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Abstract

Human diseases of zoonotic origin are a major public health problem. Simian foamy viruses

(SFVs) are complex retroviruses which are currently spilling over to humans. Replication-

competent SFVs persist over the lifetime of their human hosts, without spreading to second-

ary hosts, suggesting the presence of efficient immune control. Accordingly, we aimed to

perform an in-depth characterization of neutralizing antibodies raised by humans infected

with a zoonotic SFV. We quantified the neutralizing capacity of plasma samples from 58

SFV-infected hunters against primary zoonotic gorilla and chimpanzee SFV strains, and lab-

oratory-adapted chimpanzee SFV. The genotype of the strain infecting each hunter was

identified by direct sequencing of the env gene amplified from the buffy coat with genotype-

specific primers. Foamy virus vector particles (FVV) enveloped by wild-type and chimeric

gorilla SFV were used to map the envelope region targeted by antibodies. Here, we showed

high titers of neutralizing antibodies in the plasma of most SFV-infected individuals. Neutral-

izing antibodies target the dimorphic portion of the envelope protein surface domain. Epi-

topes recognized by neutralizing antibodies have been conserved during the cospeciation

of SFV with their nonhuman primate host. Greater neutralization breadth in plasma samples

of SFV-infected humans was statistically associated with smaller SFV-related hematological

changes. The neutralization patterns provide evidence for persistent expression of viral
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proteins and a high prevalence of coinfection. In conclusion, neutralizing antibodies raised

against zoonotic SFV target immunodominant and conserved epitopes located in the recep-

tor binding domain. These properties support their potential role in restricting the spread of

SFV in the human population.

Author summary

Foamy viruses are the oldest known retroviruses and have been mostly described to be

nonpathogenic in their natural animal hosts. Simian foamy viruses (SFVs) can be trans-

mitted to humans, in whom they establish persistent infection, as have the simian lenti-

and deltaviruses that led to the emergence of two major human pathogens, human immu-

nodeficiency virus type 1 (HIV-1) and human T lymphotropic virus type 1 (HTLV-1).

Such cross-species transmission of SFV is ongoing in many parts of the world where

humans have contact with nonhuman primates. We present the first comprehensive study

of neutralizing antibodies in SFV-infected humans. We showed high titers of neutralizing

antibodies in the plasma of most SFV-infected individuals. Neutralizing antibodies target

the dimorphic portion of the envelope protein surface domain that overlap with the recep-

tor binding domain. SFV-specific antibodies target epitopes conserved over 8 million

years of co-speciation with their nonhuman primate host. Greater neutralization potency

in infected individuals was statistically associated with smaller SFV-related hematological

changes. In conclusion, our results suggest the protective action of neutralizing antibodies

against SFV infection and spread in the human population.

Introduction

Simian foamy viruses (SFVs) are complex retroviruses that are widely prevalent in nonhuman

primates (NHPs) [1]. In animals, SFV replicate in the superficial cell layers of the buccal cavity

[2] and are mostly transmitted through bites and licking [3]. Humans are not natural hosts of

SFV, but can be persistently infected over several decades after a cross-species transmission

event [4–7]. Most SFV-infected people were bitten by a NHP and are thus the first hosts of a

zoonotic virus [6, 8]. Human infection with zoonotic SFV is thus a natural model to study the

key steps of the emergence of retroviruses. Several NHP species live in the tropical forests of

Central Africa, and people from rural areas are frequently exposed to their body fluids through

hunting, butchering, and meat consumption. Several new zoonotic agents have emerged from

simian reservoirs populating this region, including human immunodeficiency virus-1 (HIV-

1), human T-cell leukemia virus-1 (HTLV-1), and Ebola and Monkeypox viruses [9]. We have

established that the prevalence rates of SFV in South Cameroon are approximately 0.3% of the

general population and greater than 20% for people who have been bitten by a NHP [8, 10,

11]. Our work and other studies on people infected with SFV from African NHP species have

consistently reported the persistence of replication-competent virus and the presence of SFV

DNA in blood cells [12–18]. Blood gorilla SFV DNA loads vary between 1 and 1000 copies/105

cells [8, 18]. This is the range observed for blood HIV-1 DNA levels in HIV-1 infected humans

[19].

From the immunological point of view, human SFV infection corresponds to the efficient

control of a zoonotic retrovirus: SFVs persist throughout the lifetime of the host, but no major

clinical impact for the infected host nor transmission to other human hosts has yet been
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described [4–6, 8]. SFVs show broad organ tropism in NHPs [2, 20]. In vitro, they are highly

cytopathic for most cell lines [21]. In macaques, neutralizing antibodies prevent SFV transmis-

sion through blood transfusion [22]. SFV induces type I interferon (IFN) production in in
vitro infected cells [23], and are susceptible to type I and type II IFNs and several restriction

factors [7, 24–28]. Concerning immune responses, the only studies on human samples have

shown SFV genome editing by apolipoprotein B mRNA-editing catalytic polypeptide (APO-

BEC) cytidine deaminases [29, 30] and the presence of neutralizing antibodies in one worker

infected with a chlorocebus SFV [15].

SFV-specific antibodies induced in response to a zoonotic infection probably contribute to

the restriction of viral replication in the infected hosts and the inhibition of human-to-human

SFV transmission, two key steps in pathogen emergence. The antiviral function and properties

of SFV-specific antibodies have yet to be described in humans. Accordingly, we aimed to per-

form an in-depth characterization of neutralizing antibodies raised by humans infected with a

zoonotic SFV and their relationship with viral genotypes. We focused on gorilla SFV because

these strains are found in approximately 70% of infected individuals in Cameroon and Gabon

[8, 10, 31]. Furthermore, gorillas are phylogenetically close to humans. We quantified the neu-

tralizing capacity of plasma samples from 58 SFV-infected hunters against primary zoonotic

SFV strains [12]. We then studied the relationship between the neutralization specificity of

plasma samples and the genotype of the strain infecting each hunter, defined the region of the

SFV envelope protein (Env) targeted by the neutralizing antibodies, characterized the cross-

recognition of various SFV genera, and investigated whether neutralization was associated

with the characteristics of the SFV infection [32].

Results

Plasma from gorilla SFV-infected people efficiently neutralizes primary

zoonotic SFV strains

The primary strains isolated from our study population, representative of the two genotypes,

were the tool of choice for the initial evaluation of neutralizing antibodies in the absence of

data on the neutralization of gorilla SFV [12, 33]. The primary zoonotic GI-D468 and GII-K74

strains were neutralized by autologous plasma collected at two time points. Neutralization

titers were very high (> 1:2,000) for plasma samples of BAD468 and moderate (< 1:200) for

those of individual BAK74 (Fig 1A and 1B).

