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REVIEW

Cytokines Focus

Biology and therapeutic potential of interleukin-10
Margarida Saraiva1,2, Paulo Vieira3,4,5, and Anne O’Garra6,7

The cytokine IL-10 is a key anti-inflammatory mediator ensuring protection of a host from over-exuberant responses to pathogens
and microbiota, while playing important roles in other settings as sterile wound healing, autoimmunity, cancer, and homeostasis.
Here we discuss our current understanding of the regulation of IL-10 production and of the molecular pathways associated with
IL-10 responses. In addition to IL-10’s classic inhibitory effects on myeloid cells, we also describe the nonclassic roles attributed to
this pleiotropic cytokine, including how IL-10 regulates basic processes of neural and adipose cells and how it promotes CD8
T cell activation, as well as epithelial repair. We further discuss its therapeutic potential in the context of different diseases
and the outstanding questions that may help develop an effective application of IL-10 in diverse clinical settings.

Introduction
The immune system evolved to fight infection while minimizing
host damage. Several regulatory mechanisms are in place to en-
sure the delicate balance between an effective immune response
and the appearance of tissue pathology. An anti-inflammatory
response, of which IL-10 is the paradigm, is one such mechanism.

IL-10 (Fiorentino et al., 1989; Moore et al., 1990) is the
founding member of a family of cytokines that also includes IL-
19, IL-20, IL-22, IL-24, IL-26, IL-28A, IL-28B, and IL-29 (re-
viewed in Ouyang and O’Garra, 2019). The involvement of IL-10
in many disease states has been demonstrated, both in animal
models and in humans with mutations in the IL-10/IL-10R axis
(reviewed in Engelhardt and Grimbacher, 2014; Shouval et al.,
2014b). However, despite considerable progress in IL-10 biology,
many outstanding questions still exist. In this review, we revisit
the discovery of IL-10, highlight the latest developments toward
understanding the metabolic regulation of IL-10 in various cell
types, and discuss the molecular signals downstream of the IL-
10R in responding cells.We present an overview of the biological
functions of IL-10, including some surprising new findings on
nonclassical roles for this cytokine. We finish by summarizing
the progress made toward the therapeutic manipulation of IL-10.

The discovery of IL-10: A historic perspective
IL-10 was discovered 30 yr ago as a secreted cytokine synthesis
inhibitory factor, produced by T helper (Th) 2 cell clones shown to
inhibit cytokine production by Th1 cells (Fiorentino et al., 1989).

The mouse and human IL-10–coding genes were subsequently
cloned, and the predicted protein sequences were found to be
highly homologous to an Epstein–Barr virus–encoded protein,
BCRF1 (Moore et al., 1990; Vieira et al., 1991). This was the first
suggestion that viruses may exploit the inhibitory properties of
IL-10 as a mechanism of immune evasion. Indeed, recombinant
BCRF1 protein was shown tomimic the activity of IL-10 (Hsu et al.,
1990), namely inhibition of cytokine synthesis by activated human
peripheral blood mononuclear cells and by a mouse Th1 cell clone
(Vieira et al., 1991). Since then, a number of other viruses have also
been shown to encode a homologue of the Il10 gene (Fleming et al.,
1997; Kotenko et al., 2000; Jayawardane et al., 2008). Soon after
the discovery of IL-10, its pleiotropic action was unveiled initially
in the mouse, not only as a cytokine synthesis inhibitory factor,
but additionally as a mast cell (Thompson-Snipes et al., 1991) and
thymocyte (MacNeil et al., 1990) growth factor, and as an activator
of B cells (Go et al., 1990; Rousset et al., 1992).

The mechanisms underlying the ability of IL-10 to inhibit
cytokine production by Th1 cells were soon unveiled. IL-
10–mediated inhibition of IFN-γ secretion by Th1 cells was
demonstrated to occur via its action on the APC function of
macrophages (Fiorentino et al., 1991b) and by its inhibition of
cytokine production by activated macrophages and dendritic
cells (DC; Bogdan et al., 1991; Fiorentino et al., 1991a; Macatonia
et al., 1993). Additionally, IL-10 inhibited the killing of intra-
cellular pathogens (Gazzinelli et al., 1992; Frei et al., 1993;
Vouldoukis et al., 1997). In complementary studies, IL-10 was
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shown to prevent antigen-specific proliferation of human T cells
by inhibition of the antigen-presenting capacity of monocytes
through the down-regulation of class II MHC (de Waal Malefyt
et al., 1991b). Collectively, these initial studies placed IL-10 as a
key mediator of the anti-inflammatory response.

Genetic ablation of Il10 showed its key role in controlling
inflammation in vivo, as IL-10–deficient mice developed colitis
(Kühn et al., 1993). These findings prompted many genetic as-
sociation studies between deficiencies in the IL10 or IL10R genes
and susceptibility to colitis, an association that is now well ac-
knowledged (Glocker et al., 2009, 2010, 2011; Jostins et al., 2012;
Moran et al., 2013; Engelhardt and Grimbacher, 2014; Ellinghaus
et al., 2016). However, the role of IL-10 clearly exceeds the
regulation of intestinal inflammation, as a function for this
molecule has been also described in several other settings, from
inflammatory or neurodegenerative diseases to infection or
cancer (reviewed in Ouyang et al., 2011; Lobo-Silva et al., 2016;
Ouyang and O’Garra, 2019; Wang et al., 2019).

In summary, IL-10 has emerged as a major suppressor of the
immune response and a key player in human disease, and is thus
an attractive therapeutic target. However, as discussed below,
there is recent evidence that IL-10 may play a previously under-
appreciated dual role, in some contexts stimulating the immune
response instead of suppressing it. This depends on specific cell
types and contexts, thus raising important issues related to its
modulation in the clinic and calling for further research into the
pleiotropic nature of this cytokine.

Molecular mechanisms regulating IL-10 expression
IL-10–producing cells
Although Th2 cells were the first identified cellular source of IL-
10 (Fiorentino et al., 1989), the production of this cytokine by
other CD4 and also CD8 T cells was soon demonstrated (Yssel
et al., 1992; Tanchot et al., 1998). We now know that cells of both
the myeloid and lymphoid lineages secrete IL-10 in response
to different stimuli (reviewed in Saraiva and O’Garra, 2010;
Ouyang and O’Garra, 2019). This includes macrophages, mono-
cytes, DCs, neutrophils, mast cells, eosinophils, and natural killer
cells, in addition to CD4 and CD8 T cells and B cells (reviewed in
Moore et al., 2001; Gabryšová et al., 2014). More recently, the
group of IL-10–producing cells was expanded to resident mac-
rophages, such as microglia (reviewed in Lobo-Silva et al., 2016)
and cardiac macrophages (Hulsmans et al., 2018). Notably, some
nonhematopoietic cells, including epithelial cells, are also able to
produce IL-10 (Jarry et al., 2008). Finally, tumor cells can also
produce IL-10, which has been correlated with their ability to
cause immunosuppression (Chen et al., 1994; Itakura et al., 2011).

