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Live Mouse Tracker: real-time behavioral analysis of groups of 
mice 
 
Fabrice de Chaumont1,2*, Elodie Ey1,3,4*,  Nicolas Torquet5, Thibault Lagache2, Stéphane 
Dallongeville2, Albane Imbert6, Thierry Legou7, Anne-Marie Le Sourd3,4, Philippe Faure5,8, 
Thomas Bourgeron3,4,8 and Jean-Christophe Olivo-Marin2,8* 
 

Preclinical studies of psychiatric disorders require the use of animal models to 
investigate the impact of environmental factors or genetic mutations on complex 
traits such as decision-making and social interactions. Here, we present a real-time 
method for behavior analysis of mice housed in groups that couples computer vision, 
machine learning and Triggered-RFID identification to track and monitor animals over 
several days in enriched environments. The system extracts a thorough list of 
individual and collective behavioral traits and provides a unique phenotypic profile for 
each animal. On mouse models, we study the impact of mutations of genes Shank2 
and Shank3 involved in autism. Characterization and integration of data from 
behavioral profiles of mutated female mice reveals distinctive activity levels and 
involvement in complex social configuration. 
 
Keywords: phenotyping, animal tracking, neuropsychiatric disorders, animal models, social 
behaviors, group study, decision-making, mouse. 
 
INTRODUCTION 
 
Mice are routinely used as preclinical model to study the mechanisms leading to human 
diseases. In the field of psychiatry, assessing mouse social behavior under normal or 
pathological conditions is critical to understand which neural systems are engaged in these 
diseases. However, such behaviors are complex and still challenging to investigate in mice 
given the technical limitations of data gathering and analysis1. Indeed, while behavioral 
protocols investigating one or two animals provide information on activity and cognitive 
functions such as learning, memory and anxiety, gathering appropriate information on social 
behaviors requires access to the observation of more than two individuals. Very 
standardized social interaction tests are available2,3 but they rely primarily on quantification 
of the quality and on the number of simple (dyadic) and short (a few minutes) social 
interactions, and lack ethologically relevant behavioral markers (e.g., maintenance of social 
interactions over the long term, social interactions involving more than two mice)4,5. In 
addition, it is necessary to increase the robustness of the data collected and to provide 
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additional extracted features to document thoroughly the dynamics and plasticity of the 
social aspects over unlimited periods of time for each individual. This is particularly true, for 
example, for the formation and description of group dynamics of animals.  

Solutions to track automatically individuals within a group of mice over hours or days 
have been proposed (see Supplementary methods - Motivation and review of the 
existing tracking methods). While each of them represents a progress in the field, they all 
have a number of shortcomings that prevent full exploitation of the data and limit their routine 
use. One of the main current limitations remains the fact that none of them allow, in the long 
term and without manual corrections, an individual tracking of a mouse within a group with a 
sufficient level of details. 

To overcome these limitations, we developed a comprehensive system, called Live 
Mouse Tracker (LMT). It allows the automatic live tracking, identification and characterization 
through behavioral labeling of up to four animals in an enriched environment with no time 
limit. This solution makes use of RFID sensors and of an infrared/depth RGBD camera, 
under the control of a machine learning-based framework. RFID provides intermittent identity 
and tracking validation while the RGBD camera provides continuous depth and volume 
information6 to characterize animal shape and posture (see example with the tracking of one 
mouse in 7). On the basis of this robust central element, we designed a system that can 
address the whole behavioral workflow and cope with most if not all the difficulties of this 
type of assays: 1. reproducible acquisition hardware (see Supplementary methods and 
movies - Hardware blueprint and assembly instruction; Supplementary PDF file - 
Assembly instructions), 2. acquisition calibration (Supplementary methods - Camera 
setup and calibration), 3. standardized data acquisition, 4. live tracking (identity recovery 
and identity control) (Supplementary methods - Identity recovery with machine learning, 
Triggered-RFID closed-loop control), 5. automatic phenotyping (Supplementary 
methods - Behavioral event extraction), 6. on-the-fly analysis for monitoring the tracking 
quality or the behavior (Supplementary methods - Automatic tracking control), 7. 
storage of long term observations in database (Supplementary methods - Database 
description), 8. visual data inspection with the development of a specific data player 
(Supplementary methods - Database player) and 9. online data sharing with the 
community (databases, videos, analysis scripts and results) (Supplementary methods - 
Collaborative website sharing data). 

We used LMT with four animals to compare the behavioral profile of female mice 
lacking Shank28,9 or Shank38, two genes that were found mutated in a subgroup of patients 
with autism and coding for post-synaptic scaffolding proteins from excitatory synapses10–13. 
We report behavioral differences in the individual profiles between the two strains in the 
activity levels and involvement in complex social configuration. We confirm that the 
characteristic differences of activity levels between Shank2 and Shank3 mutant mice were 
still present, even after long interaction periods. Notwithstanding these different activity 
levels, Shank2-/- and Shank3-/- mice displayed typical circadian rhythms. We finally show that 
the atypical social behavior of mutant mice of both strains appeared to disturb the formation 
of subgroups within mixed-genotype groups of four mice. 

These results demonstrate the capability of LMT to study differences in the 
phenotypes expressed by individuals in groups of mice over larger durations of time. 
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RESULTS 
We have designed an integrated system that tracks and monitors, for either hours or days, 
the activities of four mice in a rich environment (Supplementary movie - Method 
overview). This system determines the outline mask and orientation of each mouse and 
builds, from these data, a comprehensive repertoire of individual and social behavioral 
events. The system can track mice of any coat color in a rich environment. It is robust to the 
presence of food, water, sawdust, brown crinkle paper, white compressed cotton cylinders, 
toys and house (either transparent to infrared or opaque) (Fig. 1a). The tracking 
(Supplementary Fig. S1 - Tracking diagram) is performed by using an RGBD camera, 
filming the mice from the top (Fig. 1b). The 2D ½ data (infra-red intensity and distance from 
the sensor of each pixel acquired; Fig. 1c-d, Supplementary methods - Capturing depth 
map) are integrated to compute a background depth map (Fig. 1e), which is a 
representation of the environment where the mice have been computationally removed 
(Supplementary methods - Computing the background height-map; Supplementary 
movie - Background height-map demo). The segmentation (Fig. 1f-g) step that extracts 
objects and boundaries is performed on an image obtained by subtracting the current 
acquisition from the background height-map (Supplementary methods - Segmentation 
and detection). Segmentations are then filtered by a dedicated machine learning to reject 
detections that do not match the mice (Supplementary methods - Building the detection 
feature vector, Detection filtering with machine learning) and detections are then 
processed to separate mice that are in contact (Supplementary methods - Detection 
splitter). Extraction of additional data such as the orientation (Supplementary methods - 
Head/tail detection post-processing) or the detection of ears, eyes and nose are then 
performed (Fig. 1f-g, Supplementary methods - Head sub-parts detection) thus enabling 
the detection of the tilt-orientation of the head. Detections are then processed for tracking 
(Supplementary methods - Tracking extender association process). Identity of tracks is 
retrieved in real-time by combining machine learning (Supplementary methods - Identity 
recovery with machine learning) with RFID (Supplementary methods - RFID 
calibration, Triggered-RFID closed-loop control, RFID hardware). Detection, tracking, 
and RFID readings information are stored in a database (Supplementary methods - 
Database description) and can be investigated live during the tracking (Supplementary 
methods - Querying database information with R and Python), or accessed via our 
online network (Supplementary methods - UDP live network information stream). Video 
and background maps are simultaneously recorded respectively in movies and image series 
(Supplementary methods - MP4 video recording). 

 Tracking reliability was assessed on four experiments of ten minutes each (i.e. 
18,000 frames each experiment) with respectively one to four mice in the same cage. LMT 
detected the mice at least 99.25% of the time (i.e. detection rate), for any number of mice 
(from one to four, Fig. 1j). Then two independent experts conducted validations of the 
detection (Supplementary methods - Manual validation (extra information) and Fig.S3-
5) to estimate reliability of 1) segmentation (Fig. 1k), essential to determine if animals are in 
contact and to conduct shape analysis; 2) head-tail orientation (Fig. 1l), needed for 
asymmetrical events; 3) identification of individual mice (Fig. 1m), essential to understand 
inter-individual relationships. Experts used the integrated database player (Supplementary 
methods - Database player) to manually validate frame by frame the tracker performances. 
In a group of four, mice were correctly segmented (i.e., the mask fit the real body shape 
exactly, no extra inclusion of objects or reflection on the walls were taken into account, no 
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merging of two animals) in more than 95.75% of the frames in which the mouse was 
detected (Fig. 1k). Detected orientation was accurate in more than 99.36% of the detected 
frames (Fig. 1l). Finally, the identity error rate did not exceed 2.69% for a group of four mice 
(Fig. 1m). Overall, the system keeps track of the identities of the animals, corrects false 
identifications and prevents any error from propagating thanks to the RFID used in the 
system. Switching identities episodes have a mean duration of 1.64s ± 0.23 s for the expert 
#1, and 1.33s ± 0.23 s for the expert #2 (Supplementary methods - Manual validation 
(extra information); Supplementary Fig. S3a). All these estimates allowed us to calculate 
the Multiple Object Tracking Accuracy (MOTA) tracking performance index14, which 
considers false positive, false negative and identity switches. The MOTA reached 0.993, 
0.991, 0.984, and 0.970 with one to four mice, respectively (Supplementary methods - 
Manual validation (extra information); Supplementary Fig. S3b). As a comparison, a 
tracking system for pig behavior reached a maximum of 0.90 for the MOTA index15. 

Finally, it should be noted that beyond this manual validation the system constantly 
checks the animal identities by constantly comparing the IDs stored by the tracker with those 
detected by RFID. The system then logs the number of either ID confirmation (match) or ID 
correction (mismatch) in the database. Therefore, users can monitor the tracking quality of 
their experiments using the metrics described in supplementary methods or one of their own 
choice (Supplementary methods - Automatic tracking control (ATC), ATC based on 
RFID, ATC based on detection). 
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Figure 1 | Tracking methodology and validation. (a) Real view of the cage with four black mice in 
enriched environment containing food, water, sawdust, brown crinkle paper, white cotton cylinder, 
toys, red house (opaque to mice, transparent to infrared). (b) Corresponding software display (infrared 
view). Each mouse is represented with its current segmentation. Colored lines represent tracks during 
the last 60 frames. Timecodes (experiment and real) are displayed at the top. Circled close-up on 
both sides represent mice individually, reoriented to head upward. On each close-up, the following 
information is displayed: the RFID number of the animals, the posture names (rearing, look up, look 
down; white if active, otherwise black; for instance the yellow mouse is rearing and looking up). The Z-
profile of the main axis of the animal with optional detection of ears (red) and nose (green). (c-i) 
Example of segmentation with white animals. (c-d) Acquired infrared image and (e) corresponding 
depth map. (f) Subtraction of the acquired depth map and background map. (g) 3D representation of 
the detection of the animals. (h-i) Close view of the head of the animal with detected nose and ears. 
(j-m) Manual validation performed over 10 minutes with 1 and up to 4 animals. (j) Detection error rate: 
proportion of frames where the animal is not detected. (k) Segmentation error rate: proportion of 
frames where the animal is detected but not correctly segmented (i.e. its shape is not exact). (l) 
Orientation error rate: proportion of frames where the animal is detected and well segmented but head 
and tail are not correctly detected or reversed. (m) Identity error rate: proportion of frames where the 
animal is correctly detected and segmented but its identity is not correct. 
 