We quantified the neutralizing activity of plasma samples from 44 gorilla SFV-infected

individuals (S1 Table). Thirty-four (77%) neutralized the GI-D468 strain, with a median titer

of 1:496 (range 1:10–1:14,724; Fig 1C). Twenty-two (50%) neutralized the GII-K74 strain, with

a median titer of 1:20 (range 1:10–1:2,279, Fig 1C). Plasma samples from eight uninfected

hunters living in the same villages as infected individuals (S1 Table) had titers < 1:20 against

both strains (Fig 1C). The frequency of samples with neutralizing activity were significantly

different between infected and uninfected hunters (Fisher’s exact test P values were< 0.0001

and 0.01 for the GI-D468 and GII-K74 strains, respectively).

The 44 individuals infected with gorilla SFV can be defined as single, dual, or non-neutral-

izers: 24 plasma samples neutralized a single strain, 16 neutralized both strains, and four had

no neutralizing activity. The lowest dilution tested for all plasma samples was 1:20, due to lim-

ited sample volume for some participants. Low neutralization activity observed at a 1:20 dilu-

tion only was confirmed using lower plasma dilutions (1:10 and 1:5). Among the 40 reactive

plasma samples, five had low to moderate titers (< 1:200), 24 had high titers (� 1:200

and< 1:2,000), and 11 had very high titers (� 1:2,000). Thus, most humans infected with a
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Fig 1. Neutralization of primary gorilla SFV strains by human plasma samples. Neutralization assays were carried out by infecting the GFAB

indicator cells with SFV strains previously incubated with serial dilutions of human plasma samples. GI-D468 (A, blue) and GII-K74 (B, red)

strains were incubated with autologous samples collected at two time points. The number of infected units per well (mean, SD) is presented as a

function of plasma dilution. Arrows indicate neutralization titers. C. GI-D468 and GII-K74 strains were incubated with serial dilutions of plasma

samples from 44 people infected with gorilla SFV (SFVpos) and eight uninfected controls (SFVneg). The neutralization titers against both strains

are shown and the bars indicate the median values. D and E: The neutralization titers against GI-D468 (x axis) and GII-K74 (y axis) are presented

for the SFV-infected individuals, with symbols colored according to their genotype. Panel D shows the genotypes previously obtained by PCR

amplification of the env gene followed by sequencing [33]. Panel E shows genotypes defined by GI and GII-specific PCR described in this study.

The dashed lines indicate the neutralization detection thresholds (1:20).

https://doi.org/10.1371/journal.ppat.1007293.g001
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gorilla SFV produced high titers of antibodies that neutralized primary zoonotic strains circu-

lating in the same geographical region.

Plasma neutralization capacity matches the genotype of strains infecting

single neutralizers

We hypothesized that the strain infecting each individual was the major determinant of geno-

type-specific neutralization. Among the 44 gorilla SFV-infected people, for whom neutraliza-

tion assays were performed, 34 had had their env gene PCR-amplified and sequenced in a

previous study [33]. Twenty-six SFV strains belonged to the GI genotype and eight to the GII

genotype. Fig 1D and S2 Table show the neutralization titers against both strains and the geno-

type of the SFV strain for each participant: the infecting and neutralized strains were of the

same genotype (15 GI, 5 GII) for all single neutralizers. Dual neutralizers were infected with

strains from GI (n = 10), GII (n = 2), or undetermined (n = 4) genotype. Their neutralization

titers against the GI-D468 and GII-K74 strains were not related: for example, plasma from

individual BAK74 neutralized the GI-D468 strain more efficiently than its autologous strain

(neutralization titers: 1:340 vs 1:62). The results at this point support a match between the spec-

ificity of neutralization and viral genotype for single, but not dual neutralizers.

Half of dual neutralizers are coinfected with strains of both genotypes

We hypothesized that dual neutralizers were coinfected with strains from the two genotypes.

We thus established two genotype-specific PCR assays to demonstrate coinfection. Eight peo-

ple had blood cell DNA samples positive by both GI and GII-specific PCR, showing coinfec-

tion by strains of the two genotypes. Twenty-one people were infected with a GI strain only

(19 previously classified as GI and two undetermined, S2 Table) and 10 with a GII strain only

(seven previously classified as GII and three undetermined, S2 Table). The coinfection status

was unknown for five individuals because we ran out DNA or both genotype-specific PCRs

gave negative results. Re-examination of the neutralization pattern and results from genotype-

specific PCR showed that one of the eight coinfected individuals neutralized a single strain,

whereas seven neutralized both strains (Fig 1E, S2 Table). The nine other dual neutralizers

tested positive by either GI- or GII-specific PCR only or were undetermined. In conclusion,

coinfection by SFV strains of the two genotypes occurred in eight of 39 (20%) infected individ-

uals, and most coinfected individuals raised antibodies that neutralized strains of both

genotypes.

Neutralizing epitopes are located in the variable region of the envelope

protein

We next investigated the localization of the epitopes targeted by the antibodies. The match

between genotype(s) from neutralized and infecting strains supports the direct interaction of

genotype-specific amino acids (aa) with the neutralizing antibodies or their indirect involve-

ment with the proper conformation of the epitopes. Alignment of Env protein sequences from

the GI-D468 and GII-K74 strains showed that the central region of gp80SU harbors a variable

region (SUvar) which differs significantly in aa composition, with 42% (101 of 243) nonidenti-

cal aa (Fig 2A). In contrast, the surrounding bipartite conserved portion of the SU (SUcon)

contains only 2.5% nonidentical aa: two N-terminal and a cluster of three C-terminal aa of the

SUvar region. The gp18LP and gp48TM subunits vary by one and three aa, respectively, corre-

sponding to less than 1% nonidentical aa.
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We generated foamy virus vector particles (FVV) enveloped by wild-type GI Env (EnvGI)

and chimeric GI/II Env with exchange of SU (EnvGI-SUGII), SUvar (EnvGI-SUvarGII), or

Fig 2. Gorilla SFV envelope proteins: alignment, schematic organization, localization of sequence variations, and design of the

chimeric proteins used for epitope mapping. A. Env sequences from GI-D468 and GII-K74 strains were aligned using CLC

Mainworkbench software. Identical residues are indicated with dots. The three subdomains (gp18LP, leader peptide; gp80SU, surface

protein; gp48TM, transmembrane protein) are indicated above the sequences. The lines indicate the localization of the variable (SUvar,

red) and conserved (SUcon, black) regions, respectively. B. Schematic organization of the SFV Env protein. Amino acid positions are

those of the GI-D468 strain. Furin cleavage sites (arrows) and envelope subunits are indicated above the grey line. Major functional or

structural domains are shown by the bold line (H, hydrophobic region; RBD, receptor binding domain; FP, fusion peptide; MSD,

membrane spanning domain). C. Schematic representations of GI-D468 and GII-K74 Env sequences. Grey symbols represent

identical amino acids and blue/red symbols GI/GII-specific amino acids, respectively. Sequences from point mutations outside SUvar

are indicated below the diagram, as well as the SUcon and SUvar regions. The color code is not to scale in the SUvar region: amino

acid identity is 58% in this region. D. Schematic representation of the Env proteins used to produce the vectors and map the

neutralization epitopes. Full-length GI-D468 was used as the wild-type backbone, in which the SU, SUvar, and SUcon coding

sequences from GII-K74 were inserted. The same color code is used as in panel B.

https://doi.org/10.1371/journal.ppat.1007293.g002
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SUcon (EnvGI-SUconGII) sequences using chimeric Env packaging constructs (Fig 2). Neu-

tralization assays were performed with the FVV, using the same cell line (GFAB) and same

moi (100 IU/well) as for the replicating viruses. Susceptibility to neutralization by human

plasma samples of FVV with EnvGI and EnvGI-SUGII Env was similar to the one of replicat-

ing GI-D468 and GII-K74 viruses with less than a two-fold difference in neutralization titers

(S1 Fig).