The regulation of IL-10 production: Global concepts
The expression of IL-10 is tightly regulated to avoid diseases
related to its excess or deficiency. Both common and cell-specific
regulatory mechanisms including the triggering of specific sig-
naling pathways, the expression and activation of particular
transcription factors, and post-transcriptional and epigenetic
regulation ensure the appropriate production of IL-10 (reviewed
in Saraiva and O’Garra, 2010; Gabryšová et al., 2014; Ouyang
and O’Garra, 2019). In myeloid cells, the expression of IL-10

accompanies that of pro-inflammatory cytokines, downstream
of the activation ofmultiple pattern recognition receptors (PRRs;
reviewed in Saraiva and O’Garra, 2010; Rutz and Ouyang, 2016;
Gabryšová et al., 2018; Ouyang and O’Garra, 2019). MAPK are
among the key pathways regulating IL-10. Activation of ERK1/
2 downstream of the MAP3 kinase tumor progression locus
2 (Tpl2) regulates the expression of Il10 by TLR-activated mac-
rophages and DCs, as shown by the reduction of IL-10 produc-
tion observed in Tpl2-deficient or upon chemical inhibition of
ERK1/2 inmacrophages (Yi et al., 2002; Banerjee et al., 2006; Liu
et al., 2006; Kaiser et al., 2009). The MAPK p38 is also activated
downstream of TLR signaling and shown to regulate IL-10 pro-
duction by these cells (Yi et al., 2002; Chi et al., 2006; Kim et al.,
2008). Several transcription factors known to regulate the
transcription of the Il10 gene in macrophages and DCs are acti-
vated downstream of ERK1/2 or p38, as is the case for cAMP
response element binding protein (CREB), cyclic AMP-
dependent transcription factor 1 (ATF1), cFos, and Sp1 (re-
viewed in Saraiva and O’Garra, 2010; Rutz and Ouyang, 2016;
Gabryšová et al., 2018; Ouyang and O’Garra, 2019). Cooperation
between ERK and p38 activates the mitogen- and stress-
activated protein kinase 1 (MSK1) and MSK2, which promote
IL-10 production in TLR4-stimulated macrophages, through the
transcription factors CREB and ATF1 (Ananieva et al., 2008). The
regulation of IL-10 by MSK/CREB has been further demon-
strated in the context of the activation of TLR2 in intestinal
macrophages by a Helicobacter hepaticus–derived polysaccharide
(Danne et al., 2017). NF-κB activation downstream of PRR also
regulates IL-10 production in myeloid cells. Specifically, binding
of several NF-κB family members to the Il10 locus promote IL-10
production in TLR4-stimulated macrophages (Kanters et al.,
2003; Saraiva et al., 2005; Chakrabarti et al., 2008). Crosstalk
between the NF-κB p105 subunit and Tpl2 has also been reported
(Banerjee et al., 2006). Finally, the phosphoinositide-3-kinase
(PI3K)/serine/threonine protein kinase B (Akt) cascade also reg-
ulates the expression of Il10 in macrophages by blocking the ki-
nase glycogen synthase kinase 3β, which inhibits IL-10 production
(Ohtani et al., 2008; Nandan et al., 2012), and conversely poten-
tiating IL-10 production through ERK1/2 (Martin et al., 2003) and
mechanistic target of rapamycin (mTOR; Ohtani et al., 2008;
Weichhart et al., 2008) activation. Thus, activation of ERK1/2 is at
the crossroads of several other signaling cascades, demonstrating
its importance as a central pathway for Il10 gene regulation in
myeloid cells. In addition to direct PRR signaling, coreceptors
and other cytokines regulate IL-10 production by macrophages
and DCs. CD40, dectin-1, and DC-specific intercellular adhesion
molecule-3–grabbing non-integrin enhance PRR-induced IL-10
(reviewed in Saraiva and O’Garra, 2010; Rutz and Ouyang, 2016;
Gabryšová et al., 2018; Ouyang and O’Garra, 2019). Similarly, type
I IFN has been shown to potentiate IL-10 production by LPS-
stimulated (Chang et al., 2007a; Howes et al., 2016) and Myco-
bacterium tuberculosis–infected (McNab et al., 2014) bone
marrow–derived macrophages. Mechanistically, type I IFN in-
duces transcription of the Il10 gene and stabilizes the resulting
mRNA, via STAT1 and ERK activation (Howes et al., 2016).

IL-10 is produced by all T cell subsets. In CD4 Th cells, IL-10
production accompanies that of the hallmark cytokines IFN-γ,
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IL-4/IL-5/IL-13, and IL-17 (reviewed in Saraiva and O’Garra,
2010; Rutz and Ouyang, 2016; Gabryšová et al., 2018; Ouyang
and O’Garra, 2019). IL-10 production occurs downstream of TCR
triggering, which activates Ras and subsequently MAPK ERK1/2
and AP1, which enhance Il10 transcription (Jones and Flavell,
2005; Wang et al., 2005; Saraiva et al., 2009). Transcription
factors of the NFAT family also promote IL-10 production by
T cells (Im et al., 2004; Lee et al., 2009). Additionally, STAT4, 6,
and 3 activation during Th1, Th2, or Th17 CD4 T cell differenti-
ation, respectively, have been suggested to contribute to Il10
gene expression (Saraiva et al., 2009), as have the basic leucine
zipper ATF-like transcription factor and interferon regulatory
factor (IRF) 4, which are critical for Th2 and Th17 differentia-
tion (Ciofani et al., 2012; Glasmacher et al., 2012; Li et al.,
2012b). Therefore, the mechanisms required for the differen-
tiation and activation of Th cells seem to be required for reg-
ulation of IL-10 production, ensuring a feedback regulatory
loop to limit immune pathology. In further support of this, the
Th2 and Th17 cell lineage transcription factors GATA binding
protein 3 (GATA3) and retinoid-related orphan receptor γt,
respectively, have been described to modulate IL-10 production
by CD4 T cells. GATA3 binds the Il10 promoter, inducing his-
tone acetylation and remodeling the Il10 locus to facilitate Il10
gene expression (Shoemaker et al., 2006; Chang et al., 2007b),
although it is not required for IL-10 production by differenti-
ated Th2 cells (Zhu et al., 2004). In contrast, the Th17-
associated transcription factor RORγt has been described to
repress IL-10 production by Th17 cells (Ciofani et al., 2012).
Several reports attest to the importance of PR domain zinc
finger protein 1 (Blimp-1) in the regulation of IL-10 production
by T cells (reviewed in Rutz and Ouyang, 2016; Ouyang and
O’Garra, 2019). Blimp-1 is induced by STAT4 downstream of the
IL-12R and shown to be absolutely required for IL-10 expres-
sion by IL-12–driven effector Th1 cells both in vitro and in vivo
(Neumann et al., 2014). Furthermore, the induction of IL-10 by
IL-27 in CD4 T cells requires Blimp-1 (Neumann et al., 2014),
likely downstream of STAT1/STAT3 signaling (Stumhofer et al.,
2007). IL-27 together with TCR triggering induced the differ-
entiation of naive T cells into IL-10–producing type 1 regulatory
T cells (Tr1; Pot et al., 2009). The induction of IL-10 in Tr1 cells
is dependent on the cooperation between the transcription
factors Eomes and Blimp-1 (Zhang et al., 2017). Of note, in vitro
generation of Tr1 cells in the presence of TGF-β, in addition to
IL-27, shifts the transcriptional requirements from Blimp-1 to
cMaf and aryl hydrocarbon receptor (AhR; Apetoh et al., 2010;
Neumann et al., 2014). Blimp-1 is also required for IL-10 ex-
pression by CD8 T cells (Sun et al., 2011).