For each timeframe and each detected mouse, LMT provides the mask of the animal, its 
depth mask relative to the background, the location of the head and of the tail, and finally the 
ears, eyes and nose detection. This data served as the basis for computing a number of 
events (list in Supplementary methods - Behavioral event extraction), inferred from 
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shape geometry (Supplementary methods - Event computation). Overall, we defined 35 
behavioral events related to intrinsic and relative positions of the animals and we extracted 
them automatically. They can be split-up into five categories (Fig 2a, list in Supplementary 
methods - Behavioral event extraction). i) Events related to individual behavior reflect 
activity and individual postures. ii) Social dyadic events reflect the different types of contacts 
between two mice (see an example of the different types of contacts established between 
pairs of animals during 4 min in Supplementary methods - Social contact timelines; 
Supplementary Fig. S6). iii) Dynamic events gather the approach, escape and follow 
behaviors involving two mice. iv) Configuration events reveal subgroup configurations with 
two, three or four mice, while v) group making and breaking events focus on the dynamics 
leading to the creation or the ending of subgroups. All these behaviors were computed over 
the long-term experiments (see example of chronogram in Fig. 2b for one individual of a 
group of four mice recorded for three days). We validated manually the different types of 
contacts (general contact, nose-to-nose contact, nose-to-anogenital contact, side-by-side 
contact) since all social events were based on these contacts and on geometric formulae 
(Supplementary methods - Manual validation (extra information); Supplementary Fig. 
S3-5). 
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Figure 2 | Automatically labeled behaviors and their representation (subset). (a) List of behaviors 
extracted classified in five major groups: individual, social dyadic, dyadic dynamic events, 
configuration events and group making/breaking events. (b) Classification of individual and social 
behaviors for a Shank3-/- mouse collected over three days within a group of four mice. 
 
 
Individual profiles of Shank2 & Shank3 mutant mice 
 
To demonstrate the potential of the system, we compared the behavioral profiles of two 
mouse models of autism spectrum disorder (ASD) mutated in genes coding respectively for 
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two synaptic scaffolding proteins of the Shank family, namely Shank2 and Shank3. Despite 
the relatedness of the two proteins, subtle behavioral differences between these two models 
were expected given the differences in the expression profiles of these two proteins16.  

We tracked individually four mice within well-established groups to quantify the 
exploration of the environment and the social interactions within a test cage with fresh 
bedding and enrichment material. We designed a configuration, based on two wild-type and 
two mutant mice, allowing a simultaneous monitoring of the control relationship wild-
type/wild-type, the interaction wild-type/mutant and the interaction mutant/mutant to provide 
all possible dyadic relationships that are usually tested with just two animals in classical 
settings. During 23 hours, we recorded nine mixed-genotype groups of four mice for the 
Shank2 strain and during three days six mixed-genotype groups of four mice for the Shank3 
strain. When not specified otherwise in the text, we analyzed only the first 23 hours of the 
Shank3 recordings to remain comparable with Shank2 mice. 

In this analysis, LMT automatically extracted 33 behavioral traits for each individual 
mouse (see list in Supplementary data - Behavioral event extraction). These traits were 
the ones that could be compared between wild-type and mutant mice. The distribution of a 
subsample of behavioral traits (Supplementary Fig. S8) revealed that Shank2-/- mice were 
more affected than Shank3-/- mice compared to their respective wild-type littermates. Indeed, 
Shank2-/- mice moved significantly more and spent significantly shorter time in side-by-side 
contact with individuals of the same genotype in comparison with wild-type mice 
(Supplementary Fig. S8). None of these traits more specifically social events were 
significantly affected in Shank3 mutant mice, confirming that Shank3 mutant mice displayed 
only subtle behavioral abnormalities17,18. To compare mutant and wild-type animals on the 
same baseline and to avoid inter-experiment variability, the value of each trait (in duration or 
in number of events) for one mutant was compared with the mean level of this trait over the 
two wild-type mice of their respective cage. We could therefore detect whether this specific 
behavioral trait was increased or decreased in mutant mice in comparison with the mean 
level of wild-type mice tested in exactly the same conditions (i.e., within the same cage). 

The behavioral profile of Shank2-/- mice (Fig. 3a; see Supplementary Fig. S9 for 
individual data) reflected higher locomotion activity (time spent moving alone but also in 
contact, time spent stopped alone), and lower exploration (duration of Stretched Attend 
Posture - SAP) for individual events. In social events, Shank2 mutant mice displayed 
reduced time spent in side-by-side contacts (same and opposite way), slower social 
approaches leading to a contact (make contact duration), increased following behavior 
(duration of train2, duration of follow), and increased frequency of completing or breaking a 
group of three or four mice (make group3, break group3, make group4). In contrast, the 
behavioral profile of Shank3-/- mice (Fig. 3b; see Supplementary Fig. S10 for individual 
data) indicated significantly reduced activity (moving alone) and significantly reduced time 
spent in a complex social interaction involving three mice (i.e. time spent at the end of a long 
line of three mice (train3)). We next compared the behavioral profiles of the two mouse 
models mutated in genes of the same family to identify the subtle effects of these mutations. 
Significant differences emerged between the Shank2 and the Shank3 profiles in activity 
measures (Wilcoxon tests with Bonferroni corrections for multiple testing: time spent moving 
alone [W=213, p<0.00003] and in contact [W=214, p<0.00003], and time spent stopped 
alone [W=14, p=0.00003]), in exploratory measures (time spent in SAP [W=29, p=0.00044]), 
in time spent in side by side contact (opposite [W=28, p=0.00036] and same way [W=32, 
p=0.00079]), in the duration of social approaches (duration of making contact W=190, 
p=0.00024) and in the dynamic of group3 (making W=200, p<0.00003 and breaking group3 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 18, 2018. ; https://doi.org/10.1101/345132doi: bioRxiv preprint 

https://doi.org/10.1101/345132
http://creativecommons.org/licenses/by/4.0/


 
 

9 

 
9 

W=196, p=0.00006). Overall, despite carrying mutations in genes from the same family, 
these two mouse models of ASD displayed inversed phenotypes regarding activity and 
exploration as well as different alterations of social behaviors.  

 

 
Figure 3 | Behavioral profiles of Shank2-/- mice (a) and Shank3-/- mice (b). Over the first day of 
group monitoring, 33 behavioral traits were computed for each individual (see definitions in 
Supplementary methods - Behavioral event extraction). Each behavioral trait value for one mutant 
mouse divided by the mean of the two wild-type mice within each cage was compared to one using 
Wilcoxon tests (corrected for multiple testing, since 33 tests were conducted for each strain; after 
correction: *: p<0.05, **: p<0.01, ***: p<0.001). Traits that were not different from the mean value of 
the wild-type mice of the experiment were set at one. Traits that were expressed more in mutant mice 
than in the mean of wild-type mice had values larger than one, while traits that were expressed less in 
mutant mice than in the mean of wild-type mice had values smaller than one. Y-axis graduations 
represent the expression ratio between mutant and wild-type mice, i.e., a value of 2 represents a trait 
that was expressed two times more in the mutant mice than in the wild-type mean mouse. 
 

 
We then investigated in further details specific aspects of the differences between the 

two mouse models and first focused on specific social behaviors. We conducted these 
investigations in the same experiments by computing the data extracted from the long-term 
monitoring of a group of four mice. 

 
Exploring the subgroup dynamics 
 
In mouse models of ASD, we expect mutant mice to exhibit deficits in social features such as 
remaining more frequently isolated from the rest of the group in comparison with wild-type 
mice. We thus provided a comprehensive analysis on the motivation of each mouse to join 
or leave a particular social structure. Here we define as a social structure the periods when 
the animals form groups, i.e., when they are in contact or close proximity with one another 
(see configuration events and group making/breaking events Fig. 2a). 

We focused on group of three mice, and first noticed that the two types of groups of 
three mice (two wild-type and one mutant mice or two mutant and one wild-type mice) were 
equally frequent. This suggested that, contrary to our expectations, Shank2-/- or Shank3-/- 
mice were not more frequently isolated than their wild-type littermates when a group of three 
mice was formed within the cage (Supplementary Fig. S11a,b). This also revealed that the 
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hyperactivity of Shank2-/- mice did not seem to perturb their ability to form a group of three 
mice. 

 
Figure 4 | Dynamic of group of three and four mice in Shank2 and Shank3 mice. Frequency of 
occurrence of the completion and breaking of a group of three (upper panels) or four (lower panels) 
mice according to the genotype of the maker or breaker. Expected probabilities of occurrences are 
depicted in light grey. With two wild-type (+/+) and two mutant mice (-/-) within the cage, there were 
12 possible creations of groups of three mice. For instance, there were two possibilities of a pair of 
wild-type being joined by a mutant mouse (i.e., 2/12=0.167; Fig. 4a, peach color points). 
Symmetrically, there were two possibilities of a pair of mutant mice being joined by a wild-type mouse 
(i.e., 2/12=0.167; Fig. 4a, steelblue color points). There were four possibilities of a pair of one wild-
type and one mutant being joined by a wild-type mouse (i.e., 4/12=0.333; Fig. 4a, light blue color 
points), and four possibilities of a pair of one mutant and one wild-type being joined by a mutant 
mouse (i.e., 4/12=0.333; Fig. 4a, orange color points). T-tests: *: p<0.05, **: p<0.01, ***: p<0.001. 

 
We then examined group dynamics to assess whether mutant mice were less 

attracted by social interactions involving more than one mouse. To this end, we first 
determined in groups of three mice which individual completed or broke it (Supplementary 
methods - Study of the dynamics of subgroups of three mice within groups of four 
mice). We defined the chance level as the probability of an individual with a given genotype 
to join or to leave a group of mice over all possible combinations. With two wild-type (+/+) 
and two mutant mice (-/-) within the cage, there were 12 possible creations of groups of 
three mice when considering the initial members and the joiner or breaker (i.e. ordered 
combination, see legend Fig. 4). Variations to chance levels indicated that one genotype 
was more (in the case of higher probability than chance level) or less (in the case of lower 
probability than chance level) likely than the other genotype to join or to leave a group. In 
both Shank2 and Shank3 strains, the probabilities of a mutant to join/leave a pair of wild-type 
mice or of a wild-type mouse to join/leave a pair of mutant mice were higher than expected 
by chance (joining: t-tests after Bonferroni correction for multiple testing: WT-WT<-KO: 
Shank2: t=23.324, df=8, p<0.001, Fig. 4a; Shank3: t=22.564, df=5, p<0.001, Fig. 4c; KO-
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KO<-WT: Shank2: t=14.45, df=8, p<0.001, Fig. 4a; Shank3: t=19.574, df=5, p<0.001, Fig. 
4c; breaking: t-tests: WT-WT->KO: Shank2: t=28.342, df=8, p<0.001, Fig. 4b; Shank3: 
t=28.704, df=5, p<0.001, Fig. 4d; KO-KO->WT: Shank2: t=21.708, df=8, p<0.001, Fig. 4b; 
Shank3: t=23.566, df=5, p<0.001, Fig. 4d). Therefore, in both models, pairs of same 
genotypes (either mutant or wild-type) seem to be more attractive and more repulsive to the 
other genotype than expected by chance. Since both strains were similar despite their 
difference in activity levels, this mutant/wild-type distinction could not be explained by hyper- 
or hypo-activity. Interestingly, in both strains, the mean duration of a group3 event (KO-KO-
WT or WT-WT-KO) created by a mouse of a given genotype and broken by a mouse of the 
same genotype tended to be shorter than group where the joiner and the breaker were of 
different genotypes (Wilcoxon signed rank tests with Bonferroni correction for multiple 
testing: Shank2: p<0.05; Shank3: p<0.1; Supplementary Fig. S12). This suggested that 
group3 created and broken by the same individuals were shorter than those created and 
broken by different individuals. These short group3 events also reflected the fact that mice 
have a tendency to just pass near a group of two without stopping. 

We also explored the completion and breaking of groups of four animals. The 
probability to enter as the last or to get out as the first of a group of four mice was not 
significantly different between mutant and wild-type mice in both strains (Figure 4e-h). This 
suggested that the level of activity did not disturb the social grouping ability of Shank2 or 
Shank3 mutant mice when all mice in the cage are involved. 

Altogether, these results indicate that our methodology allows us to access the 
dynamics of group formation, an information that, due to the technical limitations of current 
techniques, has rarely been described (except in 19). Such possibilities are of high interest 
for mouse models such as Shank2 and Shank3 mutant mice that display a large variability in 
the severity of their social phenotype according to their genetic construction and to 
experimental conditions (reviewed for Shank2 mutant mice in 20 and for Shank3 mutant mice 
in 18). 
 