We first tested samples from single neutralizers: plasma sample from individual BAD463,

which neutralized the GI-D468 virus only, efficiently neutralized the vectors carrying EnvGI

and chimeric EnvGI-SUconGII, but not chimeric EnvGI-SUGII or EnvGI-SUvarGII (Fig 3A).

Plasma BAD551, which neutralized only the GII-K74 virus, gave the opposite pattern of neu-

tralization (Fig 3B). Thus, neutralization epitopes recognized by these two plasma samples are

encoded by the SUvar region. These results were confirmed, with 14 plasma samples neutraliz-

ing the GI-D468 virus only and six neutralizing the GII-K74 only: when diluted at 1:80, the

plasma samples reduced the relative infectivity of vectors expressing the corresponding SUvar

region by five to 100-fold (Fig 3C).

We next tested plasma from individuals coinfected with strains of two genotypes against

the four vectors. Neutralization titers depended on the expression of the SUvar region. For

example, plasma from individual BAK177 had a high neutralization titer against the GI-D468

virus (1:1,025) and a low titer against the GII-K74 virus (1:36). Its neutralization titers against

vectors carrying EnvGI and EnvGI-SUconGII were high (1:790 and 1:655) and those against

EnvGI-SUGII and EnvGI-SUvarGII vectors were low (1:66 and 1:89) (Fig 3D). Other plasma

samples showed similar neutralization patterns (Fig 3E and S3 Table). In conclusion, the

SUvar domain carries the neutralizing epitopes recognized by antibodies from single neutraliz-

ers and coinfected individuals.

The plasma of nine individuals neutralized both viral strains, whereas they were only posi-

tive in a single genotype-specific PCR. There are two possible explanations for this result: they

were coinfected, but only a single strain was detectable by PCR, or their neutralizing antibodies

target epitopes that are located in regions conserved between the two genotypes. For most, the

titers were clearly different against the two replicative viruses (Fig 1E), arguing against the neu-

tralization of conserved epitopes. Indeed, titers depended upon expression of the SUvar region

by vector particles, as shown in Fig 3F and 3G and S3 Table. Thus, dual neutralizers were most

likely coinfected by strains of two distinct genotypes.

Neutralization activity is detected in the plasma of all SFV GI-infected and

most SFV GII-infected individuals

Four of 18 individuals infected with a GII strain did not neutralize the GII-K74 strain (three

were infected with a GII strain only and one was infected with GI and GII strains but neutral-

ized the GI-D468 strain only). One individual had no neutralizing activity against either strain

and was confirmed to have been infected on the basis of a Gag-specific WB and an LTR-spe-

cific PCR only, whereas the Pol, Env, and Env genotype-specific PCR assays (this paper) were

negative [8, 33]. Of note, all 31 individuals infected with a GI strain were able to neutralize the

GI-D468 strain. In conclusion, neutralizing antibodies were detected in the plasma of 100% GI

SFV-infected individuals and 78% of those infected by GII SFV.

We therefore investigated whether the higher proportion of non-neutralizers among GII-

infected individuals was related to differences in Env sequence variability across strains. Env

sequences derived from genotype-specific PCRs amplicons were aligned for the 31 GI and 18

GII strains infecting our study population and the viral strains used in the neutralization

assays, with sequences ordered as a function of their neutralization titers (S2 Fig). Sequence
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variability was similar for the GI and GII strains: 16% and 18% of the positions had at least one

aa change among the analyzed GI and GII sequences, respectively. Analysis of 12 full-length

GI and seven full-length GII Env sequences showed similar variability [33]. Thus, there was no

clear relationship between Env protein diversity within each genotype and the detection of

neutralizing antibodies.

Among the four GII-infected non-neutralizers, individual CH101 had full length env gene

sequence data available. There was a single nonconservative F420Y change in the CH101 SUvar

sequence, using the GII-K74 sequence as a reference. In an ELISA assay, plasma from CH101

did not react with peptides corresponding to GII-K74 and CH101 amino acids 411 to 430,

whereas plasma from BAK74 recognized both peptides. Thus, the antigenic difference between

the infecting and neutralized strains does not explain the lack of neutralization, at least for

individual CH101. We were unable to obtain a second sample from all non-neutralizers to

confirm the absence of plasma neutralization and amplify the env gene.

Neutralizing antibodies frequently cross-recognize gorilla and chimpanzee

SFV with phylogenetically related SUvar domains

The formerly used classification of viral strains was based on their susceptibility to neutraliza-

tion (serotyping) and showed segregation of SFV according to the host species. Among SFV

infecting African NHPs, those from chlorocebus, papio and chimpanzee belong to four distinct

serotypes, with chimpanzee SFV strains divided into two [21]. Gorilla SFV had not been previ-

ously typed. We therefore examined the susceptibility of SFV strains to neutralization accord-

ing to their origin. We started by testing two laboratory-adapted chimpanzee SFV strains with

defined serotypes: PFV, belonging to the CI genotype and serotype 6, and SFV7, belonging to

the CII genotype and serotype 7 [34]. Plasma samples from eight individuals infected with a

chimpanzee SFV were tested and neutralized CI-PFV (n = 3), CII-SFV7 (n = 6), GI-D468

(n = 6) or GII-K74 (n = 4) (Table 1). The plasma from seven individuals neutralized a single

chimpanzee SFV and one was a dual neutralizer.

We further characterized the cross-neutralization of gorilla and chimpanzee SFV by testing

the plasma of the 44 gorilla SFV-infected individuals: 17 neutralized CI-PFV only, eight

Fig 3. Neutralizing antibodies target the SUvar region. Neutralization assays were performed with plasma samples from gorilla SFV-infected

individuals against the four FFV carrying wild-type EnvGI, chimeric EnvGI-SUGII, EnvGI-SUvarGII, and EnvGI-SUconGII. Cells were

transduced with untreated FFV to provide the reference value. Relative infectivity was calculated for wells treated with plasma samples and is

expressed as the percentage of the reference value. Panels A, B, and D through G present full titration curves for plasma from single neutralizers

(A-B), coinfected dual neutralizers (D-E), and dual neutralizers without molecular evidence of coinfection (F-G). Panel C shows the relative

infectivity after incubation with plasma samples from single neutralizers diluted 1:80. Fourteen plasma samples were specific for GI-D468 and are

presented with dark blue/light pink symbols; six plasma samples were specific for GII-K74 and are presented with light blue/red symbols.

https://doi.org/10.1371/journal.ppat.1007293.g003

Table 1. Neutralization specificity of plasma samples from chimpanzee SFV-infected hunters.