Recent data place the leucine zipper transcription factor cMaf
as a master regulator of IL-10 production, common to both
myeloid and T cells (reviewed in Saraiva and O’Garra, 2010;
Gabryšová et al., 2014; Rutz and Ouyang, 2016; Ouyang and
O’Garra, 2019). cMaf was initially shown to bind to the Il10
promoter and enhance gene transcription in TLR4-stimulated
macrophages (Cao et al., 2005). More recently, several studies
support a role of cMaf in also regulating T cell–derived IL-10
in vitro (Xu et al., 2009; Apetoh et al., 2010; Ciofani et al., 2012;
Gabryšová et al., 2018). IL-10 production in vivo by Th1, Th2, and

Th17 cells in experimental disease models requires cMaf
(Gabryšová et al., 2018). A link between cMaf and IL-10 ex-
pression by human Tr1 and Th17 cells has also been proposed
(Gandhi et al., 2010; Aschenbrenner et al., 2018). cMaf cooper-
ates with other transcription factors to regulate IL-10 expres-
sion. cMaf may require Blimp-1 to enhance IL-10 production by
Th1 cells (Neumann et al., 2014). Although not absolutely re-
quired, the transcription factor AhR allows maximal IL-10 pro-
duction by LPS-stimulated macrophages (Kimura et al., 2009)
and T cells, where it directly binds to cMaf and synergistically
transactivates the Il10 gene promoter (Apetoh et al., 2010). The
transcription factor Bhlhe40 has been recently revealed as a
repressor of IL-10 production in T cells. Mice deficient in
Bhlhe40 are resistant to the development of experimental au-
toimmune encephalomyelitis, presumably by increasing the IL-
10 production by Th1 and Th17 pathogenic cells (Lin et al., 2014).
Targeted deletion of Bhlhe40 in either CD4 T cells or CD11c+ cells
correlated with increased IL-10 and decreased IFN-γ production
and resulted in increased bacterial burdens during infection
with M. tuberculosis, rendering Bhlhe40-deficient mice more
susceptible to infection (Huynh et al., 2018). Additionally,
Bhlhe40 is a molecular switch for IL-10 production in Th1 cells
and as a result, mice with conditional deletion of Bhlhe40 in
T cells succumbed to Toxoplasma gondii infection (Yu et al.,
2018). In both T cells and bone marrow–derived DCs, Bhlhe40
binds to a characterized enhancing region of the Il10 locus
(Huynh et al., 2018), where the activating transcription factors
AP1 (Jones and Flavell, 2005) and IRF4 (Ahyi et al., 2009) have
been shown to bind. The opposing effects of Bhlhe40 and
cMaf on the regulation of IL-10 may result from the interaction
between these two transcription factors. In the absence of
cMaf, up-regulation of Bhlhe40 in T cells has been described
(Gabryšová et al., 2018); conversely, deficiency of Bhlhe40 re-
sulted in the up-regulation of Maf (Yu et al., 2018). Very re-
cently, in macrophages, Bhlhe40 has been shown to bind to
promoter elements of the Maf gene, repressing its transcription
(Jarjour et al., 2019).

Metabolic regulation of IL-10 production
Recent findings show a metabolic reprogramming of immune
cells in response to environmental cues (O’Neill and Pearce,
2016). In response to LPS and other stimuli, the metabolic pro-
file of macrophages and DCs shifts toward glycolysis, with the
accumulation of metabolites such as citrate and succinate that in
turn regulate cytokine gene expression (O’Neill and Pearce,
2016). IL-10 is no exception, its production being regulated by
alterations in the cell metabolic networks, as well as by specific
metabolites (Fig. 1 A). The LPS-induced metabolic regulator
pyruvate kinase isozyme M2 (PKM2) was shown to inhibit the
cellular glycolytic reprogramming, succinate accumulation, and
IL-1β production, while favoring IL-10 production by macro-
phages (Palsson-McDermott et al., 2015). Similarly, inhibition of
the glycolytic shift promoted by M. tuberculosis infection of
macrophages was shown to increase IL-10 production, while
decreasing that of IL-1β (Gleeson et al., 2016). In a different
setting, macrophages activated by efferocytosis during wound
injury up-regulated their production of IL-10 via the SIRTUIN1
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signaling cascade and the transcription factor PBX1, driven
by the respiratory chain (Zhang et al., 2019). In an experi-
mental model of colitis, chemical inhibition of the nicotina-
mide phosphoribosyltransferase enzyme reduced mucosal
nicotinamide adenine dinucleotide levels and the activities
of nicotinamide adenine dinucleotide–dependent enzymes,
while favoring the polarization of monocyte/macrophages
toward IL-10 production (Gerner et al., 2018). IL-10 produc-
tion by DCs is also modulated by metabolic pathways. Several
metabolites, such as butyrate, adenosine, ATP, or lactic acid,
have been proposed to favor IL-10 production by DCs (Li
et al., 2012a; Nasi et al., 2013; Singh et al., 2014). Further-
more, activation of mTOR, a central integrator of cellular
metabolism, in DCs has been shown to enhance IL-10 (Cao
et al., 2008; Amiel et al., 2012; Boor et al., 2013; Hussaarts
et al., 2013). Adiponectin also enhances IL-10 production by
DCs through a pathway that depends on the cellular energy
sensor AMP-activated protein kinase (AMPK; Tan et al.,
2014). Moreover, a recent study showed that in DCs stimu-
lated with zymozan, the production of IL-10 depended on the
maintenance of pyruvate flux, as it reinforces the presence of

acetylated histone 3 molecules bound to the Il10 gene pro-
moter (Márquez et al., 2019).

T cell immunity also relies on metabolic reprogramming
(Buck et al., 2015), but how this affects IL-10 production is only
now starting to be understood (Fig. 1 B). Initial evidence for this
came from the finding that extracellular ATP or hypoxia induces
the transcription factor HIF-1α in Tr1 cells, which in turn down-
regulates AhR and IL-10 production (Apetoh et al., 2010;
Mascanfroni et al., 2015). In addition, oxysterols, oxidized forms
of cholesterol produced downstream of the IL-27R, negatively
regulate IL-10 secretion in Tr1 cells via activation of the liver X
receptor signaling and possibly through inhibition of the IL-
10–inducing transcription factor Blimp-1 (Vigne et al., 2017).
Furthermore, inhibition of cholesterol biosynthesis blocked the
induction of cMaf and consequently IL-10 production by IFN-
γ–producing Th1 cells (Perucha et al., 2019). Finally, the short-
chain fatty acid pentanoate has been shown to induce IL-10
production in lymphocytes by reprogramming their metabolic-
epigenetic crosstalk toward elevated glucose oxidation, while in
parallel suppressing Th17 cells (Luu et al., 2019). Of note, in the
same study, pentanoate has been shown to enhance Il10 gene

Figure 1. IL-10 production is metabolically regulated. (A)Macrophages stimulated via TLR4 undergo a metabolic reprogramming toward glycolysis, which
leads to the production of lactate and also to a break of the TCA cycle. As a result, succinate accumulates and activates HIF-1α, and the transcription of the Il1b
gene is enhanced. Inhibition of this reprogramming, via the metabolic regulator PKM2 or during infection with M. tuberculosis, inhibits Il1b gene transcription,
while promoting that of Il10. An increase of IL-10 production as a result of enhanced fatty acid metabolism has also been described, and is mediated by the
transcription factor PBX1. In DCs, the maintenance of the pyruvate flux downstream of zymosan stimulation has been shown to reinforce the presence of
acetylated histone 3 at the Il10 gene promoter, thus favoring IL-10 production. Other metabolic regulators, such as AMPK and mTOR, and metabolites, such as
ATP, lactate, or butyrate, also contribute to IL-10 production by DCs, in different settings, but the molecular mechanisms in place remain largely unknown.
(B) Gut microbiota derived short chain fatty acids signal through GPR43 and activate STAT3 and mTOR in differentiated Th1 cells, up-regulating the expression
of Blimp-1 and consequently that of IL-10. In IL-27–induced Tr1 cells, IL-27R signaling induces the oxysterol 25-hydroxycholesterol (25-OHC). 25-OHC activates
liver X receptor (LXR) and presumably decreases the expression of the transcription factor Blimp-1, thus limiting the expression of the Il10 gene. In IL-
27–differentiated Tr1 cells, extracellular ATP (eATP) has been shown to increase the amounts of HIF-1α and consequently reduce those of AhR. This stabi-
lization of HIF-1α also occurs under hypoxic conditions. Given the role of AhR in enhancing IL-10 expression in Tr1 cells, HIF-1α stabilization ultimately
decreases IL-10 production. The Th1 switching from IFN-γ single-producing cells, to IFN-γ/IL-10 double-producing ones, and eventually IL-10 single-producing
cells, is coupled to the biosynthesis of cholesterol, via cMaf. In Th17 cells, a short chain fatty acid, pentanoate, has been suggested to inhibit AMPK activation,
thus releasing the mTOR pathway, increasing the glycolytic flux, and leading to the production of IL-10. In parallel, through an epigenetic-mediated mechanism,
pentanoate reduces IL-17A expression.
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expression in regulatory B cells (Luu et al., 2019). Interestingly,
gut microbiota–derived short-chain fatty acids have also been
shown to induce Th1 cells to produce IL-10 to maintain intestinal
homeostasis, through the activation of STAT3 and mTOR, up-
stream of Blimp-1 up-regulation (Sun et al., 2018). Despite these
studies, the molecular mechanisms concerning IL-10 regulation
by metabolic changes or metabolites across different subsets
of T cells remain elusive. However, careful interpretation of
experiments should be exercised. Indeed, findings from a
recent study show that the widely used glucose analogue 2-
deoxyglucose inhibited IL-10 production by Th1, Th2, and
Th17 cells not through the inhibition of glycolysis, but instead
through the modulation of glycosylation on cell surface proteins
(Gabryšová et al., 2018).