Exploring activity levels in groups 
 
The comparison of the individual profiles between Shank2-/- mice and Shank3-/- mice 
revealed opposite activity levels (see above), confirming results obtained with classical 
protocols8,17. By following individually the group-housed mice with our system, we were also 
able to assess how these differences in activity level impact on the circadian activity. Over 
23h of monitoring, Shank2-/- mice travelled significantly longer distances (5107±300 m) than 
their wild-type littermates (3121±134 m; Wilcoxon rank sum test: W=12, p<0.001). Shank2-/- 
mice first displayed a novelty-induced hyperactivity at the beginning of the recording. 
However, despite their strong hyperactivity, Shank2-/- mice exhibited typical circadian 
rhythms, as suggested in another model of Shank2 mutant mice (deleted in exon 2421). 
Indeed, active and resting periods in Shank2-/- and Shank2+/+ mice were synchronous and 
the general locomotor activity over 23h was significantly correlated between Shank2+/+ and 
Shank2-/- mice (Spearman’s rank correlation: rho=0.951, S=2660, p<0.001; Supplementary 
Fig. S13). Shank3-/- mice tended to travel shorter distances over the first day (2970±75 m) in 
comparison with wild-type littermates (3287±116 m; Wilcoxon rank sum test: W=101, 
p=0.101). The activities of Shank3+/+ and Shank3-/- mice were significantly correlated 
(Spearman’s rank correlation: rho=0.958, S=2292, p<0.001) and did not suggest that 
Shank3-/- mice were hypoactive specifically because of the novelty of the environment but 
were constitutively hypoactive. We prolonged the monitoring of these mice over three days 
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to confirm this hypoactivity. Over three days, Shank3-/- mice travelled significantly shorter 
distances (7631±142 m) in comparison with Shank3+/+ mice (8374±226 m; Wilcoxon rank 
sum test: W=112, p=0.020). Again, the active and resting periods were synchronous 
between Shank3+/+ and Shank3-/- mice (Spearman’s rank correlation: rho=0.964, S=61024, 
p<0.001; Supplementary Fig. S13). Overall our data revealed a novelty-induced 
hyperactivity and a general hyperactivity embedded in classical circadian rhythms in Shank2-

/- mice. This hyperactivity measured by the computation of the total distance travelled 
confirmed the increased time spent moving (either alone or in contact with any other mouse) 
and reduced time spent stopped alone identified in the individual profile (Fig. 3a). In Shank3 
mutant mice, we observed a general hypoactivity embedded in classical circadian rhythms, 
which also confirmed the reduced time spent moving alone in the individual profile (Fig. 3b). 
Interestingly, the locomotor hyperactivity of Shank2-/- mice might perturb exploratory 
behavior according to the reduction of SAP behavior (Fig. 3a), while locomotor hypoactivity 
did not seem to have any effect on exploratory behavior (Fig. 3b). We therefore next 
addressed the dynamic of the hyper/hypoactivity in a new environment and the interaction 
with exploratory behaviors. 

 
Exploring activity levels and object exploration strategies in single and dyadic tasks  
 
Our system was flexible enough to investigate these differences of activity levels in single 
(Shank2 and Shank3 mice) and dyadic (Shank2 mice) exploration tasks in detail. During the 
30-min habituation in the test cage filled with fresh bedding (phase 1; Fig. 5a), Shank2-/- 
mice travelled significantly longer distances in comparison with Shank2+/+ littermates 
(Wilcoxon rank sum test: single: W=0, p<0.001; paired: W=0, p<0.001; Fig. 5b,c, phase 1). 
This data corroborates results obtained with the same animals with the classical openfield 
test (Spearman correlation between the open field test and the single exploration test: 
rho=0.727, p<0.001; data not shown). The level of activity measured in pairs was 
significantly correlated with the level of activity measured during single exploration of the test 
cage (Spearman correlation: phase 1: rho=0.899, p<0.001). In contrast, Shank3-/- mice 
travelled significantly shorter distances in comparison with their wild-type littermates in 
phase 1 (Wilcoxon rank sum test: single: W=81, p<0.001), confirming their hypoactivity in a 
novel environment. 
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Figure 5 | Hyperactivity and atypical exploration strategy in Shank2-/- and Shank3-/- female 
mice. (a) Protocol used with a single mouse tracked by the system. After 30 min habituation to the 
test cage (phase 1), a novel object (house in red Plexiglas) was introduced for 30 min (phase 2). (b) 
Examples of trajectories during phase 1 (upper panels) and phase 2 (lower panels) for a wild-type 
mouse (left panels), a Shank2-/- mouse (middle panels) and a Shank3-/- mouse (right panels). Red 
square: object zone; yellow points: frames in which the mouse is in a stretched attend posture (SAP). 
(c) Distance traveled in the entire cage in phase 1 and phase 2 for wild-type, Shank2-/- and Shank3-/- 
mice in the single condition. (d) Distance traveled in the object zone in wild-type mice and Shank2-/- 
mice in phase 1 and phase 2 in the single condition. (e) Definition of the stretched attend posture. (f) 
Proportion of frames in which mice are in SAP in the object zone over the total number of frames in 
which animals are detected in the object zone. Data are presented as mean±sem and individual 
points for 10-12 Shank2+/+ mice and 8-12 Shank2-/- mice as well as 7 Shank3+/+ mice and 12 Shank3-/- 
mice (Wilcoxon rank sum test; **: p<0.01; ***: p<0.001). 
 

We finally investigated the influence of the activity level on object exploration. For this 
purpose, after phase 1, we introduced on the fly (i.e. without stopping experiment) a novel 
object (here a red house) and the mouse could explore it for 30 min (phase 2; Fig. 5a). 
During this second 30-min phase, hyperactivity was still significant in Shank2-/- mice in 
comparison with their wild-type littermates (Wilcoxon rank sum test: single: W=0, p<0.001; 
paired: W=0, p<0.001; Fig. 5b,c). Again, the level of activity measured in pairs was 
significantly correlated with the level of activity measured during single exploration of the test 
cage (Spearman correlation: phase 2: rho=0.895, p<0.001). Interestingly, once the object 
was introduced, Shank2-/- mice displayed higher activity in the object zone in phase 2 than in 
the same zone in phase 1 (Wilcoxon signed rank test: single: V=0, p=0.008; paired: V=0, 
p<0.001; Fig. 5b,d). In contrast, Shank2+/+ mice displayed a decreased activity in the object 
zone (Wilcoxon signed rank test: single: V=55, p=0.002; paired: V=77, p=0.001; Fig. 5b,d), 
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similar to Shank3+/+ (Wilcoxon rank sum test: W=49, p<0.001) and Shank3-/- mice (W=144, 
p<0.001). This suggests two different exploration strategies: cautious approaches of the 
object in Shank2+/+, Shank3+/+ and Shank3-/- mice and uninhibited exploration in Shank2-/- 
mice (Fig. 5b, phase 2, lower panels). In paired experiments with the Shank2 strain, the 
occurrence of each strategy depended on the genotype of the mouse and was not 
influenced by the genotype of the mouse they were paired with (see Supplementary Fig. 
S14a-c). 

The two different strategies were characterized by the occurrence of stretched attend 
postures (SAP) (Fig. 5e, yellow points on Fig. 5b). SAP is a risk-assessment posture22 
automatically quantified in our system, no matter whether the animals are monitored in 
single or social conditions. It is characterized by an elongated body (body length longer than 
the mean body length + one standard deviation) and a reduced speed (< 5 cm/s). In the 
object zone, Shank2-/- mice used significantly less frequently the SAP to explore the novel 
object in comparison with their Shank2+/+ littermates (Wilcoxon rank sum test: single: W=78, 
p<0.001; paired: W=128, p=0.001; Fig. 5f), suggesting that Shank2-/- mice lacked risk 
assessment and therefore displayed atypical exploration. The presence of a conspecific did 
not seem to modulate this abnormality according to the results obtained in the paired 
condition. We replicated these findings about hyperactivity and atypical exploration strategy 
in a second cohort of Shank2 mice including males and females for single object exploration 
and females only for paired object exploration (see Supplementary Fig. S14d-f). This 
difference in novel object exploration suggests that Shank2 mutant mice present a 
suppressed neophobia (i.e. absence of inhibition), but this might be independent from their 
initial increased anxiety in dark-light test8. Surprisingly, Shank3-/- mice also displayed less 
frequently the SAP in the object zone in comparison with their wild-type littermates (Wilcoxon 
rank sum test: W=77, p=0.002). This suggests that, despite a similar distance travelled 
around the object, Shank3-/- mice still displayed subtle abnormalities in their exploration 
strategies. 
 
 

DISCUSSION 
LMT makes it possible to phenotype animals in groups and over long periods of time (days 
to weeks). This new methodology, based on the acquisition of rich sets of data, opens new 
avenues for examining how different genotypes, pharmacological tests or enriched 
environments influence decision-making or social interaction in a robust manner. This 
system also provides new information on social interactions and more specifically on 
interactions involving more than two freely-moving mice. Gathering data on several animals 
simultaneously and over long periods of time generates large datasets highly representative 
of individual behaviors. This in turn will stimulate massive analysis of large datasets to 
comprehensively study complex behaviors and should allow a statistical analysis of 
persistent individual traits. To boost this large-scale approach, LMT provides a website to 
allow the community to share data and analysis scripts, following the example of 
MouseTube23 (Supplementary methods - Collaborative website sharing data; 
Supplementary Fig. S7). 

LMT is a real-time process that also opens new perspectives to interfere online with 
any behavior by triggering an external device when a pre-determined event is detected. 
Indeed, the tracker is able to provide, in real time, the location and the posture information of 
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each mouse. We made this data available by low-latency network connection 
(Supplementary methods - UDP live network information stream) so that any third-party 
device (Arduino-like devices enabling automation control) or third-party software can gather 
current tracking information, either on the computer performing the tracking or on a 
dedicated one on a local network. We demonstrate this feature with an example: a live 
rendering of the subjective view of each mouse in 3D created with unreal engine 
(Supplementary movie - LMT - Live 3D rendering demo). In this toy demo (using only 
x,y,theta for each mouse), one can see the scene from the point of view of each mouse. We 
do not, however, claim an accurate reconstruction of the visual field of the mice. In this 
demo, mice leave a trail of the color corresponding to their identities to display their past 
trajectories to better understand the inter-individual coordination of movements. This 
approach can be extended to record electrophysiological activities, ultrasonic vocalizations, 
physiological signals such as cardiac activity, and also to build closed-loop systems to react 
to the behavior of the mice at very specific moments with optogenetics or other stimulating 
systems triggered with the closed-loop signals. The system should therefore be used to 
develop new behavioral tests to better answer the phenotyping needs24. 

Finally, LMT provides a built-in repertoire of behavioral events that can be analyzed 
with scripts as illustrated in this paper. This repertoire includes individual events such as 
stop or rearing, but also social interaction events such as the different types of contacts or 
social configuration involving more than two mice. An exhaustive set of additional data, 
including the positions (x,y,z) of the head, tail and mass center for each animal at each time 
point, as well as the complete mask of each animal are available for custom extensive and 
elaborate analyses. This rich description of individual mice opens the possibility to conduct 
complex offline analyzes on large datasets, such as the analysis of event behavioral 
sequences25, individual movement tracking or social network analysis. For example, among 
the Shank2 one-day group recordings that we conducted as pilot experiments, we observed 
a group of four animals that were not nesting in the provided house, while all other groups 
nested there. We investigated this case (Supplementary movie - Investigating an 
abnormal nest building behavior). One mouse appeared to avoid the house and refused 
to get in it. This animal spent most of its time at the opposite location of the house. The other 
mice first set the nest in the house, and then, after a few hours, moved its location and all 
the nesting material to the location of the other animal. Finally, the structure of the database 
complies also with the addition of extra measurements to monitor the environment for further 
developments. This should increase the reproducibility of experiments, and be used to 
optimize housing conditions by analyzing behavioral markers of welfare (social isolation, 
stress) and abnormal behavior. 