Code Genotype 1:titer

GI-D468 GII-K74 CI-PFV CII-SFV7

AG15 CII 25 171 10 837

BAD316 CII 209 670 10 1622

BAD327 CII 31 27 10 277

CH66 CII 715 10 343 10

H3GAB56 CII 10 10 10 55

H4GAB59 CII 10 10 10 185

PYL106 CI 1451 10 2994 10

PYL149 Not determined 1040 52 565 103

https://doi.org/10.1371/journal.ppat.1007293.t001
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CII-SFV7 only, 10 both strains, and nine none of them (S2 Table). In contrast, plasma from

cercopithecus SFV-infected individuals had no or low neutralization titers against gorilla and

chimpanzee SFVs (Fig 4A). Thus, gorilla and chimpanzee SFV share at least some neutralizing

epitopes, but are not inhibited by plasma from hunters infected with monkey SFV.

Combining the data from gorilla and chimpanzee SFV-infected individuals (n = 52 sam-

ples), neutralization of homologous strains (i.e. phylogenetically related SUvar domains) were

mostly concordant. Neutralization of GI-D468 and CI-PFV were concordant for 42 samples

(12 negative and 30 positive) and discordant for 10 samples, which neutralized only GI-D468

(Fig 4B). In reactive plasma samples, titers against GI-D468 and CI-PFV were correlated

(Spearman’s ρ = 0.696, P < 0.0001). The second genotype showed a similar profile (Fig 4C):

neutralization of GII-K74 and CII-SFV7 were concordant for 48 samples (24 negative and 24

positive), and discordant for four, which neutralized either GII-K74 (n = 2) or CII-SFV7

(n = 2) viruses. In reactive plasma samples, titers against GII-K74 and CII-SFV7 were corre-

lated (ρ = 0.823, P< 0.0001). Neutralization titers against viruses with unrelated SUvar

domains were not correlated (P = 0.32 for GI-CII and P = 0.99 for GII-CI, Fig 4D and 4E).

These data confirm that the SUvar domain is a major determinant of recognition by neutraliz-

ing antibodies raised against both gorilla and chimpanzee SFVs.

We compared the neutralization of the laboratory-adapted CII-SFV7 strain to that of zoo-

notic primary chimpanzee SFVs that we isolated from Cameroonian hunters [12]. Both

CII-D327 and CII-AG15 belonged to the CII genotype and neutralization titers against both

viruses were strongly correlated (Spearman’s rho = 0.932, P = 0.0002). CII-D327 was neutral-

ized by plasma from 23 of 52 individuals infected with either gorilla or chimpanzee SFV. Neu-

tralization of the CII-D327 and both CII-SFV7 and GII-K74 strains was mostly concordant,

and in reactive plasma samples, the titers were strongly correlated (Fig 4F and 4G). Conversely,

neutralization of CII-D327 was unrelated to that of CI-PFV and GI-D468 (Fisher’s exact test

P = 0.26 and P = 0.33, respectively). In conclusion, laboratory-adapted and primary SFV

strains show similar susceptibility to neutralization. Nevertheless, the occurrence of discordant

responses against strains belonging to the same genotype support some inter-individual vari-

ability in the interactions between neutralizing antibodies and susceptibility sites on SFV Env.

Higher breadth of neutralizing antibodies is associated with smaller

hematological changes in SFV-infected individuals

We investigated whether neutralizing antibody levels were related to the parameters of SFV

infection. The neutralizing activities of plasmas was tested against four SFV strains, corre-

sponding to the two genotypes from each of the two host-specific SFV clades (GI-D468, GII--

BAK74, CI-PFV and CII-SFV7). We considered two quantitative measures of neutralization:

magnitude, defined as neutralization titers against the species- and genotype-matched strains

and breadth, defined as the number of neutralized strains. Neither magnitude nor breadth of

neutralizing antibodies were associated with age, duration of infection, or blood SFV DNA lev-

els (Fig 5). Neutralization titers varied over a wide range, leading us to consider a composite

measure to better quantify the neutralization capacity of plasma samples against the panel

tested. A score was assigned for each plasma sample and each viral strain, based on neutraliza-

tion titers. Neutralization titers < 20, ranging from 1:20 to 1:200, 1:200–1:2000, and> 1:2000

correspond to 0, 1, 2, and 3 points, respectively [35]. The sum of the points for the four tested

strains defined the neutralization score of a plasma sample. The neutralization score was not

associated with age, duration of infection, or blood SFV DNA levels (Fig 5C, 5F and 5I). The

duration of infection was different for the two ethnic groups, Bantus and Pygmies (medians:

13 and 21 yrs for Bantus and Pygmies, respectively, Mann-Whitney test P = 0.02), and SFV
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Fig 4. Frequent cross-neutralization of gorilla and chimpanzee SFV belonging to homologous genotypes. Neutralization

assays were performed against four viral strains with plasma samples from individuals infected with three SFV species

(chimpanzee, gorilla, and cercopithecus). A. Neutralization titers against four strains (GI-D468, GII-K74, CI-PFV, CII-SFV7) are

shown for individuals infected with chimpanzee or cercopithecus SFV; bars indicate the median values. B to G: Neutralization titers

against pairs of strains are presented with symbols corresponding to the infecting SFV species (open circles: gorilla SFV; filled
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DNA levels tended to differ (22 and 32 copies/105 cells, P = 0.09). Bantus and Pygmies had

similar neutralization magnitude (Medians: 1:395 vs. 1:965, P = 0.11) and breadth (Medians: 2

vs; 2, P = 0.68). In Pygmies, higher breadth was associated with higher SFV DNA levels (Fig

5J), whereas the SFV DNA loads were very homogeneous and not related to the neutralization

breadth in Bantus (Fig 5J). Neutralization titers against the four viruses were stable for samples

collected from seven individuals at two time points, one to seven years apart (Table 2).

Finally, we searched for associations between neutralization levels and hematological

parameters, of which the levels were significantly different between SFV-infected individuals

and matched uninfected controls [32]. Hunters infected with SFV had lower hemoglobin levels

than uninfected hunters. Here, among 22 SFV-infected individuals, those with a higher neu-

tralization breadth or score had higher hemoglobin levels, as well as a higher hematocrit and

erythrocyte levels (Fig 6A–6I). Higher neutralization magnitude also tended to be associated

with higher hemoglobin levels and hematocrit. Only 33% of individuals that neutralized three

or four strains had mild or moderate anemia (hemoglobin level< 13 g/dl), whereas as the fre-

quency was 69% for those who neutralized two strains or less. In addition, SFV-infected indi-

viduals had higher urea levels than uninfected controls, which were lower for those with a

higher neutralization breadth or score (Fig 6K and 6L). We also repeated the analyses with a

higher neutralization cut-off (1:80) and observed similar associations or trends for associa-

tions. Analyses stratified by ethnic group showed similar associations in both groups, except

for a strong correlation between neutralization breadth and protein levels in Bantus only

(Spearman’s rank test rho = 0.874, P = 0.01). In conclusion, individuals who produced neutral-

ization antibodies with a larger breadth displayed higher hemoglobin and lower urea levels

than those with a narrower neutralization range.