The regulation of IL-10 in other cell types
In contrast to macrophages/DCs and T cells, the mechanisms
regulating IL-10 in other cells are less explored and understood.
IL-10 production by PRR-stimulated microglia follows the gen-
eral basic mechanisms seen in peripheral myeloid cells (re-
viewed in Lobo-Silva et al., 2016). Molecules present in the
microenvironment, such as adenosine, ATP, or glutamate, have
been described to potentiate IL-10 production by microglia, but
the precise mechanisms underlying these effects are mostly
unknown (Seo et al., 2004, 2008;Werry et al., 2011; Koscsó et al.,
2012; and reviewed in Lobo-Silva et al., 2016). Furthermore,
other cytokines may impact IL-10 secretion by microglia. Al-
though the effect of IFN-γ in regulating microglia-derived IL-10
is still controversial (Veroni et al., 2010; Ishii et al., 2013), type I
IFN has been shown to up-regulate IL-10 in PRR-induced mi-
croglia (Lobo-Silva et al., 2017), similar to what has been de-
scribed for bone marrow–derived macrophages (reviewed in
Ouyang and O’Garra, 2019).

The regulation of IL-10 production by epithelial cells is also
not fully understood. Engagement of CD1d on intestinal epithelial
cells has been shown to induce IL-10 (Colgan et al., 1999), via a
mechanism that involves the activation of STAT3 and STAT3-
dependent transcription of IL-10 (Olszak et al., 2014). Crosstalk
between TLR4-activated macrophages and intestinal epithelial
cells has also been shown to sustain the expression of IL-10 in the
latter, by the action of nuclear receptor peroxisome proliferator-
activated receptor γ (Hyun et al., 2015). Furthermore, microbial
and/or environmental oxazoles have been shown to induce
tryptophan-derived metabolites and activate AhR in intestinal
epithelial cells. The activated AhR in turn limits CD1d-restricted
production of IL-10 by these cells (Iyer et al., 2018). Thus, me-
tabolites in the intestine regulate IL-10 production. Given the
importance of intestinal epithelial cells in maintaining the in-
testinal barrier and of IL-10 in controlling intestinal inflamma-
tion, more research in this area is needed.

The effects of IL-10 in responding cells
The IL-10R signaling cascade in brief
The cellular response to IL-10 depends on engagement of the IL-
10R and intracellular signaling cascades (Fig. 2). IL-10, as the
other family members, signals through a heterodimeric receptor
(Pestka et al., 2004). In the case of IL-10, the receptor is

composed two subunits: the high-affinity IL-10Rα, mainly ex-
pressed in leukocytes, and the ubiquitously expressed IL-10Rβ,
which is shared by the receptor complex of other IL-10 family
members (reviewed in Zdanov, 2010; Ouyang and O’Garra,
2019). The intracellular signaling cascades downstream of the
IL-10R have been described in detail in previous reviews
(Donnelly et al., 1999; Murray, 2006b; Ouyang et al., 2011).
Building upon the extensive literature in this topic, an IL-10/IL-
10R signaling map has been assembled (Verma et al., 2016).

Engagement of the IL-10Rα leads to its oligomerization with
the IL-10Rβ subunit (Yoon et al., 2006). This in turn allows the
phosphorylation of JAK1 associated with the IL-10Rα subunit and
of tyrosine kinase 2 (TYK2) associated with the IL-10Rβ subunit
(Rodig et al., 1998; Riley et al., 1999). These kinases further
phosphorylate two functional tyrosine residues on the intra-
cellular domain of the IL-10Rα, needed for the recruitment of
STAT3 (Weber-Nordt et al., 1996). Activation of STAT3 by its
phosphorylation allows its translocation to the nucleus, with the
initiation of a specific transcriptional program that largely de-
fines the IL-10–mediated anti-inflammatory response (Takeda
et al., 1999; Lang et al., 2002; Williams et al., 2004a; reviewed
in Murray, 2006b; Hutchins et al., 2013). In addition to the JAK/
STAT3 pathway, the signaling cascade PI3K/Akt/GSK3β has also
been shown to mediate IL-10–induced transcription in macro-
phages (Crawley et al., 1996; Antoniv and Ivashkiv, 2011). Fur-
thermore, IL-10 stimulation of primary monocytes results in
PI3K-mediated mTORC1 activity (Crawley et al., 1996). Inter-
estingly, IL-10 activation of the both STAT3 and PI3K/Akt/m-
TORC1 pathways in macrophages was shown to require AMPK
(Zhu et al., 2015). Of note, activation of STAT1 and STAT5
downstream of the IL-10R has also been reported (Lehmann et
al., 1994; Wehinger et al., 1996; Rahimi et al., 2005; Emmerich
et al., 2012).

Interestingly, STAT3 activation has also been described for
other cytokines in addition to IL-10, most notably IL-6 (Fig. 2). It
is surprising that both pro- and anti-inflammatory cytokines
may signal through the same molecule even in the same cell
type, despite inducing profoundly different responses, and re-
sulting in a different gene activation program (reviewed in
Murray, 2006a, 2007; Hutchins et al., 2013). A likely explanation
for this apparent paradox relies on the cooperation of STAT3
with selective cofactors to deliver a different gene expression
program. One such cofactor is the suppressor of cytokine sig-
naling 3 (SOCS3), which, despite being induced by both IL-10
and IL-6 in macrophages, only suppresses the activity of the IL-
6R (gp130; Croker et al., 2003; Lang et al., 2003). Indeed, the IL-
10R appears refractory to the effects of all members of the SOCS
family (Williams et al., 2004b). Additionally, it is possible that in
response to different stimuli, the epigenetic landscape of the
STAT3-regulated genes changes, thus allowing for selective
transcription of anti-inflammatory or inflammatory mediators
(reviewed in Murray, 2006a, 2007; Hutchins et al., 2013).

Molecular basis for IL-10/STAT3 anti-inflammatory activities
As discussed above, a wealth of data positions the IL-10/STAT3 axis
as a major transcriptional inhibitor of genes encoding cytokines,
chemokines, cell-surface molecules, and other molecules required
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for a full immune response (Murray, 2005; reviewed in
Murray, 2006b). The requirement for STAT3 as a mediator of
IL-10 responses is well-established (Takeda et al., 1999; Lang
et al., 2002; Williams et al., 2004a). Macrophage/neutrophil-
restricted deletion of STAT3 mimics IL-10 deficiency itself,
resulting in the development of enterocolitis and high sus-
ceptibility to LPS-mediated shock and septic peritonitis
(Takeda et al., 1999; Kobayashi et al., 2003; Matsukawa et al.,
2003, 2005). How STAT3 activation results in the anti-
inflammatory activity of IL-10 is not fully understood (Fig. 2).