The low price of the system enables users to multiplex setups and conduct all 
experiments at the same time, which is an advantage when running long-term recordings. It 
is worth noting that the total number of animals that can be tracked simultaneously is only 
limited by the computing power (each individual tracking has a related CPU cost) and the 
density of mice present in the field (animals need to be alone from time to time to be 
identified via RFID). In the future, we plan to connect several setups to provide larger 
environments to larger groups of mice. We encourage the community to take over LMT and 
we facilitate ways to improve performances. Indeed, thanks to the open-hardware and 
software framework, and all the blueprints provided on the web, anyone can reproduce the 
system, build over it and improve or adapt parts of it without having to painfully rebuild 
everything from scratch. LMT has been designed natively for parallel architectures and to 
make the most out of new and more powerful computing architectures such as the Ryzen 
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CPUs. This scale-up in computing power benefits directly the performances of machine 
learning instances, and improves the identification latency. It will also impact the efficacy of 
data storage and processing during long-term experiments. 
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SUPPLEMENTARY METHODS 
 
 
 
 

 
Supplementary Figure S1 | Tracking diagram 

 
 
Capturing depth-map 
The depth map is represented as an image of 512x424 (typed signed short). We correct 
invalid values grabbed from the sensor that appear as spikes in the depth map. If the value 
is within an unexpected range (equals 0 for saturation or less than -32768), we repeat the 
value of the previous valid pixel read.  Code: LiveMouseTracker.correctInvalidZValue. 

The accuracy of the depth-map measurement is affected by the light absorption of 
the observed material. The brighter the object is, the farther it artificially appears. The 
correction is mild (less than 5 millimeters range), but mandatory to observe small animals. 
We tested 8 different Kinects and found a common empirical linear offset correction using 
the infrared images. We correct depth-map by applying the following formula to each pixel: 
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ𝑀𝑀𝑀𝑀𝑀𝑀 + (𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 − 23000)/1000.  
Code: LiveMouseTracker. compensateZIntensityError. 

The Kinect firmware is originally designed to watch player’s large movements 
standing in a room (like dancing), and is therefore not designed to observe close objects. Its 
original minimum firmware working range is set to 50 centimeters, but practical observation 
below 80 centimeters is not possible. To obtain a closer range, and a better resolution, we 
mask with a tape one of the infrared blaster of the Kinect to reduce scene illumination. (See 
Supplementary movie and file - Blueprint and assembly instructions). This could also 
be obtained with optical density placed in front of the blasters. 
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Computing the background height-map 
The background depth map is represented as an image of 512x424 (unsigned short). For 
each new depth-map captured by the sensor, we update the background map such that for 
each pixel, the background map keeps the min value between the captured and the stored 
maps. Area containing detections are not processed.  
code: livemousetracker.BackgroundHeighMapBuilder.integrateNewDepthImage. 

In case of false detection (see below), the height-map is corrected using the 
detection mask. For all pixels belonging to this mask, we set the height-map values with the 
values of the detection mask. Thus, the false detection will no longer be detected.  
Code: BackgroundHeighMapBuilder.correctBackground. 
 
Segmentation and detection 
The segmentation map represents all the animals and objects detected in the field. We 
compute the boolean segmentation map as follow: we set the segmentation map as 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  if 
ℎ𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 − 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ𝑀𝑀𝑀𝑀𝑀𝑀 > 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 . In our setup, depthSensitivity is constant and 
equal to 14, i.e. 1.4 millimeters. If infrared value is saturated, depth is not reliable and we 
discard the corresponding pixels from segmentation. We then crop the segmentation mask 
with the defined region of interest. To obtain all individual segmentations, we perform a 
connected component extraction (Icy internal BooleanMask function). Segmentations are 
then classified in two lists: spurious and validated detections. Segmentations with less than 
30 pixels get in the spurious list (they correspond to sawdust moving in the cage). 
Segmentations in spurious lists larger than 3 pixels are sent to the backgroundMapBuilder to 
correct the background. Their count is stored for further analysis in the “frame.particle” field 
in the database as it reflects the sawdust spread by mice when moving, digging or fighting. If 
the user sets the option “Manage wired animal”, extra filtering is applied, based on ellipse 
fitting of objects. The longest size of a mouse being around 60 pixels, objects greater than 
70 pixels in their main fitted axis are rejected. Then we process the validated segmentation 
list. If a detection is bigger than MaxSizeDetection, it might be because several animals are 
in contact, therefore the detection is processed by the detection splitter (see below).  
Code: detection.MouseDetector.detectMice(). 
 
Machine learning - building the detection feature vector 
The feature vector for machine learning is computed for each detection. The feature vector is 
key as it allows the machine learning to classify objects (instances). Therefore the feature 
vector must reflect the object and act as its signature; it must also contain enough 
information to discriminate objects. As a constraint, we tried to find the smallest number of 
features to have both a good reliability on the signatures and to make the training of the 
machine learning as fast as possible. Mice do have a large variety of conformations. 
Roughly, they can be elongated, completely retracted and appearing ball-like, rearing (so 
only the head is visible), or over an object (appearing bigger). Therefore, we do not want to 
consider surface, shape descriptor or scale in the learning. We also do not consider direction 
of the animal nor its location. Note that min/max intensity or depth are also not coded to 
avoid size or shadow discrimination by the machine learning. We only normalize histograms 
to make them consistent with or without shadows. The feature vector is composed of 33 
values. The first value is the ID of the animal (i.e. its class available only when training 
machine learning, under supervision). The next 16 values are the infrared histogram and the 
last 16 values the depth histogram. Code: machinelearning.MachineLearningSetBuilder. 
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Each histogram is built on either infrared data or depth data values corresponding to the 
mask of the animal. We set 16 bins starting from the min value to the max value of the 
dataset. Histogram values are then normalized. 
Code:detection.MouseDetection.buildHistogram. 
 
Detection filtering with machine learning 
The segmentation process detects all the objects that are moving and only filters very small 
objects. However, other objects are moving in the cage: food, house, large area of sawdust 
when animals dig, enrichment objects during object discovery tasks. Therefore we need an 
additional filtering able to determine whether we observe objects or animals. This filtering is 
performed by a supervised machine learning (random forest (1000 trees, depth 100), weka 
library http://www.cs.waikato.ac.nz/ml/weka/). The machine learning is trained using the first 
seconds of the observation, where moving objects are expected to be part of the class 
“Animal” versus a random pick of patches labeled as “Others”. The maximum number of 
observations considered is 600 per class, which represents 20 seconds of observation of a 
single animal or 5 seconds of observation of 4 animals as they are all mixed in this 
classification. This training set is then updated continuously in a background process using 
the last detection of each animal. Detection filtering is performed for each detection at each 
frame using a predictor of the machine learning. If 𝑝𝑝(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎)  >  0.7 the 
detection is set as “Animal”, else as “Others”. If we still have more items detected than the 
maximum number of animals expected, we remove the smallest detections. For each 
detection, a test is performed to find the number of tracks which terminates close to the 
detection. If several tracks match a single detection, it means that two or more animals are 
getting in contact, so we need to split the detection before the tracking association process 
starts. 
 
Detection splitter 
The detection splitter tries to recover animals that are melted in a single segmentation. It 
uses tracking information to get the number of tracks that ends at the melted segmentation. 
Then the splitter uses the last detection found at those locations and depth-map data to split 
the detection in the number of animals expected (i.e. the number of tracks ending at the 
segmentation). To perform the split, we first create an index map, mapped on the 
segmentation mask that will store the identity index of each pixel in the mask. The index map 
is initialized with the pixels representing the main axis of each previous detection. If the main 
axis is not available, we initialize with the mass center. Then we process the dilatation of the 
index following two constraints within the same process. The first one is a 3D constraint: 
each dilation is performed z-slide per z-slide, starting from the higher altitude of the 
segmentation down to the floor. Second, at each z-step, dilatation processes constrain the 
number of pixel dilated to maintain an equal share of all the available pixels between animals 
so that final splitted segmentations tend to have the same size.  
Code: package livemousetracker.splitter. 
 
Tracking extender association process 
Once detection set is complete, we first try to prolong existing tracks. We get all detections 
at 𝑡𝑡 − 1. If the detection is less than 30 pixels away, we extend the track. If several tracks are 
sharing potential prolongations, we perform an hungarian algorithm to set the best 
assignment. If no track is found, we create a new track.  
Code: livemousetracker.track.TrackExtender. 
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Identity recovery with machine learning 
The tracking identity recovery process is a multi-agent process performed as a background 
task. The tasks addressing the tracks to identify are scheduled by a manager process 
working with several solvers (Identifiers) in parallel. Depending on the number of threads 
available on the computer, we affect a given number of identifiers to the manager. The 
manager will dedicate one identifier to solve identities of unknown tracks in the present, and 
all the remaining identifiers will be launched to solve identities of anonymous tracks 
randomly located in the past. A manager builds the identifiers and affects them the 
anonymous tracks. It also guarantees that identifiers are not working on overlapping tracks. 
Code: livemousetracker.identity.MultiIdentityAgentManager. 

An identifier agent receives the track to identify and retrieves concurrent tracks, 
identified or not, that are overlapping in time with it. The identifier attempts to provide the 
identity of all the tracks involved at once, even if several (or all) tracks are anonymous. For 
each track involved, the identifier creates a “track identity scorer” (TIS). For reliability 
purposes, TIS dealing with tracks shorter than 2 seconds are discarded. Then, for each track 
involved in the TIS, we create a set of possible identities that is initialized with all identities 
available. This set of solution is pruned by removing all the identities found in overlapping 
tracks. Then the TIS trains a dedicated machine learning restricted to the animal remaining 
in its solution set. This machine learning is trained with a random pick of 5400 detections 
from each animal (equivalent to 3 minutes of observation per animal). We then pick 60 
detections from the track managed by the TIS, and for each detection we use the machine 
learning predictor which gives a vector representing for each detection its probability to 
belong to each animal. Within the next steps, all those results will be multiplied together. 
Nevertheless, due to a lack of training, the machine learning sometimes does not recognize 
a detection at all if it is an observation outlier and subsequently gives a probability of 0. In 
that case, this value would set to a probability of 0 a whole association hypothesis. Thus, to 
avoid this kill switch, we arbitrary floor this probability result to 0.01. To speed up the TIS 
process, we cache (i.e. store) the custom machine learning created by each TIS so that it 
can be directly queried by other TIS without re-training it. Meanwhile, to adapt to any change 
of appearance of the animals or to new conformation displayed, caches are destroyed 2 
minutes after they have been created. 

The last step is called the Track Identity Global Solver (TIGS). We create recursively 
all the possible tracking identity association of all the tracks with every pruned animals per 
track. Detections scores of all tracks per animal are gathered from all the Track Identity 
Scorers. For each possible global solution, it provides a vector containing the 60 ∗
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 detection evaluation. We then compute the product of the whole vector. 
Once we gather all the detection results for all association, we compute its sum, and the 
ratio of the best association towards that sum. We take the association decision if the final 
association ratio is greater than 0.95. In that case, we apply the solution found and affect 
identities to all tracks. If the condition is not satisfied, the identity is not recovered and 
anonymous track are left anonymous. The Identity Manager will therefore start later on a 
new Identifier on those tracks. Meanwhile, the knowledge of the machine learning will be 
updated with new observations that may better fit the data that remain to be identified, 
meaning that future observations can solve past tracks. Note that for memory consideration, 
data are streamed to database after 5 minutes, meaning that if no identity is found during 5 
minutes, track will be saved as anonymous, flushed from memory and will never be 
identified. 
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Code: identity.TrackIdentityGlobalSolver. 
 
Head/tail detection post-processing 
Mice are mostly moving forward. They can appear to go backward when they are rearing, 
during jump phases along walls or when they are running over a wheel. To automatically find 
the head location of the mice, we fit an ellipse over the animal and get its main vector. One 
of its extremities is the location of the head. The animal mask is then cut into two sub-masks 
(A and B). We therefore need to find whether A or B corresponds to the head part of the 
animal. We use the speed of the animal to set the head mask, therefore we need to know in 
which track this detection is associated to compute its speed. Thus, head/tail is processed in 
post track-processing.  
Code: MouseDection.testA_B_MC_SpeedForHeadLocation().  