Discussion

We report the presence of high titers of neutralizing antibodies in the plasma of most SFV-

infected individuals. Ape SFV species comprise two genotypes that cocirculate in humans and

NHPs from Central-Africa [33]. We detected predominantly genotype-specific neutralization.

We constructed vectors with chimeric Env, based on naturally occurring sequence variations,

and used them to map dominant viral susceptibility sites to the dimorphic portion of the sur-

face domain that overlaps the receptor-binding domain. The frequent cross-neutralization of

gorilla and chimpanzee SFVs supports the recognition of highly conserved epitopes. Our

description of the neutralization patterns of SFV-infected humans provides two key pieces of

information concerning their virological status: gorilla SFVs appear to continuously or sporad-

ically express their viral proteins and the coinfection rate is over 30%. Several hematological

markers differ between SFV-infected individuals and uninfected controls [32]. We found that

a larger neutralization breadth is statistically associated with smaller hematological changes,

supporting the beneficial impact of the humoral response on the clinical outcome of infected

hosts. SFV has a high capacity to cross the host-species barrier and persistently infect humans.

Overall, our data demonstrate potent neutralization, targeting mostly conserved and immuno-

dominant epitopes located in the receptor binding domain, produced by approximatively 90%

of gorilla SFV-infected humans. These properties may have helped to block the spread of SFV

in the human population.

We show here that most of the 52 individuals infected with gorilla or chimpanzee SFV pro-

duced neutralizing antibodies. Titers varied by over 1,000-fold between participants and were

squares: chimpanzee SFV). The dashed lines indicate neutralization detection thresholds (1:20). Tables indicate the number of

individuals with and without neutralizing antibodies against each of the two strains, with P values from Fisher’s exact test.

https://doi.org/10.1371/journal.ppat.1007293.g004
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Fig 5. Magnitude and breadth of neutralizing antibodies and parameters of SFV infection Correlations between quantitative measures of

neutralization and parameters of infection are presented. The neutralization titer against the homologous SFV strain was used; for coinfected

individuals we considered the highest of the two titers. Breadth was defined as the number of neutralized strains of the four tested. For each viral

strain, a score was assigned based on the neutralization titer (neutralization titers< 20 and those ranging from 1:20 to 1:200, 1:200–1:2000,

and> 1:2000 correspond to 0, 1, 2 and 3 points, respectively). The sum of these points for the four tested strains defined the neutralization score of

a plasma sample. Age (A, B, C), duration of infection (D, E, F), and SFV DNA levels (G, H, I) are presented as a function of the neutralization titers

(log10 transformed, A, C, and E), breadth (B, D, and F), and neutralization score (C, F, I). The lines represent the linear regression curves. J: SFV

Potent neutralizing antibodies targeting zoonotic simian foamy viruses

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1007293 October 8, 2018 13 / 26

https://doi.org/10.1371/journal.ppat.1007293


high or very high in 75%. A key element of the cross-species transmission of viruses is their

replication in the new host. A side-by-side comparison of SFV viral load, replication sites, and

immune response in human and animal samples is impossible to perform for apes living in the

wild. However, neutralization titers (< 1:20 to 1:15,000) in human plasma were similar to

those reported in chimpanzee and gorilla samples (< 1:32 to 1:2,500) tested against chimpan-

zee SFV [36]. SFV-specific IgG was found to be slightly lower in occupationally infected

humans than in captive chimpanzee samples using a different assay of SFV-specific antibodies

(semi-quantitative WB assay) [37]. A humoral response of comparable magnitude in humans

and apes reflects the lack of an intrinsic restriction of SFV replication in vivo in humans, in

accordance with the lack of in vivo virus adaptation after a zoonotic infection [12].

The humoral response in gorilla SFV-infected people is consistent with persistent exposure

to viral antigens during chronic viral infection, as neutralization titers were (1) high in most

individuals; (2) of similar magnitude among people who have been chronically infected for 1

to> 40 years; and (3) stable over a one to seven year-long longitudinal follow-up. Some Brazil-

ian workers with serological evidence of infection by New World Monkey (NWM) SFV were

shown to lose their seroreactivity in western-blot assays [38]. Blood SFV DNA levels for NWM

strains are usually undetectable in humans, in contrast to NHP [38–40]. Overall, both the fre-

quency of SFV DNA detection in human blood samples and antibody levels support higher

expression for SFV that originate from the closest human relatives [8, 38, 39, 41]. In conclu-

sion, high neutralization titers in humans infected with ape SFV strongly suggest that these

zoonotic viruses express their proteins in their new human hosts.

We describe the paradoxical situation of high neutralization titers, an indicator of viral pro-

tein expression, and undetectable viral RNA in blood and saliva of the same study population

[14]. Blood antibodies reflect viral protein expression in the organism from months to years,

whereas qRT-PCR assays are limited to the tissue analyzed (blood or buccal samples), at a

DNA levels are presented as a function of the neutralization breadth for Bantus (triangles) and Pygmies (squares). Results from the Spearman rank

test are indicated on the graphs and statistically significant results are shown in bold.

https://doi.org/10.1371/journal.ppat.1007293.g005

Table 2. Stability of NAb titers in the plasma of infected individuals.

Code Year of sampling 1:titer

GI-D468 GII-K74 CI-PFV CII-SFV7

BAD348 2013 2460 10 238 10

2015 1006 29 258 10

BAD447 2013 587 529 68 588

2015 345 576 62 441

BAD463 2011 536 10 33 10

2013 486 10 55 10

BAD468 2010 2068 47 237 66

2013 2865 —a 223 47

BAK177 2013 1125 77 88 — a

2015 1057 177 215 371

BAK242 2010 418 10 82 10

2011 610 10 83 10

BAK40 2008 25 10 10 10

2015 70 10 20 10

a not tested

https://doi.org/10.1371/journal.ppat.1007293.t002
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Fig 6. Neutralization magnitude, breadth and score are associated with hematological variables Correlations between quantitative measures

of neutralization and hematological parameters are presented. Erythrocyte counts (A, B, C), hemoglobin (D, E, F), hematocrit (G, H, I), and

blood urea (J, K, L) levels are presented as a function of neutralization titers (A, D, G, and J), breadth (B, E, H, and K), and potency (C, F, I and L).

The lines represent the linear regression curves. Results from the Spearman tests are indicated on the graphs and statistically significant results are

shown in bold.

https://doi.org/10.1371/journal.ppat.1007293.g006
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given time point. Thus, the lack of SFV RNA detection in blood or saliva does not prove the

absence of viral replication in the human hosts. Furthermore, circulating lymphocytes—the

major blood cell type carrying SFV DNA [13]–are usually in a resting state not permissive to

SFV replication, whereas proliferating lymphocytes are mostly located in lymphoid organs and

tissues. In vitro, SFV latency is characterized by persistent expression of the Bet protein only,

in the absence of Env expression [42–44]. Thus, the presence of high levels of Env-specific anti-

bodies provide indirect evidence against in vivo latency of gorilla SFV in humans.