Several independent reports performed over the years
globally show that STAT3 acts indirectly by inducing the ex-
pression of a series of genes that execute the inhibitory effects
associated with an anti-inflammatory response (reviewed in
Hutchins et al., 2013). Among the STAT3-dependent anti-
inflammatory mediators are several transcription factors, such
as the E26 transformation–specific family transcriptional re-
pressor, ETV3, and a helicase family corepressor, Strawberry
notch homologue 2, that inhibit NF-κB–mediated transcription
in LPS-stimulated macrophages (El Kasmi et al., 2007); and
Nfil3, which negatively regulates the production of IL-12p40 by
LPS-stimulated myeloid cells (Smith et al., 2011). Other molec-
ular targets of IL-10–activated STAT3 have been described, in-
cluding the up-regulation of the dual-specificity phosphatase 1,

which impairs the inflammatory response of LPS-induced
macrophages by down-regulating the activity of the MAPK
p38 (Hammer et al., 2005). Also, in LPS-stimulated macro-
phages, a link between IL-10/STAT3 and the induction of
the RNA destabilizing factor tristetraprolin has been proposed,
and shown to be mediated by a delayed activation of p38
MAPK, resulting in diminished mRNA and protein levels of
proinflammatory cytokines (Schaljo et al., 2009). Finally, in
LPS-activated macrophages, IL-10 was shown to inhibit the
transcription of the microRNA miR-155 in a STAT3-dependent
manner, leading to increased expression of SH2 domain-
containing inositol 59-phosphatase 1 (SHIP1; McCoy et al.,
2010), a negative regulator of TLR signaling (An et al., 2005).
Subsequently, SHIP1 was shown to inhibit TNF translation in
LPS-activated macrophages through an IL-10–dependent, STAT3-
independent mechanism (Chan et al., 2012). Of note, IL-10
induction of miR-155 was also shown to regulate the expression
of Aicda, a critical component of antibody class-switching in B cells
(Fairfax et al., 2015).

Two genome-wide studies were performed to reveal the
universe of STAT3-regulated genes. The obtained data support
a model of indirect STAT3 action in response to IL-10. The
first study integrated STAT3 chromatin immunoprecipitation,
RNA-sequencing, and computational approaches performed in

Figure 2. The anti-inflammatory response initiated downstream of the IL-10R. Binding of IL-10 to its receptor activates a major JAK1-TYK2-STAT3
signaling cascade, which culminates with the induction of the STAT3-mediated anti-inflammatory response. The STAT3 transcriptional reprogramming results
in a number of molecules that include transcriptional repressors, chromatin modifiers, and post-transcriptional or post-translational regulators. Together,
these molecules will limit the inflammatory response induced for example downstream of PRR activation. Recently, IL-10 has been shown to modulate the
transcription of several metabolic regulators, including DDIT4, in a STAT3-dependent way. As DDIT4 is a regulator of mTORC, the IL-10R signaling limits the
glycolytic flux downstream of TLR4 activation, which in turn controls the inflammatory response of the macrophage. In addition to the JAK-STAT3 pathway,
STAT1, STAT5, and the PI3K-Akt cascade have also been reported to mediate IL-10 responses. The metabolic regulator AMPK has been reported to activate the
PI3K-Akt-mTORC cascade, but also STAT3, in response to IL-10. STAT3 is moreover activated downstream of receptors for other IL-10 family cytokines, IL-6,
and a number of other cytokines and growth factors. How the cell distinguishes the anti- from the pro-inflammatory reprogramming downstream of STAT3
activation is not fully understood, but the IL-10–induced SOCS3 has been reported to play an important role by blocking STAT3 at least downstream of the IL-
6R, but not of the IL-10R. DUSP, dual-specifity phosphatase; Gsk3β, glycogen synthase kinase 3β; Sbno2, protein strawberry notch 2; TTP, tristetraprolin.

Saraiva et al. Journal of Experimental Medicine 6

New insights on the anti-inflammatory cytokine IL-10 https://doi.org/10.1084/jem.20190418

https://doi.org/10.1084/jem.20190418


IL-10–treated resting or LPS-stimulated macrophages (Hutchins
et al., 2012). The second study used chromatin immunoprecipi-
tation sequencing to analyze the binding of STAT3 at the ge-
nomic level in DCs following histone deacetylases inhibition
(Sun et al., 2017). Regardless of the critical role of STAT3 in
mediating the response downstream of the IL-10R, it is possible
that the STAT3 pathway may not be sufficient to mediate the full
action of IL-10. Other anti-inflammatory mediators have been
described downstream of the IL-10R, but their dependency on
STAT3 is as yet unclear. Such is the case for Bcl3, which inhibits
TNF production in LPS-treated macrophages via impairment of
NF-κB (Kuwata et al., 2003) and A20-binding inhibitor of NF- κB
activation 3, which attenuates NF-κB signaling in human but not
mouse macrophages (Weaver et al., 2007). IL-10–induced heme-
oxygenase 1 has also been shown to contribute to the anti-
inflammatory response triggered in macrophages (Lee and
Chau, 2002).

Some lines of evidence suggest that chromatin accessibility
might also be a mechanism of regulation of gene expression by
the IL-10/STAT3 axis. For example, HDAC4, which acts as a
repressor of gene expression by deacetylating histones, was
identified as a STAT3 target (Hutchins et al., 2012). Further-
more, in adipose tissue, IL-10 has been shown to repress
transcription of thermogenic genes by altering chromatin ac-
cessibility in a STAT3-dependent manner (Rajbhandari et al.,
2018).

Classic roles of IL-10
In addition to being produced by many different cell types,
IL-10 functionally targets diverse cells, resulting in a broad anti-
inflammatory activity. As compared with most other cell types,
macrophages express higher levels of the IL-10R (Moore et al.,
2001). Compelling evidence provided by the study of cell-
restricted IL-10R deficiency has pointed to macrophages being
the main targets of the IL-10 inhibitory effects (Shouval et al.,
2014a; Zigmond et al., 2014). Indeed, soon after its discovery, IL-
10 was shown to trigger a robust immune suppressive response
in macrophages and other APCs, mainly via the transcriptional
inhibition of cytokines and chemokines, as well as of MHCII, and
costimulatory and adhesion molecules (Bogdan et al., 1991; de
Waal Malefyt et al., 1991a,b; Fiorentino et al., 1991a,b; Ding and
Shevach, 1992; D’Andrea et al., 1993; Willems et al., 1994; Creery
et al., 1996). Overall, IL-10 both modulates the local cytokine
micro-environment and limits antigen presentation, thus pre-
venting the efficient development of T cell responses. Addi-
tionally, IL-10 also limits basic microbicidal mechanisms,
namely the induction of nitric oxide synthase and the produc-
tion of nitric oxide, as well as the release of reactive oxygen
intermediates (Bogdan et al., 1991) by murine macrophages
stimulated through PRR in the context of IFN-γ (Cunha et al.,
1992).

The suppressive effect of IL-10 appears to be targeted to
specific genes. This is well illustrated by a gene expression
screen for IL-10–induced genes performed in LPS-stimulated
macrophages, which identified a 15–20% inhibition of the LPS-
induced genes (Lang et al., 2002). A more recent study further
elucidated the mechanisms underlying the suppressive activity

of IL-10 in LPS-stimulated macrophages, through genome-wide
approaches. In line with previous reports, inhibition of tran-
scription was found to be the primary mechanism for IL-
10–mediated suppression (Conaway et al., 2017). Novel targets
of IL-10 in macrophages have been recently revealed, including
the modulation of the macrophage metabolic reprogramming
downstream of TLR4 activation (Ip et al., 2017). Specifically, IL-
10 inhibited LPS-induced glucose uptake and glycolysis, pro-
moting a shift toward oxidative phosphorylation (Ip et al., 2017).

Inhibition of cytokine and chemokine production by IL-10 is
also documented for neutrophils (Cassatella et al., 1993; Kasama
et al., 1994) and for resident macrophages, such as microglia
(Balasingam and Yong, 1996; and reviewed in Lobo-Silva et al.,
2016). However, and most interestingly, the comparison of the
anti-inflammatory response induced by IL-10 across different
LPS-stimulated myeloid cells showed a divergent pattern. Spe-
cifically, in macrophages, IL-10 mostly inhibited NF-κB target
genes, whereas in DCs and mast cells, an indirect disruption of
IRF was proposed, and in neutrophils, IL-10 appeared to induce
both IRF disruption and indirect NF-κB inhibition (Hutchins
et al., 2015).