To perform this recognition, we train one machine learning per animal (in a 
background task) using the same features computation as for the detection. We keep 300 
rolling detections to feed the machine learning, but we enable its query as soon as we have 
150 detections (5 s of observation). As each machine learning is dedicated to an animal, 
they can look completely different, or be equipped with different devices on their head and 
body. Once the head/tail machine learning of the animal is ready, we use the predictor to 
compute 𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑝𝑝(𝐴𝐴 𝑖𝑖𝑖𝑖 𝑎𝑎ℎ𝑒𝑒𝑒𝑒𝑒𝑒) and 𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑝𝑝(𝐵𝐵 𝑖𝑖𝑖𝑖 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑒𝑒 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎). If 𝑝𝑝𝑝𝑝𝑝𝑝 ∗ 𝑝𝑝𝑝𝑝𝑝𝑝 < 1 −
𝑐𝑐𝑐𝑐𝑐𝑐 and 1 − 𝑝𝑝𝑝𝑝𝑝𝑝 > √1 − 𝑐𝑐𝑐𝑐𝑐𝑐 and 1 − 𝑝𝑝𝑝𝑝𝑝𝑝 > √1 − 𝑐𝑐𝑐𝑐𝑐𝑐 with 𝑐𝑐𝑐𝑐𝑐𝑐 = 0.85 , we perform the swap.  
Code: mousedetection.PostProcess(). 
 
Head sub-parts processing 
The head sub-parts processing is only possible if the mouse is not wired. The head sub-
parts are detected depending on the fur color of the animal. We first detect if the animal is 
white or black. Given that the signal provided by the kinect is very stable (from one 
experiment to another, in time, and also from a kinect to another kinect), and that the 
contrasts between the parts of an animal are important, we can use hard-thresholding. We 
extract the mean intensity of the shape of the animal in the infrared image. If the score is 
below 8000, we set the mouse as black, otherwise it will be white. If the animal is black we 
threshold the mask in the infrared image at 4000. This will detect spot corresponding to ears, 
nose and eye (and potentially legs). We then check all detections in order to test if a subset 
satisfies distance constraints. The distance between the ears should be in the interval [7,16] 
and symmetrical, and the nose should be at the extremity of the animal. For white mice, we 
detect only the eyes by thresholding the infrared image (25000). To determine gaze 
direction, we need ear and nose extraction, therefore it can work only with black mice. To 
detect the tilt of the head, we project the ear/nose location on the main vector of the mouse. 
Then we compute the ratio of the vector tail to ear/nose projection. If the ears ratio is over 
0.9, it means that they are located close to the front edge of the animal, therefore the animal 
is looking down. If the nose is detected, we set the animal as “looking up”. All other 
configurations lead to no labelling of neither “looking up” or “looking down”. 
Code: mousedetection.MouseDetection(). 
 
Camera setup and calibration 
The Kinect camera should be facing the floor. Its front edge should be at 63 centimeters 
from the floor (floor is bottom of the cage considering no sawdust) to get the best resolution 
for a 50x50 cm cage. The Kinect should be connected to an USB3 port. The Kinect should 
also be taped to enable close observation as detailed in supplementary blueprints. The 
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LiveMouseTrackerCalibration program (demonstrated in the supplementary movie Hardware 
blueprint and assembly instruction) helps by positioning the camera perpendicular to the 
floor (Supplementary Fig. S2). It provides a live matrix display of distance measurements to 
finetune the pan/tilt of the camera. It also warns if the sensor is not taped. The provided 
setup provides images at a resolution of 1 pixel = 0.175 cm for an object observed at 63 
centimeters from the Kinect. 
 

 
Supplementary figure S2 | Calibration of the setup. (a) The notice from the assembly instruction 
which indicates that Kinect should be perpendicular to the ground. (b) 3D image from blueprints. (c-d) 
View of the calibration software. All colored dots display live the distance to the ground so that the 
user has just to move the Kinect by hand to watch if it is properly positioned. Red, orange, and green 
dots indicates respectively very bad, bad and correct positionnement. 
 
Note: The kinect v2 is now discontinued. Millions of items have been sold so this is not a 
rare product. Nevertheless, the method can be applied with other RGBD cameras if the 
driver to connect to the Java core program is available. 
 
RFID calibration 
The reading frequency of the antennas should be at 134 kHz, or 125 kHz depending on the 
RFID probed used (the frequency used is region dependent). Frequency should be accurate 
at -1/1 kHz to get the best reading range. This study and the provided blueprint have been 
designed and performed with 134 kHz probes (Glass probe ISO 11784/11785 2x12mm). 
Antenna reader enables the self measurement of the antenna reading frequency in a 
process called “Measure Unit Operating Frequency” (MOF). Use the provided 
RFIDReaderTest program while soldering to tune its frequency by adjusting wire length. 
Extra capacitor should be soldered on the reading board to switch to 125 kHz reading. 
 
Triggered-RFID closed-loop control 
To read a passive RFID probe carried by an animal, the antenna induces an electric current 
in the probe which powers it. Then the probe modulates the received signal to transfer its 
identification back to the antenna. This whole process is performed in 100 milliseconds by 
the RFID reader hardware (code at rfid.RFIDAntenna.run). If several probes are powered up 
at the same time (i.e. several animals in the range of an antenna), the signal is jammed and 
no ID is read. The signal is also jammed if several antennas closer to 70 centimeters are 
activated at the same time. The RFID identification is in closed-loop with the video tracking. 
The software data structure contains a list of antennas with their respective COM port 
number, position and range in image field. It activates in priority antennas to query identities 
of anonymous tracks. We obtain all detections available at current 𝑡𝑡 from the anonymous 
trackpool. We remove the animals that are in contact in this list as the reader will be jammed 
if two RFID are present over it at the same time. Then we activate the antenna that is the 
closest from a detection. Once a reading is performed, we correct the existing tracks and 
solve possible track conflicts (i.e. several tracks having the same ID at one timepoint). 
Machine learning instances operating in the background to solve identity of tracks are then 
canceled. If no antenna is activated with the previous process (meaning all animals are 
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identified or they are all in contact), we use the same procedure to read identities of known 
animals to validate constantly their identity. code: rfid.RFIDManager.activateAntennas. If an 
antenna gets faulty during the process, the user can see it on the interface (the 
corresponding antenna is drawn red). An antenna can get faulty because of an inopportun 
USB unplug or loss of power. The program is communicating with each antenna within its 
own process to avoid any lock while transmitting data. If a timeout is reached, the antenna is 
set as faulty. To monitor the quality of each antenna, the interface displays the number of 
reading attempts and the number of effective probe readings for each antenna. 
 
RFID hardware 
RFID can be bought at http://www.priority1design.com.au ref FDX-B/HDX RFID Reader 
Writer with external antenna and USB port (30€). Coil for antenna is ref RFIDCOIL-100A. 
(3.5€). The system is best working with 16 antennas/readers distributed on the 50x50 cm 
area. See Supplementary Blueprint and assembly instructions. 
 
Database description 
All the data are stored locally on a simple standalone database, in a redundant manner to 
target different levels of query, which complies with the Big Data principles26. This means 
that the database can be accessed by any third party software such as R, Matlab, Python or 
Java and that the user can query the database on simple or complex features. No server is 
needed to store or query databases as the data are shared between experimenters by 
simple file transfer (contrary to dedicated database servers that would lock-in the data into 
labs). 

The software creates the database for the current experiment automatically as the 
tracking starts. We choose the SQLite database format as it is server free. The whole 
database is a single file, and each database represents an experiment, making it easy to 
backup, share, query and transform for users. Tables are Animal(Id, RFID, Genotype, 
Name), RfidEvent(Id, RFID, Time, X, Y), Frame(FrameNumber, TimeStamp, NumParticle, 
Paused), Event(Id, Name, Description, StartFrame, EndFrame, IdAnimalA, IdAnimalB), 
Detection(Id, FrameNumber, AnimalID, Mass_X, Mass_Y, Mass_Z, Front_X, Front_Y, 
Front_Z, Back_X, Back_Y, Back_Z, Rearing, Lool_Up, Look_Down, Data). The data field is 
an XML text containing the full mask of the animal in zip format. To perform fast SQL 
Queries, we advise to add indexes to the database (Provided in Supplementary SQL 
script). Database can be explored with the software DB Browser for SQLite 
(http://sqlitebrowser.org/). We also provide scripts and examples to create all the figures and 
query shown in this paper from the software R (https://www.r-project.org/). Code: 
experiment.Experiment.createDataBase. 
 
Manual validation (extra information) 
In the following figure (Supplementary Fig. S3), we detail the distribution of the mean 
duration of error and the representation of the MOTA index14 depending on the expert. 
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Supplementary Fig. S3 | Manual validation of the tracking system. (a) Mean number of consecutive 
frames where the identity of a mouse is not correct. (b) Calculation of Multiple Object Tracking 
Accuracy (MOTA): MOTA = 1 - sum(t) ( false negative(t) + false positive(t) + identity switch(t) ) / 
sum(t) (nb mice in the ground truth), where t is a frame, a false negative is a frame where a mouse is 
not detected but it is there, a false positive is a frame where a mouse is detected but it is not there, an 
identity switch is a frame where identities are switched between individuals, and the number of mice in 
the ground truth is the number of mice that should be tracked in each frame. 
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Supplementary Fig. S4 | Timelines of manual validation of the tracking system (10 minutes). Each 
consecutive couple of row displays the manual validation (violet) against the same behavior labeled 
automatically (green) over 10 minutes. (a) Experiment with 2 individuals. (b) 3 individuals. (c) 4 
individuals. 
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Supplementary Fig. S5 | Manual validation of the tracking system. (a-e) Correlation between 
automatic and manual measurements for the different types of contact: (a) general contact, (b) oral-
oral contact, (c) oral-genital contact, (d) side by side contact in the same direction and (e) side by side 
contact in the opposite direction (Spearman’s rank correlation). (f) Number of events that were 
detected automatically as a function of the number of manual events detected by the experimenter.  
 
The Supplementary Fig. S5 displays the correlation (in total length of event found) between 
the manual and the automatic labeling on five different contact events. The Supplementary 
Fig. S5a-e displays linear correlation. For the time spent in contact, the time spent in oral-
oral contact and the time spent in oral-genital contact, the manual and the automatic results 
display a significant positive correlation and therefore match. For the side-by-side contact 
events, the automatic method tends to find longer events than the manual method, but the 
relation between the automatic measure and manual measure is still linear. After further 
inspection, we realized that our expert was a little more restrictive on its criteria for side-by-
side contact events, which explains the reduced duration of manually measured events in 
comparison with automatic measures. We checked this assumption by comparing the two 
measures at the level of the event. For each manually labeled event, we searched for an 
event in the automatic labelisation. The Supplementary Fig. S5f shows that very few events 
were missed by the automatic labelisation, which confirms our explanation.  
 
 
Automatic tracking quality control 
Live Mouse Tracker records events in the database of the experiment to monitor the 
tracking. Five types of events are stored: 1. If the machine learning dedicated to the 
identification of tracks performs an association, an event “MACHINE LEARNING 
ASSOCIATION” is logged. 2. For the RFID, we log three events. a) If an anonymous track is 
assigned thanks to RFID, then “RFID ASSIGN ANONYMOUS TRACK” is triggered. b) If a 
RFID read corrects the identity of a track, then the “RFID MISMATCH” is triggered (and the 
track is corrected). c) Finally when all animals are identified, the RFID are used to control the 
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identity of animals. In that case, at each reading confirming current track identity, a “RFID 
MATCH” is stored in database. 3. We can also monitor if an animal is not detected at a given 
frame. This happens when animals are hiding, or when they become indistinguishable, for 
instance in the nest condition. In this case, the event “DETECTED” is not triggered for the 
given animal. Those events (built automatically) allow building of several measures (online 
or in post-processing) to assess the quality of the tracking. Here we provide two different 
measurements: 
 
Automatic tracking quality control based on RFID reading: 
We extensively uses the RFID technology to assess the reliability of the identity. In our 
experiments, the identity of each animal is checked through the RFID antennas 49 times per 
minute on average (from 19.7 to 100.9) (see supplementary table 1). At each RFID read, the 
identity of the animal is checked and corrected if necessary (the correction propagates back 
in time). In the table hereafter, the number of identity match over the total number of reads 
provides 98.47% ± 0.16 (mean ± SEM) of success. The following table details the score for 
all animal of all 23h-experiments (Supplementary Table 1). 
 