We recently observed that several hematological parameters differ between SFV-infected

hunters and age-matched uninfected hunters living in the same area [32]. The hematological

alterations consisted of reduced hemoglobin and red-cell levels and elevated protein, urea, cre-

atinine, creatine phosphokinase, and lactate dehydrogenase levels. Individuals with a large

neutralization breadth had smaller hematological alterations than those with a narrow neutral-

ization breadth. Neutralization breadth depends upon the targeted epitopes, diversification of

viral sequences in the infected host, efficient cross-talk between B and T lymphocytes, and the

maturation and selective expansion of high affinity antibodies. If the neutralization breadth of

SFV-specific antibodies reflects their in vivo efficacy, as shown for other viral infections [45],

our results may reflect the protective action of neutralizing antibodies against hematological

changes observed in SFV-infected individuals.

Approximately 10% of gorilla SFV-infected individuals had detectable neutralizing antibod-

ies. We were unable to obtain a second blood sample from these individuals, precluding con-

firmation of the diagnosis and the neutralization pattern. For one non-neutralizer, CH101, the

sequence variation between the autologous virus and the strain used in the neutralization assay

is unlikely to explain the negative results. Another non-neutralizer, BAK235, was included in

our recent clinical study [32]. He was not immunosuppressed, and his hematological parame-

ters were close to the median value of the group (Fig 6). All participants were apparently

healthy at the time of sampling and all had negative HIV serological assays. Thus, undetectable

neutralization was probably not a consequence of poor health. The lack of neutralizing anti-

bodies may be related to low viral load, as suggested by undetectable SFV DNA in the qPCR

assay for individual BAK235 [8], and failure to amplify the env gene for individuals BAK235,

CH86, and H10GAB79. We indeed observed a positive correlation between antibody titers

and blood SFV DNA levels for Pygmies. Overall, undetectable plasma neutralization in some

participants may be explained by low viral replication.

Here, we showed that neutralizing epitopes targeted by human plasma are mostly located in

the SU domain of the Env protein and demonstrated the relation between the genetic and anti-

genic properties of gorilla SFV strains. For chimpanzee SFV, the initial description of two sero-

types [46] is consistent with the latter demonstration of infection of these NHP species by

these two genotypes [33]. Here, we directly demonstrated that chimpanzee SFV strains belong-

ing to serotypes 6 and 7 [36, 46] were neutralized by the plasma of individuals infected with CI

and CII genotypes, respectively. Feline foamy virus (FFV) genotypes were shown to determine

the type-specificity of neutralizing antibodies [47] and the fragment of the genome comprising

the env and bel1 genes to carry the determinants for FFV genotype-specific neutralization [48,

49]. The two genotypes of FFV are present in domestic and wild felids of various geographic

regions [50], and several Asian and African NHP species are infected by SFV strains segregat-

ing into two genotypes [33]. Overall, targeting of the bimorphic region located in the Env pro-

tein surface domain is a cardinal feature of antibodies that neutralize thus far studied foamy

viruses.

Most plasma samples neutralized both gorilla and chimpanzee SFV, indicating high conser-

vation of some of the sites targeted by the neutralizing antibodies. The chimpanzee/gorilla split

occurred eight million years ago [51]. The phylogeny of the conserved and variant portions of
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the env gene differ: for the central SU region, SFVs form two clades, corresponding to the two

genotypes, and within each clade, isolates are distributed according to their host [33]. Conse-

quently, aa identity of the SUvar region is� 70% for GI-CI and GII-CII pairs of viral strains,

and only�58% for GI-GII and CI-CII pairs. In the conserved backbone of Env, aa identity is

� 78% for GI-CI and GII-CII pairs and above 95% for GI-GII and CI-CII pairs. These data are

fully concordant with the cross-neutralization of gorilla and chimpanzee SFVs for strains from

the same genotype group. However, some plasma samples only neutralized strains from a sin-

gle host species (19% and 8% between GI-CI and GII-CII strains, respectively). Such a narrow

pattern may reflect inter-individual variation in Env sequences and/or antibody binding sites.

Minor antigenic differences between serologically related strains have indeed been detected

for FFV and chimpanzee SFV [34, 52]. The genetic stability of foamy viruses in each host and

among hosts of the same species limit their potential to escape neutralizing antibodies. In

humans, the genetic stability of SFV is high (98.6 homology in the Pol protein in blood samples

taken four years apart [15]), and no adaptation to the human host has been described, even

decades after infection [12, 53]. Viruses from human-NHP transmission pairs had almost

identical sequences [15, 54]. Overall, neutralization epitopes are expected to be conserved

because of the previously reported genetic stability of SFV and we further demonstrate their

conservation during the coevolution of SFV with their NHP hosts.

Physical blockade of the interaction between viruses and their cellular receptor is an impor-

tant and common mechanism of virus neutralization [55]. The SFV receptor is unknown, but

ubiquitous. Interference experiments showed that simian, feline, bovine, and equine FV share

the same receptor [56]. The particle-associated envelope glycoprotein of FV is composed of tri-

mers arranged in interlocked hexagonal assemblies, with the SU bearing the receptor binding

site located at the top of the spikes [57]. Here, we demonstrated that immunodominant neu-

tralizing epitopes are predominantly located in the dimorphic central part of the SU that over-

laps the receptor binding domain [58]. Polymorphic aa located outside of the SUvar region are

not involved in recognition by neutralizing antibodies, nor required for the proper conforma-

tion of Env, as chimeric Env built for this project mediated the entry of vector particles. The

suppression of viral transmission by effective neutralizing antibodies may induce evolutionary

pressure that selects antibody escape mutations but immune evasion may be limited if it results

in variant viruses with impaired replicative capacity. The Env sequence from SFV is less vari-

able than that of Gag [59]. This pattern is opposite to that observed for most other retroviruses

and probably reflects strong structural constraints on the Env protein, which in turn may favor

the efficient neutralization of SFVs.

One third of gorilla SFV-infected individuals were dual neutralizers and one fifth had evi-

dence of coinfection by strains from the two genotypes. All but one coinfected individual were

dual neutralizers. Discordance between serological and molecular assays for genotype-specific

SFV detection may have several causes. Nucleic acid tests give negative results when the viral

load is low or strains carry variant nucleotides in the primer sequences. The sensitivity of sero-

logical detection of an infection rarely reaches 100%, due to the lack of an antibody response

in some individuals and/or minor antigenic differences between viruses. Here, we only

detected coinfection by strains belonging to distinct genotypes, and true coinfection rates may

be higher than those estimated by serological or molecular detection of viral genotypes.