Classically, IL-10 is known to inhibit T cell responses via
APCs (Macatonia et al., 1993). However, IL-10 can also limit
T cell responses by acting directly on CD4 T cells to induce
nonresponsiveness or anergy (Groux et al., 1996). More recently,
IL-10 has been shown to act directly on memory/effector T cells
(Kamanaka et al., 2011) in experimental colitis, in Th17 cells
during intestinal inflammation (Huber et al., 2011), and in Th2
cells in a murinemodel of house dust mite allergy (Coomes et al.,
2017). Surprisingly, IL-10–stimulatory effects on T cells have
also been described. IL-10 enhances CD8 T cell proliferation,
cytotoxic activity, and IFN-γ production (Groux et al., 1998;
Mumm et al., 2011; Naing et al., 2018). IL-10 promotes the sur-
vival and action of Foxp3 regulatory T cells (Murai et al., 2009;
Chaudhry et al., 2011). Stimulatory activities of IL-10 on mast
cells and B cells have also been well documented (Thompson-
Snipes et al., 1991; Rousset et al., 1992; Itoh and Hirohata, 1995).

Nonclassic roles of IL-10
Although the effects of IL-10 have been classically studied in
immune cells, the range of IL-10–responding cells is expanding
(Fig. 3). It is now evident that IL-10 also acts in nonhematopoietic
cells, where it plays important homeostatic roles. An example of
this comes from central nervous system (CNS) and peripheral
nervous system cells, which respond to IL-10 and other IL-10
family members (reviewed in Lobo-Silva et al., 2016; Burmeister
and Marriott, 2018). In this context, IL-10 plays important roles
in limiting neuronal damage during infection or other inflam-
matory processes, as well as in regulating homeostatic processes.
IL-10 has been associated with increased neuronal survival
(Zhou et al., 2009a,b) and the regulation of adult neurogenesis
(Perez-Asensio et al., 2013; Pereira et al., 2015). Administration
of IL-10 in different settings proved beneficial for axon regen-
eration, through mechanisms that implicate STAT3 and the
regulation of NF-κB signaling (reviewed in Vidal et al., 2013).
Finally, IL-10 was shown to reduce vulnerability of neurons to
CNS ischemia and trauma (Knoblach and Faden, 1998; Grilli
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et al., 2000). Importantly, whether the effects of IL-10 on neu-
rons and oligodendrocytes are direct or indirect is still contro-
versial. To support a direct effect on cells of the CNS, resting
astrocytes express the IL-10R and respond to IL-10 (Molina-
Holgado et al., 2001; Ledeboer et al., 2002; Xin et al., 2011;
Perriard et al., 2015). IL-10 limits reactive astrogliosis in re-
sponse to pathogens and promotes the expression of TGF-β by
astrocytes (Balasingam and Yong, 1996; Norden et al., 2014; and
reviewed in Burmeister and Marriott, 2018). At the organismal
level, variations in IL-10 expression have been associated with
altered depressive-like behavior. IL-10–deficient female mice
displayed increased depressive-like behavior, whereas IL-
10–overexpressing mice displayed a decreased depressive-like
behavior (Mesquita et al., 2008). More research is clearly
needed to fully elucidate how IL-10 regulates the CNS in health
and disease.

Another nonclassic function ascribed to IL-10 relates to its
regulation of adipose tissue (Fig. 3). Epidemiological studies link
a low production of IL-10 with metabolic syndrome and type

2 diabetes (van Exel et al., 2002), but in animal models, ablation
of IL-10 did not support an anti-obesity function for this cyto-
kine (den Boer et al., 2006; Miller et al., 2011; Mauer et al., 2014).
However, previous studies proposed that IL-10 might promote
the activity of M2 macrophages in adipose tissue (Lumeng et al.,
2007; Hong et al., 2009; Gao et al., 2013; Xie et al., 2014), or act
directly on adipocytes to decrease their inflammatory response
(Lira et al., 2012). Very recently, and contrary to the previously
established idea that IL-10 might stimulate brown tissue activity
by limiting inflammation, direct IL-10 signaling in adipocytes
was strikingly shown to limit thermogenesis and energy ex-
penditure (Rajbhandari et al., 2018). Mechanistically this effect
involved remodeling the chromatin landscape of adipocytes and
specific transcriptional down-regulation of thermogenic genes
(Rajbhandari et al., 2018). As a result, mice lacking IL-10 had
increased energy expenditure and were protected against diet-
induced obesity (Rajbhandari et al., 2018). It will be interesting
in future to evaluate the therapeutic value of IL-10 manipulation
in obesity, taking all these findings into consideration.

Figure 3. Nonclassic roles of IL-10. The functions of IL-10 surpass its effects in immune cells. IL-10 plays an important role in the CNS, limiting the damage
effects of neuroinflammation, but also contributing to several homeostatic processes. The molecular mechanisms operating in neurons or astrocytes in re-
sponse to IL-10 remain elusive, but STAT3 and SOCS3 activation, as well as NF-κB, regulation have been proposed. Bone marrow–derived IL-10 activates the
IL-10R/STAT3 signaling cascade, altering the chromatin landscape and the transcription factor occupancy at regulatory regions of thermogenic genes. The
thermogenic gene expression is thus repressed and the energy expenditure limited. As a result, mice lacking IL-10 are protected against diet-induced obesity. In
epithelial cells, IL-10 has been recently associated with wound healing. This is particularly important in intestinal epithelial cells (IECs), where the underlying
mechanisms are starting to be unveiled. In response to IFN-γ, the enzyme 2,3-dioxygenase 1 (IDO1) catalyses the conversion of tryptophan (Trp) to kynurenine
(Kyn), which activates the AhR, thus inducing the transcription of the IL-10Rα subunit. Activation of the IL-10R in response to macrophage-derived IL-10 leads
to the STAT3-dependent CREB activation and the transcription of WSP-1, a promoter of epithelial cell proliferation and repair.
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The last “nonclassic” role of IL-10 that we will discuss
relates to its function as a promoter of epithelial wound repair
(Fig. 3). Several studies highlight the IL-10–mediated pro-repair
activities, which have been classically attributed to its anti-
inflammatory activities (reviewed in Sziksz et al., 2015). How-
ever, this concept is changing, and an effect of IL-10 as a
regulator of the extracellular matrix and fibroblast function is
emerging (Balaji et al., 2017; and reviewed in King et al., 2014).
Similarly, the critical role of IL-10 in gut homeostasis is well
documented, with the majority of the studies focusing on its
anti-inflammatory activities (reviewed in Kole and Maloy,
2014). Recent evidence reveals an additional role for IL-10 as
an orchestrator of epithelial wound repair (Lorén et al., 2015);
however, the molecular bases for this are only starting to be
unveiled. Macrophage-derived IL-10 was shown to activate
CREB signaling in intestinal epithelial cells, leading to the se-
cretion of the WNT1-inducible signaling protein 1, which in turn
induced epithelial cell proliferation and wound closure (Quiros
et al., 2017). Furthermore, up-regulation of the IL-10R in intes-
tinal epithelial cells has been described (Kominsky et al., 2014),
and recent studies not only confirm the importance of the IL-10R
in wound healing but also implicate tryptophan metabolites and
AhR in its up-regulation (Lanis et al., 2017).

Therapeutic manipulation of IL-10
Given the wide spectrum of the anti-inflammatory properties
attributed to IL-10, therapeutic manipulation of this cytokine
has attracted a great deal of interest (reviewed in O’Garra et al.,
2008; Ouyang and O’Garra, 2019; Wang et al., 2019). We next
discuss the therapeutic opportunities for IL-10 in various pa-
thologies, and the strategies used to manipulate IL-10 levels in
the organism (Fig. 4).