Supplementary table 1 - RFID check quality for 12H (all Shank2 mice) 
Animal’s RFID Number of RFID 

reading 
Number of identity 

match. 
Number of identity 

mismatch. 
Average number 
of RFID control 

per minute 

Identity match 
rate 

4064913 29387 28798 589 40,8 97,99 

4064643 51857 51500 357 72,0 99,31 

4064920 71911 71582 329 99,8 99,54 

4065030 41690 41180 510 57,9 98,77 

4064840 42066 41611 455 58,4 98,91 

4064719 39505 39069 436 54,8 98,89 

4064579 32602 32156 446 45,2 98,63 

4064967 27319 26807 512 37,9 98,12 

4064691 31278 30948 330 43,4 98,94 

4064947 72662 72439 223 100,9 99,69 

4065039 32261 31873 388 44,8 98,79 

4064959 35075 34815 260 48,7 99,25 

4064786 40895 40469 426 56,7 98,95 

4064677 50371 50018 353 69,9 99,29 

4064956 37645 37218 427 52,2 98,86 

4064870 25437 24971 466 35,3 98,16 

4064800 31164 30797 367 43,2 98,82 

4064761 22723 22299 424 31,5 98,13 

4064879 28768 28495 273 39,9 99,05 

4064771 27424 27103 321 38,0 98,82 

4064844 25818 25527 291 35,8 98,87 

4064722 29560 29296 264 41,0 99,10 

4064807 24824 24478 346 34,4 98,60 

4064648 54120 53902 218 75,1 99,59 

4065006 22632 22328 304 31,4 98,65 
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4064597 40729 40408 321 56,5 99,21 

4395614 20725 20309 416 28,7 97,99 

4395891 14185 13694 491 19,7 96,53 

4064715 22679 22179 500 31,49 97,79 

4396015 50673 50219 454 70,37 99,10 

4395839 27279 26843 436 37,88 98,40 

4395766 45341 44997 344 62,97 99,24 

4395943 28466 28142 324 39,53 98,86 

4395748 52810 52459 351 73,34 99,33 

4396009 30079 29781 298 41,77 99,00 

4064696 8673 8148 525 12,04 93,94 

4395909 27077 26243 834 37,60 96,91 

4395685 28969 28093 876 40,23 96,97 

4395945 37733 37002 731 52,40 98,06 

4395810 42675 42164 511 59,27 98,80 

4395718 43721 43280 441 60,72 98,99 

4395573 26722 26137 585 37,11 97,81 

4395736 18510 17943 567 25,70 96,93 

4395612 56164 55858 306 78,00 99,45 

Average: 49,83 98,47 

 
 
Automatic tracking quality control based on detection: 
The second quality metric considers the number of frames the animal is detected over the 
total number of frames of the experiment (as used in validation) (Supplementary Table 2). 
In our experiment, we observe animals in housing conditions. They cannot escape the 
observation. So we observe different group activity that can be condensed in 2 phases: 
activity or sleep. During sleep, the animals are all together in a nest for long periods, and 
may be covered by cotton. We assume that our system cannot track individuals during those 
phases. Still, we detect those events and we label such periods as “nesting”. 
Therefore the quality measurement during activity provides 92.91% ± 0.48 (mean ± SEM) of 
success. 

 
Supplementary Table 2 - Detection check quality for 12H (all Shank2 mice) 

Animal’s RFID Total number of frame in 
activity 

Total number of frame 
where animal is identified 

(in activity) 

Detection ratio 

4064913 1251999 1158732 92,55 

4064643 1277002 1258198 98,52 

4064920 1263583 1226301 97,04 

4065030 1255989 1150209 91,57 

4064840 1194591 1112645 93,14 

4064719 1217785 1155538 94,88 

4064579 1280143 1243262 97,11 

4064967 1205802 1117508 92,67 

4064691 1217524 1166273 95,79 
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4064947 1184428 1133754 95,72 

4065039 1185552 1107423 93,40 

4064959 1227086 1194256 97,32 

4064786 1105668 1003393 90,74 

4064677 1136796 1070961 94,20 

4064956 1065620 969166 90,94 

4064870 1065315 970214 91,07 

4064800 1150021 1080028 93,91 

4064761 1143709 1072717 93,79 

4064879 1261700 1225298 97,11 

4064771 1191558 1125411 94,44 

4064715 1272050 1224720 96,27 

4396015 1224397 1159482 94,69 

4395839 1208929 1153056 95,37 

4395766 1206880 1127104 93,38 

4395943 1226894 1080982 88,10 

4395748 1249159 1118764 89,56 

4396009 1272463 1172354 92,13 

4064696 1219752 1050078 86,08 

4395909 1230852 1138858 92,52 

4395685 1211635 1117577 92,23 

4395945 1225521 1141087 93,11 

4395810 1258067 1195796 95,05 

4395718 1258095 1147781 91,23 

4395573 1232080 1086625 88,19 

4395736 1253415 1144180 91,28 

4395612 1262161 1202839 95,29 

4065006 1070942 952940 88,98 

4064597 1177829 1051287 89,25 

4395614 1153448 1056107 91,56 

4395891 1090421 938421 86,06 

Average: 92,91 

 
 
Social contact timelines 
In the following figure (Supplementary Fig. S6), we provide additional timelines for one 
experiment of 4 individuals. 
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Supplementary Fig. S6 | Example of the distribution of the different types of contacts between each 
possible pair of individuals within a group of four mice. 
 
 
Querying database information with R and Python 
Supplementary files are provided. They consist in scripts displaying how to query databases 
with R and Python. We also provide examples of scripts to build new events. 
 
UDP live network information stream 
To perform closed-loop control over any device, we deliver live tracking information, 
streamed on network. To avoid network packet control, we choose the UDP protocol, which 
is efficient for continuous data streaming. Streaming message consists in location and 
direction of all animals present in the field. 
 
Behavioral event extraction 
We extracted individual, dyadic, configuration, dynamic as well as making / breaking group 
events (see examples in Fig. 2). The following list describes the events that were calculated. 
Events preceded by a star were used for the computation of the individual profiles. 
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Individual events 

*move alone the mouse is moving at a speed higher than 5 pixels per frame and not 
in contact with any other mouse. 

*stop alone the mouse is stopped (speed lower than 5 pixels per frame) and not in 
contact with any other mouse. 

*rear iso the mouse is rearing (i.e. the height difference between the tail basis and 
the nose point is higher than 40 mm) and not in contact with any other 
mouse. 

head up the mouse is sniffing the air, nose up. (Supplementary methods - Head 
subpart processing) 

*head down the mouse is sniffing the ground. (Supplementary methods - Head 
subpart processing) 

*huddled the mouse is stopped (speed less than 5 pixels per frame) and huddling, 
with a ball shape from a top view (circularity>0.75). 

*jump the mouse is jumping against the walls of the cage (Oscillative position 
detection) 

*SAP the mouse is in stretched attend posture, i.e., the mouse is moving at a 
speed lower than 5 pixels per frame, its body length longer than the 
mean body length plus one standard deviation of body length and the 
height of the center of mass is lower than the median height of the 
center of mass. 

 
 

Social dyadic events 

*contact the mouse is in contact (i.e. the two masks have one common pixel) with 
any other mouse. 

*move contact the mouse is moving at a speed higher than 5 pixels per frame and in 
contact with another mouse. 

stop in 
contact 

the mouse is stopped (see above) and in contact with another mouse. 

*rear contact:  the mouse is rearing (i.e. the height difference between the tail basis and 
the nose point is higher than 40 mm) and in contact with another mouse. 

*contact side-
side 

the side of a mouse is within 30 pixels (52 mm) from the side of another 
mouse; the two animals are oriented in the same direction. 

*contact side-
side opp 

the side of a mouse is within 30 pixels (52 mm) from the side of another 
mouse; the two animals are oriented in opposite directions. 
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*contact 
nose-nose 

the mouse is sniffing the oral region of another mouse, i.e. the two nose 
points are less than 15 pixels (26 mm) from one another. 
 

*contact 
nose-
anogenital 

the mouse is sniffing the ano-genital region of another mouse, i.e. the 
nose point of the first mouse is within 15 pixels (26 mm) from the tail 
point of the other mouse. 
 

 
  

Configuration events 

*group2 the mouse is in contact with one and only one other mouse. 

*group3 the mouse is in contact with two and only two other mice to form a group 
of three mice. 

group4 the mouse is in contact with three other mice to form a group of four 
mice. 

*out of nest the mouse is isolated from the three other mice, which are stopped and 
form a nest (nest3). 

nest4 the four mice are stopped and form a nest together. 

*train2 the mouse is following another mouse (speed higher than 5 pixels per 
frame) while sniffing her ano-genital region. 

*train3 the mouse is following two other mice in train2 (speed higher than 5 
pixels per frame) while sniffing the ano-genital region of the last one. 

*train4 the mouse is following three other mice in train3 (speed higher than 5 
pixels per frame) while sniffing the ano-genital region of the last one. 

 
 
  

Dyadic dynamic events 

*social 
approach 

the mouse is approaching another one, i.e. the distance between the two 
animals shortens, the speed of the mouse is higher than the speed of 
the approached mouse, and the distance between the two animals is 
shorter than two mean body lengths (of the approached animal). This 
approach does not necessarily lead to a contact. 

*approach 
reared mouse 

the mouse is approaching another one, i.e. the distance between the two 
animals shortens, the speed of the mouse is higher than the speed of 
the approached mouse, and the distance between the two animals is 
shorter than two mean body lengths (of the approached animal). The 
approached mouse is rearing, i.e. the slope between the tail basis and 
the nose point. This approach does not necessarily lead to a contact. 

*make contact the mouse is approaching another one to make contact with it. The 
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number and the duration of these approaches are computed. 

*escape from 
social range 

the mouse escapes from another mouse, i.e. its speed is higher than the 
speed of the escaped mouse, the distance between the two mice 
increases and the distance between the two animals is shorter than two 
mean body lengths (of the animal that the mouse is escaping from). 

*break 
contact 

the mouse breaks a contact with another mouse and moves away from 
this mouse. 

*follow the mouse is walking directly in the path of another mouse. Both mice 
move at a speed higher than 5 pixels per frame, with an angle between 
their direction vectors smaller than 45°, with the distance between their 
centers of mass shorter than two mean body lengths. 

 
 

Group making/breaking events 

*make group3 the mouse is joining a group of two mice to form a group of three mice in 
contact. 

*make group4 the mouse is joining a group of three mice to form a group of four mice in 
contact. 

*break group3 the mouse is leaving a group of three mice. 

*break group4 the mouse is leaving a group of four mice. 

*seq o-o o-g: the mouse is first doing an oral-oral contact with another mouse and 
then going to sniff the ano-genital region of this mouse. 

*seq o-g o-o the mouse is first sniffing the ano-genital region of another mouse and 
then establishes oral-oral contact with this mouse. 

 
 
Dynamics of subgroups of three mice within groups of four mice 
We aimed at studying the dynamic of groups. We detail here the formation and breaking of 
groups of three mice. We defined the joiner and the breaker of these groups by identifying 
the mouse approaching and getting into contact or breaking contact at the frame just 
preceding or just following the group3 event, respectively. In the following paragraph, we 
detail how we calculate the odds of these events.  

We consider only the initiation of a group of three mice (but the reasoning is similar 
for the ending of a group of three mice). With two wild-type (WT1, WT2) and two mutant (KO1, 
KO2) mice initially in the cage, six pairs are possible: WT1-WT2, KO1-KO2, WT1-KO1, WT1-
KO2, WT2-KO1 and WT2-KO2. 

