2�,

G(p + 1) − G(p) = 2

(p)
( n

p+1

)
p−1∑

k=0

(
n

k

)
− 2

(p − 1)
(n

p

)
p−2∑

k=0

(
n

k

)

= 2
p−1∑

k=1

[ (n
k

)

p
( n

p+1

) −
( n

k−1

)

(p − 1)
(n

p

)
]

+ 2

p
( n

p+1

)

= 2
p−1∑

k=1

(p + 1)!(n − p − 1)!
(k − 1)!(n − k + 1)!

[
n − k + 1

pk
− n − p

p2 − 1

]

+ 2

p
( n

p+1

) ,

where the terms between brackets in the sum can be expanded as follows

n − k + 1

pk
− n − p

p2 − 1
= n(p2 − kp − 1) + p2 + k − 1

pk(p2 − 1)
.

It is not hard to see that p2−kp−1 ≥ 0 for all values of k and p such that 1 ≤ k ≤ p−1,
which implies that the previous fraction is always positive. We can then conclude that
G(p + 1) − G(p) ≥ 0, so the maximum value of G is obtained when p = �n/2�.

For the sake of simplicity, we suppose from now that n is even, but an equivalent
result is obtained for odd n without difficulty. For p = n/2, we can use the identity∑n

k=0

(n
k

) = 2n and the symmetry of the binomial coefficients
(n

k

) = ( n
n−k

)
for all

0 ≤ k ≤ n, to simplify the sum in the function G as follows,

n/2∑

l=2

(
n

n/2 − l

)
=

n/2−2∑

k=0

(
n

k

)
= 2n − 2

( n
n/2−1

) − ( n
�n/2�

)

2
.
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So, for all 2 ≤ p ≤ n/2, we have that

0 ≤ E
[
TS

(
χp, T

)] ≤ G (n/2) = 2n − 2
( n

n/2−1

) − ( n
n/2

)

(n/2 − 1)
( n

n/2

) .

Let us now look at the asymptotic behavior of this upper bound. The well-known
Stirling formula yields the following approximation for central binomial coefficients( n

n/2

) ∼ 2n+1/2√
πn

. Hence

2n − 2
( n

n/2−1

) − ( n
n/2

)

(n/2 − 1)
( n

n/2

) ∼
√
2πn

n − 2
− 4n

(n − 2)(n + 2)
− 2

n − 2
∼

√
2π√
n

,

which tends towards 0 when n → ∞, allowing conclusion of the proof. ��

Appendix B: Central limit theorem to approximate TBE distribution on
caterpillar trees

Consider N ∈ N. Let T be an oriented caterpillar tree with n tips, and let (χ(i)
p )i=1,...,N

be a set of independent bicolorations distributed as χp (uniformly chosen from Xp, as
in Theorem 2). Let μ = E[φ(χp, T )] and σ = √

Var[φ(χp, T )]. Recall the definition
of TBE given in the introduction, which is the average of TS over all “bootstrap trees”.
In the caterpillar null model, this corresponds to

TBE(N ) = 1

N

N∑

i=1

TS(χ(i)
p , T )) = 1

N

N∑

i=1

(
1 − φ(χ

(i)
p , T ))

p − 1

)
.

Simple properties of the expectation and variance lead to

μTS := E[TS(χp, T )] = 1 − μ

p − 1
, and σTS :=

√
Var[TS(χp, T )] = σ

p − 1
.

We are interested in finding the smallest value α(N ) ∈ [0, 1], such that

P (TBE(N ) > α(N )) < 10−3.

We apply the Central Limit Theorem (CLT) to approximate the distribution of TBE
for sufficiently large N (e.g. N = 100), leading to the classical equation

α(N ) = μTS + z0.999 × σTS/
√

N ,

where z0.999 = 3.09 is the quantile of order 0.999 for the standard normal distribution.
Using this calculation we computed the values of α for different values of n (with
p = n/2)) and N . The results are displayed in the following Table 1.
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Table 1 Values of the
expectation, standard deviation
of TS, and 0.1% confidence
levels for TBE (using a CLT
approximation), for different
values of n (with p = n/2) and
N

n μ σ α(N = 100) α(N = 1000)

16 0.290 0.147 0.336 0.305

32 0.230 0.098 0.260 0.240

64 0.177 0.067 0.197 0.183

128 0.133 0.047 0.147 0.137

256 0.098 0.033 0.108 0.100

512 0.071 0.023 0.078 0.073

1024 0.051 0.016 0.057 0.053

2048 0.037 0.012 0.041 0.038

4096 0.026 0.008 0.029 0.027
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