The rate of coinfection in Cameroonian and Gabonese hunters is in the same range as that

reported in Bangladeshi infected with macaque SFV [60]. Dual neutralization has been

reported in sera drawn from chimpanzees housed in a primate research center, as well as bush

chimpanzees [46, 61] and FFV-infected cats [47, 62]. In Bangladesh, the analysis of viral

sequences from macaques revealed that at least one of four adult animals was infected with at

least two strains [60]. Single genome amplification of wild chimpanzee samples has provided
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evidence of coinfection with genetically diverse viruses [63, 64]. In a wild community of chim-

panzees in Ivory-Coast superinfection rates increased with age and were above 80% in adult

animals [65]. Being injured while hunting apes in Africa is infrequent, well-recalled, and

occurred more than once for only one individual of our study group. The high rate of coinfec-

tion in gorilla SFV-infected hunters is most probably the result of simultaneous transmission

of several strains during a single exposure event. Indeed, we tested a series of ape samples and

found that 26% of chimpanzees and 37% of gorillas from Cameroon and Gabon were coin-

fected by strains of both genotypes (S4 Table).

SFV coinfection is thus frequent in animals, and transmission of more than one virus strain

to humans is frequent for macaque and gorilla SFV. Recombination is efficient in vitro [66]

and has been detected in viruses infecting chimpanzees and macaques [60, 63]. Our results

concerning coinfection are particularly relevant for the emergence of retroviruses in the

human population, as simian immunodeficiency viruses have evolved through several recom-

bination events in NHP hosts coinfected by two strains, progressively acquiring viral proteins

able to antagonize host restriction factors, eventually allowing successful emergence of HIV-1

[9, 67, 68].

In conclusion, most SFV-infected humans produce neutralizing antibodies at levels similar

to those detected in simian hosts. SFV-specific neutralizing antibodies display key features of

protective responses: they target conserved epitopes and their breadth is associated with

reduced biological changes in the infected hosts. The receptor-binding domain is the immuno-

dominant region targeted by neutralizing antibodies. Whether subdominant cross-reactive

antibodies recognizing the SUvar domain and/or antibodies targeting the conserved SU

regions are present in plasma samples is still an open question. The overall robust SFV-specific

neutralization calls for further studies dedicated to fine epitope mapping, Fc-mediated antivi-

ral functions, and molecular characterization of human monoclonal antibodies [69–72].

Materials and methods

Ethics statement

Participants gave written informed consent. Ethics approval was obtained from the relevant

national authorities in Cameroon (the Ministry of Health and the National Ethics Committee)

and France (the Commission Nationale de l’Informatique et des Libertés (CNIL) and the

Comité de Protection des Personnes Ile de France IV).

Study participants

Field studies were performed on adult populations living in villages and settlements across

rural areas of the rainforest in Cameroon and Gabon [8, 10, 31]. SFV infection was diagnosed

by a clearly positive Gag doublet on Western blots, using sera from the participants, and the

amplification of the integrase gene and/or LTR DNA fragments by PCR, using cellular DNA

isolated from blood buffy-coats [8]. The origin of the SFV was identified by phylogenetic anal-

ysis of the sequence of the integrase gene, as described [8]. Plasma samples from 66 participants

were used for this study, 53 Cameroonians and 13 Gabonese (S1 Table). Eight participants

were not infected with SFV, eight were infected with a chimpanzee SFV, 44 with a gorilla SFV,

and six with a cercopithecus SFV. All but four SFV-infected participants had been injured by a

NHP. All participants were male, 37 were Bantus and, 29 were Pygmies. Their median (inter-

quartile range, IQR) age was 53 (43–61) years. The duration of infection was estimated as the

time elapsed between receiving the wound and the sampling and was 19 (11–28) years. Blood

SFV DNA levels were determined by qPCR carried out on buffy-coats from 30 of the 44 gorilla

Potent neutralizing antibodies targeting zoonotic simian foamy viruses

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1007293 October 8, 2018 18 / 26

https://doi.org/10.1371/journal.ppat.1007293


SFV-infected participants, as described in a previous study [8]. Blood tests were carried out at

the Centre Pasteur du Cameroun in Yaoundé for 22 individuals [32].

Cells and viruses

Gorilla FAB (GFAB) cells are baby hamster kidney (BHK)-21-derived clones containing the β-

galactosidase gene under the control of the LTR from SFVggo-hu.BAK74 LTR [73]. They were

cultured in DMEM-5% fetal bovine serum (FBS) supplemented with 300 μg/ml G418 (Sigma-

Aldrich, Lyon, France). Human embryonic kidney 293T cells (Cat. N˚ 12022001, Sigma) were

cultured in DMEM-10% FBS.

Virus stocks were produced by infection of subconfluent BHK-21 cells that were passaged

twice a week. Cultures displaying an extensive cytopathic effect were lysed by three freeze-

thaw cycles. Cell lysates were clarified, filtered (0.45 μm pore size), and stored as single-use ali-

quots. Titrations were performed as described [73]. Briefly, serially diluted viral solutions were

incubated with indicator cell lines in 96-well plates. Cells were fixed after 72 h with 0.5% glu-

taraldehyde in phosphate-buffered saline (PBS) for 10 min at room temperature (RT). Cells

were washed with PBS and incubated for 1 h at 37˚C with an X-Gal staining solution [2 mM

MgCl2, 10 mM potassium ferricyanide, 10 mM potassium ferrocyanide, and 0.5 mg/ml

5-bromo-4-chloro-3-indolyl-B-D-galactopyranoside in PBS]. An S6 Ultimate UV Image ana-

lyzer (CTL Europe, Bonn, Germany) was used to count X-Gal stained cells. One infectious

unit (IU) was defined as a blue cell or syncytia.

Original and first passage cell lysates were used to produce the viral stocks from zoonotic

primary strains isolated from infected hunters [12]. The genotypes were defined in [33] and

are abbreviated as follows: GI and GII for gorilla SFV genotypes I and II, respectively; CI and

CII for chimpanzee SFV genotypes I and II, respectively. SFVggo_huBAD468 (JQ867465) and

SFVggo_huBAK74 (JQ867464) belonged to the GI and GII genotype, respectively; SFVptr_hu

AG15 (JQ867462) and SFVptr_huBAD327 (JQ867463) belonged to the CII genotype. Two lab-

oratory-adapted chimpanzee SFV isolates, SFVpsc_huPFV (KX087159, [74]) and SFVpve_-

Pan2 (SFV-7, env gene KT211269) belonged to the CI and CII genotypes, respectively. Here,

strain nomenclature [75] was replaced by short names summarizing the genotype and strain

names. For example, in the short name “GI-D468”, GI stands for GI genotype and -D468 for

SFVggo_huBAD468.

Plasma samples and neutralization assays

Human blood samples were collected into EDTA tubes and processed within 24 h of collection

using standard techniques. Human plasma samples were stored at -80˚C. Before use in neu-

tralization assays, plasma samples were diluted 1 to 10 in DMEM + 1 mM MgCl2, heated 30

min at 56˚C, to inactivate complement proteins, and frozen as single-use aliquots. Serial two-

fold dilutions of plasma samples were incubated with SFV isolates for 2 h at 37˚C before quan-

tification of residual viral infectivity using the SFV microtitration assay in 96-well plates

described above. The same multiplicity of infection (100 IU/well) was used for all viral strains.

Assays were performed in triplicate. Neutralization titers were defined as the inverse of the

plasma dilution required to reduce viral infectivity by half.