When calculating the expected probability of who is joining two mice to form a group 
of three mice, the odds to have an initial pair including two wild-type mice are 1/6. The 
probability of a mutant mouse to join this pair in 1/1 since it is the only genotype available. 
Therefore, the chance to have a mutant mouse joining a pair of wild-type mice is p(KO|WT-
WT) = 1/6 x 1/1 = 1/6. With a similar reasoning: 
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- The odds to have an initial pair including two mutant mice are 1/6. The probability of 
a wild-type mouse to join this pair in 1/1 since it is the only genotype available. Therefore, 
the chance to have a wild-type mouse joining a pair of mutant mice is p(WT|KO-KO) = 1/6 x 
1/1 = 1/6.  

- The odds to have an initial pair including one wild-type mouse and one mutant 
mouse are 4/6. The probability of a wild-type mouse to join this pair is 1/2 since a wild-type 
and a mutant mouse are available. Therefore, the chance to have a wild-type mouse joining 
a pair of one wild-type mouse and one mutant mouse is p(KO|WT-KO) = 4/6 x 1/2 = 1/3.  

- The odds to have an initial pair including one wild-type mouse and one mutant 
mouse are 4/6. The probability of a mutant mouse to join this pair is 1/2 since a wild-type 
and a mutant mouse are left. Therefore, the chance to have a mutant mouse joining a pair of 
one wild-type mouse and one mutant mouse is p(WT|WT-KO) = 4/6 x 1/2 = 1/3.  

These probabilities can also be found by counting the possible groups (initial pair - 
joiner or breaker): 
 
WT1,WT2 -KO1  WT1,WT2 - KO2 

KO1,KO2 - WT1 KO1,KO2 - WT2 

WT1,KO1 - WT2 WT1,KO1 - KO2 WT1,KO2 - WT2 WT1,KO2 - KO1 
WT2,KO1 - WT1 WT2,KO1 - KO2 WT2,KO2 - WT1 WT2,KO2 - KO1 

 
MP4 video recording 
To be able to go back to visual data for control, we record the infrared stream in MPEG. We 
add overlay information to display tracking information, RFID state, time of acquisition, 
memory load, CPU time computation for the last frame and real time/date. MPEG is 
recorded in full infrared resolution (512 x 424) at half the input rate by default (15 fps), 
customizable by user. MPEG is recorded in its own thread in low priority, meaning that in 
weak configuration, frames will be dropped from record. For storage and browsing 
convenience, each MPEG is 10 minutes long. 
Code: package livemousetracker.MPEGRecorder. 
 
Database player 
The database player allows to read database by replaying the data extracted from the 
software. Its GUI displays color-coded animal segmentation and the event corresponding to 
the current time points. Events can be displayed, no matter if they were computed from the 
original tracker, or subsequently in R, matlab, python or any software. If events are related to 
only one animal, the segmentation carries those descriptions. Otherwise, a column showing 
all interaction is color coded to better understand which mice are involved. Events can be 
filtered to help studying specific events. Users can seek forward or backward in the database 
with different time-steps, or change the frame rate. code: package 
livemousetracker.dataplayer. Supplementary movie : LMT - Method overview. 
 
Collaborative website sharing data 
The website is opened to anybody (Supplementary Fig. S7). Users first store their data in 
the location they prefer, and then they reference their datasets within this website. People 
can then search for experiment and download databases, films, script to process data and 
any material users want to share. 
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Supplementary Figure S7 | Opening view of the website http://livemousetracker.org designed to 
share experiments. 
 
 
Software Development Kit 
This work represents two years of work dedicated to the development of this complete 
solution. A large part of the solution consists in connecting to driver, grabbing stream, 
ensuring that streams are synchronized, dealing with java real time consideration, creating 
code probe to help debugging, creating display overlay, creating streamed data structure, 
dealing with calibration, output of data as video stream, database or network stream for 
immediate control of third party devices. For developing purposes, a number of side tools 
have been created, that are only used by the developers, not by the users. They consist in 
small programs that aim at helping the developers to debug code and test new features. 
Those tools are also provided in open source to build on top of the existing tracking. Among 
those tools, developers will find a raw data recorder and player, which mimics a live kinect 
device, but allows to play several times the exact same film. 

A large part of those developments is not to said “scientific”, but it is mandatory to 
build a final working product. We documented all this trunk of code so that newcomer can 
test their own techniques directly in this framework, in order to focus their energy on the 
problem of enhancing the phenotyping instead of working on all the side engineering 
problems. 
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 Finally, to ease distribution of new version, Live Mouse Tracker is developed as a 
plugin of Icy, which makes easy fork and further distributions. 
 
Mice 
ProSAP1/Shank2 mutant mice (hereafter named Shank2 mutant mice) were initially 
described in a previous study8. They were bred on a C57Bl/6J background (>12 
backcrosses), and maintained by crossing heterozygous parents. We tested adult female 
littermates aged between 3 and 12 months of age (the experiments were spread over 
several months). For the single object exploration, we used 10 Shank2+/+ and 8 Shank2-/- 
female mice aged of 4 months in the first cohort. These mice also underwent a previous 
behavioral characterization with classical methods (data not shown). The second cohort 
included 12 Shank2+/+ and 7 Shank2-/- female mice and 8 Shank2+/+ and 8 Shank2-/- male 
mice (aged of 2.5-4 months at the time of testing). For the object exploration in pairs, we 
used 12 Shank2+/+ and 12 Shank2-/- mice aged of 9 months at the time of testing in the first 
cohort (only two Shank2+/+ and four Shank2-/- did not undergo the single object exploration 
test). We used 13 Shank2+/+ and 11 Shank2-/- female mice aged of 5-6 months from the 
second cohort (all of them underwent the single object exploration task at least three weeks 
before). 

ProSAP2/Shank3 mutant mice (hereafter named Shank3 mutant mice) were initially 
described in a previous study8. They were bred on a C57Bl/6J background (>10 
backcrosses) and maintained by crossing heterozygous parents. We tested adult female 
littermates (from heterozygous parents). For the single object exploration, we used 7 
Shank3+/+ and 12 Shank3-/- female mice aged of 2.5-3 months. We did not conduct paired 
object exploration with the Shank3 mouse strain. 

For the group behavior experiment in four animals per cage, we constituted social 
groups at least three weeks before the experiments. We focused our study on female mice. 
Indeed, constituting mixed-genotype groups of four mice after weaning was not possible with 
males given their aggressiveness toward unfamiliar same-sex conspecifics at maturity8. We 
constituted nine groups of four mice over the two cohorts of Shank2 mutant mice (two 
Shank2+/+ and two Shank2-/-), which represented 18 Shank2+/+ and 18 Shank2-/- mice aged of 
3-13 months at the time of testing (all of them except two Shank2+/+ and two Shank2-/- 
performed the previous experiments). We also constituted six groups of four mice from the 
Shank3 strain, with two Shank3+/+ and two Shank3-/- mice, which represented 12 Shank3+/+ 
and 12 Shank3-/- female mice. These mice were aged of 3 to 4 months at the time of testing. 
To be able to compare the two models, we also tested only adult females in the Shank3 
strain. For both strains, the ages were homogenous within each group of four mice to get 
age-matched mutant and control mice 

At least 3 weeks separated two consecutive experiments. Mice were housed in 
standard laboratory cages in same-sex littermate groups of two to four mice until the single 
object exploration. After the single object exploration, for paired object exploration, mice 
were housed in pairs (wild-type/wild-type, wild-type/mutant and mutant/mutant; mixing non 
littermate mice) at least one week before the experiments. Finally, groups of four mice were 
constituted at least three weeks before the group monitoring study and were not changed 
anymore. Overall, social groups were changed maximum three times over the course of the 
experiment pipeline. Shank2 mice were housed in a 12:12 dark-light cycle, with lights on at 
07:00 AM, while Shank3 mice were housed in a 11:13 dark-light cycle, with lights on at 07:00 
AM. Food and water were available ad libitum.  
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Mice of both strains were identified at weaning (four weeks of age) using ear 
punches. The skin sample was used for genotyping following the protocols described in the 
original publication8. Between two and three months of age, we inserted the RFID tag 
subcutaneously under isoflurane anesthetic with local analgesia (lidocaine<0.05 ml at 21.33 
mg/ml). All experiments involving animals complied with the European ethical regulation, and 
were validated by the ethical committee CETEA n°89, Institut Pasteur, Paris. 
 
Behavioral protocols 
 
Single and paired object exploration 
We placed the experimental cage (50x50x30 cm) under the setup (70 lux, T=22°C). New 
fresh bedding (2-3 cm high) covered the bottom of the cage; bedding is renewed for each 
animal. We placed the tested mouse in the test cage and left it to freely explore the 
apparatus for 30 min (phase 1). After these 30 min of free exploration, we introduced a novel 
object (red Plexiglas house, permeable to infra-red light; 9.5x7.5x4.5 cm; Special Diet 
Services, England) in the bottom left quarter of the cage. The mouse was left for 30 min in 
the apparatus (phase 2). In the paired condition of the first cohort, we constituted three types 
of pairs (non littermates animals): 4 pairs of Shank2+/+ & Shank2+/+, 4 pairs of Shank2+/+ & 
Shank2-/- and 4 pairs of Shank2-/- & Shank2-/-. In the second cohort, we constituted 4 pairs of 
Shank2+/+ & Shank2+/+, 4 pairs of Shank2+/+ & Shank2-/- and 4 pairs of Shank2-/- & Shank2-/-. 
These pairs were together for at least one week before the experiment. We used the 
software Python 3.6 (Python Software Foundation. Python Language Reference, version 
3.6; available at http://www.python.org) to compute distances and stretched attend posture 
in the experiments.  
 
Long-term monitoring of groups of four mice 
Nine groups of four mice were constituted with Shank2 mice and six groups of four mice 
were constituted with Shank3 mice. We grouped together two wild-type and two mutant mice 
at least three weeks before the experiment. We do not control the fact that wild-type mice 
may be influenced by the behavior of the two mutant mice; however we consider these 
variations as within the normal variations within a population and analyzed therefore the data 
at the individual level. Each group of four mice was placed in the test cage (50x50x30 cm; 
70 lux when the light was on and 0 lux when the light was off; T=22°C), with one red house 
(see above in the single object exploration test), 6 cylindrical compressed cottons, and food 
and water ad libitum. Recording started immediately for 23 h for the Shank2 mice and for 
three days for the Shank3 mice. We used the software Python 3.6 (Python Software 
Foundation. Python Language Reference, version 3.6; available at http://www.python.org) to 
compute distances and behavioral events from the database. 
 
 
Statistical analyses 
We used the software R 3.3.1 for graphical representation and statistics (R Core Team 
(2016). R: A language and environment for statistical computing. R Foundation for Statistical 
Computing, Vienna, Austria. URL https://www.R-project.org/). For the single and dyadic 
social interactions, we used non-parametric Wilcoxon rank sum tests to compare variables 
between genotypes, given the non-normality of the data and the small sample size. For the 
long-term recordings of groups of four mice, we used non-parametric Wilcoxon rank sum 
tests to compare behavioral events occurrences and duration between genotypes, as well as 
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t-tests to compare the dynamic of the group formation. When necessary, we applied 
Bonferroni corrections for multiple testing.  
 
Software and system general description 
We developed the methods as a plugin of Icy. The code is developed in Java 8 (189 classes. 
19934 lines of code. 950 Methods. 32 Packages.). We put specific effort to make the code 
readable and documented for further extension. Experiments were first conducted on intel 
core i5-6400/2.4GHz/16GB and then on Ryzen 1800x. We recommend this last version. 
 
Motivation and review of the existing tracking methods 
We present here an overview of the current tracking methods used to follow mice and to 
extract behavioral information. We selected here the most representative ones of each type 
of method used. We first present the current needs in phenotyping studies and then we 
detail to what extent the different methods answer these needs. 