Enhancing IL-10 in inflammatory bowel disease (IBD)
IBD is perhaps the best studied disease in the context of IL-10,
owing to the initial findings that IL-10–deficient mice develop
colitis (Kühn et al., 1993), together with the profound genetic
association of IBD with deficient IL-10 responses (Glocker et al.,
2009, 2010, 2011; Jostins et al., 2012; Moran et al., 2013;
Engelhardt and Grimbacher, 2014; Ellinghaus et al., 2016).
Administration of IL-10 or IL-10 overexpression in different
animal models of colitis has proved consistently beneficial
(Hagenbaugh et al., 1997; Steidler et al., 2000; Cardoso et al.,
2018). In humans, systemic (intravenous or subcutaneous)
administration of recombinant IL-10 has been tested to treat
IBD in different trials, but in general it did not significantly
improve the clinical outcome of the patients (van Deventer
et al., 1997; Fedorak et al., 2000; Schreiber et al., 2000;
Colombel et al., 2001). A likely explanation for this relies on the
possible low concentration of IL-10 achieved locally. Thus, ef-
forts have been placed in designing strategies to specifically
deliver IL-10 to the intestine. An interesting approach has been
the development of bacteria engineered for intestinal IL-10
delivery. Specifically, the dairy microbe Lactococcus lactis has
been modified to express the Il10 gene and intragastrically
administered to mice (Steidler et al., 2000). This strategy has
proved efficient in dextran sulfate sodium–induced and spontaneous

(IL-10–deficient) colitis models (Steidler et al., 2000). Subse-
quent improvements of the engineered L. lactis have been de-
vised, all with positive effects in ameliorating experimental
colitis (reviewed in Shigemori and Shimosato, 2017; Wang
et al., 2019). Genetic modification of Bifidobacterium bifidum
for IL-10 expression has also been described (Mauras et al.,
2018), thus expanding the species of bacteria amenable for
IL-10 intestinal delivery. Although only tested in a small cohort
of Crohn’s disease patients, therapeutic L. lactis expressing
human IL-10 ameliorated the clinical score of disease (Braat
et al., 2006), which, together with the promising findings ob-
tained in the mouse model, suggests that further improving
these approaches may render them applicable for human
therapy.

IL-10 as an immunotherapy for cancer
The immunosuppressive role of IL-10 has led to the general view
that its presence during cancer would facilitate tumor immune
escape (Dunn et al., 2004). This hypothesis is validated in sev-
eral animal models. Overexpression of IL-10 resulted in failure
to control an immunogenic tumor (Hagenbaugh et al., 1997), and
blockade of IL-10Rα increased the therapeutic benefit of che-
motherapy in a breast cancer model (Ruffell et al., 2014) and to
other transplantable tumors in the context of CpG im-
munostimulatory oligonucleotide by reversal of tumor-induced
DC paralysis (Vicari et al., 2002). Likewise, IL-10 deficiency
conferred resistance to UV-induced skin carcinogenesis (Loser
et al., 2007). In patients, the presence of IL-10 has been de-
scribed in the tumor-microenvironment of different cancers and
overall correlated with poor prognosis (Nemunaitis et al., 2001;
Mannino et al., 2015; reviewed in O’Garra et al., 2008). How-
ever, early lines of evidence suggest an unanticipated protective
role for IL-10 in cancer. Both IL-10 overexpression and IL-10
administration have been reported to associate with tumor
shrinkage and rejection (Berman et al., 1996; Zheng et al., 1996;
Groux et al., 1999). More recently, administration of pegylated
IL-10 to mouse models of breast cancer or squamous cell carci-
noma provided compelling preclinical evidence on the efficacy
of IL-10 as an immunotherapy for cancer (Mumm et al., 2011).
Mechanistically, IL-10 increased CD8 T cell infiltration in tissue,
induced IFN-γ production, and favored effective T cell memory
responses (Mumm et al., 2011; Emmerich et al., 2012). Prompted
by these studies, a pegylated human IL-10 was developed (Naing
et al., 2016) and shown to induce hallmarks of CD8 T cell im-
munity in patients with solid tumors (Naing et al., 2018). Thus,
IL-10 may in some types of cancer be useful as an immuno-
therapy by potentiating the activity of antitumor CD8 T cells
(reviewed in Autio and Oft, 2019; Ouyang and O’Garra, 2019;
Wang et al., 2019). However, a recent study has shown that
tumor-infiltrating regulatory T cells through their expression of
IL-10 and IL-35 may contribute to the exhaustion of intra-
tumoral CD8 T cells, via the up-regulation of the transcription
factor Blimp-1 (Sawant et al., 2019). Several factors may explain
the discrepancies between these different studies, including the
cell targeted by IL-10 in the different tumors (for example,
myeloid versus T cell), or differences in the T cell response to IL-
10 at different effector stages. Thus, it is critical to determine the

Saraiva et al. Journal of Experimental Medicine 9

New insights on the anti-inflammatory cytokine IL-10 https://doi.org/10.1084/jem.20190418

https://doi.org/10.1084/jem.20190418


context whereby IL-10 may provide a protective or detrimental
role in the treatment of tumors, in order to appropriately tailor
cancer therapy.

The potential of IL-10 to treat other diseases
In addition to IBD and cancer, the therapeutic manipulation of IL-
10 has been envisaged in the context of several other pathologies
(reviewed in O’Garra et al., 2008; Ouyang and O’Garra, 2019;
Wang et al., 2019). In both rheumatoid arthritis and psoriasis, IL-
10 administration has yielded some promising results at the pre-
clinical and clinical levels (McInnes et al., 2001; Trachsel et al.,
2007; Galeazzi et al., 2014). In allergic asthma, where pathological
responses to inhaled allergens develop due to a failure of immune
tolerance, successful therapeutic strategies are linked to an in-
crease of IL-10. This is the case for the glucocorticoid dexameth-
asone, which favors IL-10 production by human CD4 and CD8
T cells (Richards et al., 2000; Barrat et al., 2002). Furthermore,
severe steroid-resistant asthma associates with failure of patient
cells to enhance IL-10 in response to dexamethasone (Xystrakis
et al., 2006; Gupta et al., 2014). A recent study showed that the
dexamethasone-driven IL-10 production by human memory CD4
T cells is accompanied by that of IL-17A, IL-17F, and IL-22. How-
ever, the presence of high doses of IL-2 skewed the response to
dexamethasone toward single IL-10–producing cells (Mann et al.,
2019). Therefore, combined therapies that enhance glucocorticoid-
driven IL-10 production in the absence of IL-17 are of potential
interest in asthma. Several strategies to enhance IL-10 in the
context of neurological disorders with an immune component
have also been developed (reviewed in Lobo-Silva et al., 2016;

Burmeister and Marriott, 2018). These included administration of
recombinant IL-10, enhancement of IL-10 production through
agonists, or delivery of IL-10 through viral vectors (reviewed in
Kwilasz et al., 2015). However, the preclinical success of IL-10 in
this setting has been conflicting, and targeting IL-10 to treat
neuroimmune disorders has not been tested in the clinic. An op-
posing strategy consists of IL-10 blockade, in pathologies where its
excess is detrimental. This is the case of systemic lupus ery-
thematous. A small clinical trial performed in systemic lupus er-
ythematous patients showed an improvement of symptoms
following IL-10 blockade (Llorente et al., 2000).