The lowest plasma dilution routinely tested was 1:20 to spare samples and avoid nonspecific

reactivity. Titration curves were considered valid if there was a steady rise in the number of

infectious units per well with increasing dilution of the sample and if a plateau was observed at

the highest plasma dilutions. Neutralization titers were defined as the inverse of the dilution

required to reduce viral infectivity by half. For their calculation, the number of infected cells/

well were plotted (y) as a function of the dilution factor (x). The slope (a) and the intersection

Potent neutralizing antibodies targeting zoonotic simian foamy viruses

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1007293 October 8, 2018 19 / 26

https://doi.org/10.1371/journal.ppat.1007293


(b) with the y axis were calculated using the linear portion of the neutralization curve. Ymax

was defined as the mean of infectious units at the plateau. The neutralization titer was calcu-

lated as [(Ymax/2)-b]/a. Calculation of the linear regression was possible only when infectivity

was reduced by more than 50% for at least two dilutions, giving a quantification threshold of

1:40. For some samples, a reduction of infectivity� 50% was observed at the 1:20 dilution

only, which was confirmed at lower dilutions. Therefore, plasma samples exhibiting a reduc-

tion of infectivity� 50% at the 1:20 dilution only were arbitrarily defined as having a neutrali-

zation titer of 1:20. Plasma samples exhibiting a reduction of infectivity < 50% at the 1:20

dilution were considered non-neutralizing. The value corresponding to half the detection

threshold (1:10) was used when a quantitative expression of the results was necessary (on

graphs and for statistical assays).

Determination of SFV genome and coinfection

Study subjects were infected by SFV strains belonging to two genotypes (GI and GII), previ-

ously determined by direct sequencing of the env gene amplified from the buffy coat [33].

Here, env genotype-specific primers were used to detect coinfection by strains from the two

genotypes. Env fragments were amplified from buffy coat genomic DNA using specific primers

(S5 Table). Nested PCR was performed by mixing 500 ng genomic DNA in the enzyme buffer

with the external primers (0.25 μM each), MgCl2 (3.5 mM), deoxynucleoside triphosphates

(dNTPs, 200 μM each), and 0.5 μl HotStar-Taq polymerase (Qiagen) in a final volume of 50 μl.

External PCR consisted of a 15-min-long denaturation step at 95˚C, followed by 40 amplifica-

tion cycles (45 s at 95˚C, 45 s at 50˚C, and 1 min per kb at 72˚C) and a 7-min-long extension

step at 72˚C. The product (5 μl) was then used as the template for a second internal PCR under

the same conditions but using the internal primers.

Foamy vectors expressing gorilla SFV env

The expression-optimized four-component PFV vector system comprised constructs express-

ing PFV Gag (pcoPG4), Env (pcoPE), Pol (pcoPP), and the EGFP-expressing transfer vector

puc2MD9 [76, 77]. Expression-optimized gorilla SFV envelope (env) genes were synthesized

by Genscript (Piscataway, NJ, USA) using sequences from the GI-D468 env and GII-K74

gp80SU genes. Restriction sites were inserted in both sequences, allowing the generation of chi-

meric genes through cloning (sequences are available upon request). Gorilla SFV env open

reading frames (ORFs) were cloned into the pcoPE plasmid using the HindIII-ApaI restriction

sites, replacing the PFV env gene. Foamy vector particles were produced by co-transfection of

four plasmids. Polyethyleneimine (45 μl JetPEI, Polyplus # 101-10N, Ozyme, Montigny-le-Bre-

tonneux, France) and 15 μg total DNA (gag:env:pol:transgene ratio of 8:2:3:32) were added to

a 10-cm2 culture dish seeded with 4 x 106 HEK 293T cells. Supernatant was collected 48 h

later, clarified by centrifugation at 1,500 x g for 10 min, and stored at -80˚C as single-use ali-

quots. Titration was performed on GFAB cells and an S6 Ultimate UV Image analyzer (CTL

Europe, Bonn, Germany) was used to count fluorescently stained cells. One infectious unit

was defined as a fluorescent cell, resulting from EGFP expression, for which the gene is

encoded by the puc2MD9 plasmid packaged into vector particles.

Statistics

We studied associations between categorical and continuous variables with Fisher’s exact test

and Spearman’s rank test, respectively. Analyses were conducted using GraphPad Prism v5.0

(GraphPad Software, San Diego California USA). P values< 0.05 defined statistical

significance.
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Supporting information

S1 Fig. Foamy virus vectors and replicating viruses have the same susceptibility to neutrali-

zation by plasma samples from infected individuals. Viruses and vectors were incubated at

the same moi (100 IU/well) with serial dilutions of plasma samples before titration on GFAB

cells. Infected cells were visualized through β-galactosidase activity or fluorescence, respec-

tively. Results are expressed as the percentage relative infectivity using untreated vector/virus

as reference. Titers are indicated in the legends and the dashed lines represent the neutraliza-

tion detection threshold (1:20). A: PFV virus/vector treated with plasma from individual

BAD463; B: PFV virus/vector treated with plasma from individual BAD468; C: GI-D468 virus/

vector treated with plasma from individual BAD463; D: GI-D468 virus/vector treated with

plasma from individual BAD468; E: GII-K74 virus/vector treated with plasma from individual

BAK55; F: GII-K74 virus/vector treated with plasma from individual BAK232. Neutralization

titers from 13 plasma samples were determined against replicating viruses and vectors in inde-

pendent experiments. G: Neutralization titers against GI vector are presented as a function of

those against GI virus; H: Neutralization titers against GII vector are presented as a function of

those against GII virus; correlation coefficients and P values from the Spearman rank test are

indicated on the graphs.

(DOCX)

S2 Fig. Alignments of GI and GII partial envelope protein sequences show similar variabil-

ity across each genotype. The protein sequences corresponding to env fragments amplified by

genotype-specific PCR were obtained by direct sequencing (A: Gor I genotype, aa 298–362; B:

Gor II genotype, aa 286–356). The sequences of viruses used in the neutralization assay are

shown at the top. The sequences of the strains are classified by neutralization titer of the

plasma of SFV-infected individuals. Identical residues are indicated with dots. Sequence logos

are shown at the bottom.

(DOCX)

S1 Table. Study participants. Country of origin, SFV infection status, sex, ethnic group,

wound, NHP species, age and duration of infection are presented.

(DOCX)

S2 Table. Genotype and neutralization specificity of plasma samples from gorilla SFV-

infected hunters. Viral genotypes obtained by two methods and neutralization titers against

four viral strains are presented.

(DOCX)

S3 Table. Neutralization titers against foamy viral vectors. Genotype, neutralization pat-

terns and neutralization titers against four vectors carrying wild type and chimeric envelopes

are presented.

(DOCX)

S4 Table. Coinfection with SFV strains from both genotype I and II in apes from Camer-

oon and Gabon. For 27 NHPs, viral genotype, situation, place of living and reference for previ-

ous description are presented.

(DOCX)

S5 Table. PCR primers used to amplify genotype-specific env sequences from gorilla and

chimpanzee SFV. Primers and PCR parameters are described for each genotype-specific PCR.

(DOCX)
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