Phenotyping mouse models usually involves one individual screened through various 
behavioral tests to measure anxiety, learning, memory, or locomotion. Social aspects are 
determined in dyadic interactions, but these aspects are the least examined and remain to 
be complemented in existing phenotyping databases27,28. With the aim of documenting in the 
most comprehensive way the phenotype of an individual, studying social aspects within a 
group of animals would allow to document both dyadic interactions and more complex ones 
involving more than one other individual. These two aspects of sociality can therefore be 
dissociated and will enrich phenotyping data19,29–32. Such approaches will increase the 
translational values of the phenotyping studies24,33. 

In clinical examination of patients with neuropsychiatric disorders affecting social 
relationships, both the initiation and the maintenance of these relationships are evaluated 
(ADI-ADOS for autism spectrum disorders). Therefore in mouse models for these disorders, 
we should also take into account these aspects by following the freely moving animals over 
longer durations24. Indeed, short experiments have been shown to be misleading in some 
cases34. New experiments should be built to gather precise data on individual mice over the 
long term to answer the more and more precise needs of phenotyping with ethologically-
relevant measures27,28. 

Individual following is necessary to identify individual profiles. This is required to 
model personalized medicine. However, visual or olfactory marks could lead to modifications 
of the general behavior of the animals (as in zebrafishes35), biasing the results of the 
experiment. Therefore, individual following should be conducted without perceptible marks 
on the animals. 

To summarize these requirements, the current need in phenotyping is to measure 
automatically in a detailed way social and non-social behaviors of individuals within a group. 
The description of complex behaviors requires a high level of details. An attempt was 
already made to reach a high level of details in body postures with a depth sensor camera 
but this was used on an isolated mouse in an openfield7. A high level of details in social 
contexts is currently reached when only two individuals are tested together over short 
durations (i.e., 10-15 min). The way such data is collected does not allow users to 
investigate more individuals simultaneously or over a longer duration. de Chaumont and 
colleagues (2012) published a semi-automatic software to describe precisely the types of 
interactions and the sequences of social events occurring between two visually 
indistinguishable mice, from a top-view video camera36, but this solution is limited as it need 
to be supervised and corrected by an expert. Unger and colleagues (2017) built on 
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MiceProfiler and used another segmentation method to improve detection and avoid manual 
corrections37 (manual interventions remained necessary at the beginning of the tracking). 
Hong and colleagues (2013) developed a system with two video cameras and one depth 
sensor to follow two mice38, but they needed to be of different coat colors to track the 
identities. The data extracted were detailed (attack, mounting, distances head to body and 
body to body), but they were calculated based on annotated video frames and training of a 
classifier. Finally, the highest level of details was provided by Matsumoto and colleagues 
(2013). They developed a system using four depth sensors to follow in details the different 
steps of mating in rats in full 3D over ten minutes39. It only requires manual intervention to 
define the initial position of the models. Giancardo and colleagues (2013) have developed a 
system able to track unmarked mice over one hour40. The behavioral repertoire measured 
was large (types of contacts, above, following, non-social behaviors such as walking or 
standing alone), but the system needed an average of 1 manual intervention to correct 
identities every 34 s (in a 3-mice experiment). Overall, all these systems need manual 
interventions to provide the most relevant data. This is manageable over short experiments 
up to one hour, but not over longer experiments of several hours or days. 

For such long-term experiments, the possibilities to track individually animals in 
groups are two folds. First, the animals are marked visually, using hair dye. These visual 
marks can be combined with radio frequency identification (RFID) tags or not. So et al. 
(2015) manually scan sampled over 21 days chasing, fighting, sniffing and allo-grooming29. 
This approach provided impressive data on hierarchy and social relationships within the 
group, but it is not manageable on long-term experiments in mass phenotyping. Similarly, in 
the Visible Burrow System41, Bove and colleagues (2018) manually annotated six 10-min 
periods per day over five days of a group of eight mice, either from the C57BL/6J strain or 
from the BTBR strain and highlighted a reduced level of social activity and an increased level 
of grooming, but no difference in environmental exploration, social avoidance or aggression 
(except on the first day)33. Howerton et al. (2012) scored the activity of two mice and their 
grouping within compartments automatically over 24 hours42. They used the reads of RFID 
tags when mice travelled through antennas and combined data with visual validation using 
hair dye. Similarly, Shemesh et al. (2013) proposed a system providing the activity as well as 
the spatial occupancy of the animals marked visually, whose identity was learned over 
labeled video frames30. Castelhano-Carlos et al. (2014) conducted the same kind of activity 
and position data on rats identified by RFID tags and pen marks on the tail43. Interestingly, 
they also enriched their data with social behaviors that were annotated manually. The most 
advanced system in this category with animals visually marked is the system of Ohayon and 
colleagues (2013). They provided data over five days on the place preference of the mice, 
as well as their social grouping and following behaviors (based on pre-labeled videos)19. 
Altogether, these methods using visual marks to track animals (verified through RFID tag 
scanning or not) provided most of the time activity and place preference data. They are 
based on contrast and need specific fixed experimental conditions, obtained through 
background simplification or infrared lightning. Additional social behaviors needed to be 
manually annotated, except in the system of Ohayon et al. (2013)19. 

For this second set of methods, the animals are not visually marked. In most of these 
systems, the animals are identified using RFID tags, and the only data extracted are on the 
activity and the spatial grouping over different compartments/zones of the cage32,44–46. This 
method provides the longest experiment possible, but with no precise social data. Perez-
Escudero and colleagues (2014) developed a very interesting and inspiring method to 
identify each individual based on a visual fingerprint47. This digital signature is coded by 
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associating contrast information and distances within the animal. This system, idTracker, 
works very nicely with fishes and ants, as these animals are geometrically incompressible: 
indeed, even if they visually bend, they still always display the same surface. Mice in 
contrast are highly deformable, able to stretch or contract with a large spectrum of different 
conformations, eventually displaying different fur appearance, and, in addition, they can 
stand up (known as rearing) and present yet another set of visual conformations. This makes 
IdTracker unable to keep the identity of mice because the geometrical/digital signature used 
cannot deal with such a deformable model. The level of details provided by this method is 
not sufficient to characterize globally the social behavior of mouse models of 
neuropsychiatric disorders. With such a system, Perez-Escudero and colleagues managed 
to extract spatial occupancy, velocity or relative position of the animals within a group of 
zebrafishes, but no robust data on mice. Weissbrod and colleagues (2013) combined RFID 
identification with video recordings and provided social data reflecting relative movements, 
with a reduced behavioral repertoire but no robust data on the contacts between animals31. 
Finally, Alexandrov and colleagues (2015) proposed a system that can supposedly provide 
activity and contact data between non-visually marked animals but no information on the 
method used and on the validity of the tracking is available48. RFID tags are the most robust 
way to identify individuals but they have their own constraints in reading speed and in probe 
range. The RFID tag should be 1/ in the probe range for 1/10th s, 2/ the only tag in this 
range, and 3/ read by only one antenna, meaning only one antenna should be activated at a 
time. These constraints on RFID explain why their usage is not trivial, for instance, RFID 
floor, sold by the TSE company (TSE Systems GmbH European / Asian headquarters, Bad 
Homburg, Germany), cycle blindly over the antenna to read RFID, therefore the probability of 
reading an animal is reduced again by the number of antenna integrated in this device. 

All these methods have their own advantages, but none of them provide the 
possibility of track mice individually within a group over long-term experiments with the level 
of details that is requested for phenotyping mouse models of neuropsychiatric disorders. In 
addition, none of these systems is real time and therefore there is no possibility to directly 
interact with the experiment, despite the fact that several groups already asked for this 
feature38,39. This would allow to increase phenotyping speed42, and reject all possibility of 
manually correcting of the data. Tracking errors should therefore be managed directly at the 
source, and not corrected afterwards. As fulfilling these needs with the current methods of 
animal tracking is not possible, we developed our own system working in real time and 
managing identification errors.  
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Supplementary results 
 

 
Supplementary Fig. S8 | Total duration of a subsample of the behavioral events extracted from the 
monitoring over 23h of Shank2 and Shank3 mixed-genotype groups of four mice (Wilcoxon rank sum 
test; *: p<0.05; **: p<0.01; ***: p<0.001). 
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Supplementary Fig. S9 | Individual profiles of each Shank2-/- mouse calculated over 23h of 
recording. One row represents the profiles of each of the two mutant mice from the same experiment. 
Traits that were not different from the mean value of the wild-type mice of the experiment were set at 
zero. Traits that are more expressed in mutant mice than in the mean of wild-type mice have positive 
values, while traits that are less expressed in mutant mice than in the mean of wild-type mice have 
negative values. Y-axis graduations represent the order of magnitude of the difference between 
mutant and wild-type mice, i.e., a value of 2 represents a trait that is two times more expressed in the 
mutant mice than in the wild-type mean mouse. 

 

 
Supplementary Fig. S10 | Individual profiles of each Shank3-/- mouse calculated over 23h of 
recording. One row represents the profiles of each of the two mutant mice from the same experiment. 
Traits that were not different from the mean value of the wild-type mice of the experiment were set at 
zero. Traits that are more expressed in mutant mice than in the mean of wild-type mice have positive 
values, while traits that are less expressed in mutant mice than in the mean of wild-type mice have 
negative values. Y-axis graduations represent the order of magnitude of the difference between 
mutant and wild-type mice, i.e., a value of 2 represents a trait that is two times more expressed in the 
mutant mice than in the wild-type mean mouse. 
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Supplementary Fig. S11 | Proportions of groups of three individuals for each one-day recording of 
four individuals for (a) Shank2 mice and (b) Shank3 mice. Two types of groups of three individuals 
were possible within the groups of four mice: two mutant mice with one wild-type mouse (light grey) 
and one mutant mouse with two wild-type mice (dark grey). The expected proportion (white line) was 
0.5 given the composition of the cage (two mutant mice and two wild-type mice). We used a Chi 
square conformity test. No significant differences were found. 
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Supplementary Fig. S12 | Mean duration (frames) of groups of three and four individuals for each 
one-day recording of four individuals for (a) Shank2 mice and (b) Shank3 mice according to who is 
coming in and coming out. Wilcoxon tests with Bonferroni corrections for multiple testing. Data are 
present as mean±SEM. Shank2 strain: nine experimental groups; Shank3 strain: six experimental 
groups.  
 
 

 
Supplementary Fig. S13 | Mean activity levels of (a) Shank2 mice and (b) Shank3 mice over one day 
and three days of recording, respectively. We computed the distance traveled by each mouse per 20 
min time bins. We present the mean distance traveled per time bin for each genotype. Shank2 strain: 
18 Shank2-/- mice & 18 Shank2+/+ mice; Shank3 strain: 12 Shank3-/- mice & 12 Shank3+/+ mice. 
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Supplementary Figure S14 | Hyperactivity and atypical exploration strategy in paired conditions and 
confirmed in a second cohort of Shank2-/- mice. (a) Distance traveled in the entire cage in phase 1 
and phase 2 for wild-type and Shank2-/- female mice from cohort 1 in paired conditions. (b) Distance 
traveled in the object zone in phase 1 and phase 2 for wild-type and Shank2-/- female mice from 
cohort 1 in paired conditions. (c) Ratio of the number of frames in the object zone where the animal 
was detected in stretched attend posture over the total number of frames spent  in the object zone. (d) 
Distance traveled in the entire cage in phase 1 and phase 2 for wild-type and Shank2-/- mice from 
cohort 2 for males in the single condition, and for females in the single and paired conditions. (e) 
Distance traveled in the object zone in wild-type mice and Shank2-/- mice from cohort 2 in phase 1 and 
phase 2 for males in the single condition, and for females in the single and paired conditions. (f) 
Proportion of frames in which mice are in SAP in the object zone over the total number of frames in 
which animals are detected in the object zone. Data are presented as mean±sem and individual 
points for: (a-c) cohort 1: 12 Shank2+/+ mice and 12 Shank2-/- mice; (d-e) cohort 2: 12-13 Shank2+/+ 
female mice and 7-11 Shank2-/- female mice and 8 Shank2+/+ male mice and 8 Shank2-/- male mice in 
cohort 2 (Wilcoxon rank sum test; *: p<0.05; **: p<0.01; ***: p<0.001). 
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