Given the anti-inflammatory action of IL-10, its therapeutic
manipulation in infection is appealing. However, the effects of
IL-10 in infection significantly depend on the infecting agent
(reviewed in Couper et al., 2008; Redford et al., 2011). In a
number of experimental models of infection including T. gondii
(Gazzinelli et al., 1996), malaria (Li et al., 1999), and Trypanosoma
cruzi (Hunter et al., 1997), ablation of IL-10 led to minimal
pathogen clearance, while allowing fatal tissue damage. Inter-
estingly, administration of IL-10 to a small cohort of chronic
hepatitis C patients who had not previously responded to IFN-
based therapies did not impact antiviral activity and resulted in
improved liver histology and function, as well as in reduced liver
fibrosis in a large proportion of patients receiving treatment
(Nelson et al., 2000). In studies using experimental models of
Listeria monocytogenes (Dai et al., 1997), lymphocytic chorio-
meningitis virus (Brooks et al., 2006), Leishmania major (Belkaid
et al., 2001), Leishmania donovani (Murray et al., 2002), and M.
tuberculosis (Redford et al., 2010), IL-10 deficiency resulted in

Figure 4. The potential of enhancing IL-10 to treat disease. Several IL-10 enhancing strategies have been tried in a number of diseases and models of
disease. The best understood effects of IL-10 at the mechanistic level have been described in the case of IBD and cancer. Side effects of IL-10 administration
have been reported in both patients and healthy volunteers, but the underlying mechanisms remain unknown. The human figure represents clinical data, and
the mouse figure preclinical findings. HCV, hepatitis C virus.
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increased pathogen clearance, beneficial to the host. In the case
of tuberculosis, both human and mouse studies highlight a role
for IL-10 in limiting the host protective immune response (re-
viewed in Redford et al., 2011). Interestingly, a recent study has
shown that the delivery of aerosolized peptide inhibitors tar-
geting the IL-10/STAT3 pathway to mice chronically infected
with M. tuberculosis led to a reduction of bacterial burden ac-
companied by the up-regulation of antimicrobial effector mol-
ecules and of apoptotic/autophagy mediators (Upadhyay et al.,
2018).

Despite the large number of disease settings where IL-10
modulation has been tried, of which we only discussed a few, the
overall data are conflicting, and a clear argument in favor of IL-
10 as a therapy is still nonexistent. Several variables need to be
fine-tuned, including the anatomical location where IL-10 is
needed for treatment and the context of diseases where IL-10
has a stimulatory or anti-inflammatory effect.

Secondary effects associated with increased doses of IL-10
Most data assessing the side effects of IL-10 administration have
been obtained in the context of systemic administration of re-
combinant IL-10 to Crohn’s disease patients. The overall results
show that systemic administration of recombinant IL-10 is well-
tolerated, particularly at low doses (van Deventer et al., 1997).
However, when higher doses of IL-10 were administered, some
unexpected side effects have been observed (Fig. 4), including
fatigue and headache, accompanied by a reduction of red blood
cells and thrombocytes (Buruiana et al., 2010). Additionally, the
induction of the pro-inflammatory cytokine IFN-γ and de-
creased hemoglobin and platelet counts have been reported (Tilg
et al., 2002b). Similar side effects have been described during
the administration of recombinant IL-10 to treat psoriatic ar-
thritis (McInnes et al., 2001). Importantly, these effects seemed
to be reversible (Tilg et al., 2002a) and did not appear to be
disease-related, as even in healthy volunteers, an up-regulation
of IFN-γ in the serum has been observed (Lauw et al., 2000). The
mechanisms underlying this immune-stimulatory role of IL-10
remain unknown. It has been suggested that the observed ane-
mia might be caused by an IL-10–driven deregulation of iron
metabolism (Tilg et al., 2002a). Whether the up-regulation of
IFN-γ and granzyme B result from the activation of CD8 T cells,
as shown in the case of pegylated IL-10, or from alternative
mechanisms remains unknown. More research is needed to
elucidate the aforementioned effects of IL-10, as they may pro-
vide key insights on combinatory therapies to increase the ef-
ficacy of IL-10 in inflammatory conditions.

Concluding remarks
The wide range of IL-10–producing and IL-10–responding cells
offers the immune system the possibility of regulating the im-
mune response in different situations and anatomical sites.
However, its opposing context-specific anti-inflammatory and
stimulatory effects make the therapeutic manipulation of IL-10
challenging. Progress in this area will require a deeper under-
standing of IL-10 biology, specifically of the molecular mecha-
nisms that govern IL-10 production and action, as well as of the
contrasting roles this cytokine may play in different contexts.

Also important will be obtaining information on nonclassic
functions of IL-10, which are only now being unveiled. Given the
history of IL-10 research, exciting new findings on the biology of
this cytokine are expected in the future.
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Hosking, D. Pérez-Mazliah, C. Whicher, Y. Kannan, K. Potempa, et al.
2018. c-Maf controls immune responses by regulating disease-specific
gene networks and repressing IL-2 in CD4+ T cells. Nat. Immunol. 19:
497–507. https://doi.org/10.1038/s41590-018-0083-5

Galeazzi, M., L. Bazzichi, G.D. Sebastiani, D. Neri, E. Garcia, N. Ravenni, L.
Giovannoni, J. Wilton, M. Bardelli, C. Baldi, et al. 2014. A phase IB
clinical trial with Dekavil (F8-IL10), an immunoregulatory ‘armed an-
tibody’ for the treatment of rheumatoid arthritis, used in combination
wiIh methotrexate. Isr. Med. Assoc. J. 16:666.

Gandhi, R., D. Kumar, E.J. Burns, M. Nadeau, B. Dake, A. Laroni, D. Kozoriz,
H.L. Weiner, and F.J. Quintana. 2010. Activation of the aryl hydrocarbon
receptor induces human type 1 regulatory T cell-like and Foxp3(+) reg-
ulatory T cells. Nat. Immunol. 11:846–853. https://doi.org/10.1038/ni.1915

Gao, M., C. Zhang, Y. Ma, L. Bu, L. Yan, and D. Liu. 2013. Hydrodynamic
delivery ofmIL10 gene protectsmice from high-fat diet-induced obesity
and glucose intolerance. Mol. Ther. 21:1852–1861. https://doi.org/10
.1038/mt.2013.125

Gazzinelli, R.T., I.P. Oswald, S.L. James, and A. Sher. 1992. IL-10 inhibits
parasite killing and nitrogen oxide production by IFN-gamma-activated
macrophages. J. Immunol. 148:1792–1796.

Gazzinelli, R.T., M. Wysocka, S. Hieny, T. Scharton-Kersten, A. Cheever, R.
Kühn, W. Müller, G. Trinchieri, and A. Sher. 1996. In the absence of
endogenous IL-10, mice acutely infected with Toxoplasma gondii suc-
cumb to a lethal immune response dependent on CD4+ T cells and ac-
companied by overproduction of IL-12, IFN-gamma and TNF-alpha.
J. Immunol. 157:798–805.

Gerner, R.R., V. Klepsch, S. Macheiner, K. Arnhard, T.E. Adolph, C. Grander,
V. Wieser, A. Pfister, P. Moser, N. Hermann-Kleiter, et al. 2018. NAD
metabolism fuels human and mouse intestinal inflammation. Gut. 67:
1813–1823. https://doi.org/10.1136/gutjnl-2017-314241

Glasmacher, E., S. Agrawal, A.B. Chang, T.L. Murphy, W. Zeng, B. Vander
Lugt, A.A. Khan, M. Ciofani, C.J. Spooner, S. Rutz, et al. 2012. A genomic
regulatory element that directs assembly and function of immune-
specific AP-1-IRF complexes. Science. 338:975–980. https://doi.org/10
.1126/science.1228309

Gleeson, L.E., F.J. Sheedy, E.M. Palsson-McDermott, D. Triglia, S.M. O’Leary,
M.P. O’Sullivan, L.A. O’Neill, and J. Keane. 2016. Cutting Edge: Myco-
bacterium tuberculosis Induces Aerobic Glycolysis in Human Alveolar
Macrophages That Is Required for Control of Intracellular Bacillary
Replication. J. Immunol. 196:2444–2449. https://doi.org/10.4049/jimmunol
.1501612

Glocker, E.O., D. Kotlarz, K. Boztug, E.M. Gertz, A.A. Schäffer, F. Noyan, M.
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