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Abstract

Background: The gut microbiome is an important determinant of human health. Its composition has been shown
to be influenced by multiple environmental factors and likely by host genetic variation. In the framework of the
Milieu Intérieur Consortium, a total of 1000 healthy individuals of western European ancestry, with a 1:1 sex ratio and
evenly stratified across five decades of life (age 20–69), were recruited. We generated 16S ribosomal RNA profiles
from stool samples for 858 participants. We investigated genetic and non-genetic factors that contribute to
individual differences in fecal microbiome composition.

Results: Among 110 demographic, clinical, and environmental factors, 11 were identified as significantly correlated
with α-diversity, ß-diversity, or abundance of specific microbial communities in multivariable models. Age and blood
alanine aminotransferase levels showed the strongest associations with microbiome diversity. In total, all non-genetic
factors explained 16.4% of the variance. We then searched for associations between > 5 million single nucleotide
polymorphisms and the same indicators of fecal microbiome diversity, including the significant non-genetic factors as
covariates. No genome-wide significant associations were identified after correction for multiple testing. A small
fraction of previously reported associations between human genetic variants and specific taxa could be replicated in
our cohort, while no replication was observed for any of the diversity metrics.

Conclusion: In a well-characterized cohort of healthy individuals, we identified several non-genetic variables associated
with fecal microbiome diversity. In contrast, host genetics only had a negligible influence. Demographic and
environmental factors are thus the main contributors to fecal microbiome composition in healthy individuals.

Trial registration: ClinicalTrials.gov identifier NCT01699893
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Environment
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Background
A wide diversity of microbial species colonizes the hu-
man body, providing considerable benefits to the host
through a range of different functions [1]. Notably, these
microbes generate metabolites that can act as energy
sources for cell metabolism, promote the development
and the functionality of the immune system, and prevent
colonization by pathogenic microorganisms [2].
The human intestine harbors a particularly diverse mi-

crobial ecosystem. Multiple 16S ribosomal RNA (rRNA)
gene sequencing and metagenomic studies established
that each individual gut microbiome harbors a unique
combination of microbial life [3, 4]. An estimated 150 to
400 bacterial species reside in each person’s gut [5].
Typically, the human gut microbiome is dominated by

five bacterial phyla: Firmicutes, Bacteroidetes, Proteobac-
teria, Actinobacteria, and Verrucomicrobia [6, 7]. These
contain almost all of the bacterial species found in the
human gastrointestinal tract, which can also be classified
in higher-level taxonomic groups such as genera, fam-
ilies, orders, and classes [8]. The relative proportions of
microbial species vary extensively between individuals
[9] and have been shown to be age-dependent [10]. The
microbiome composition evolves rapidly during the first
3 years of life, followed by a more gradual maturation
[11], and then is predicted to remain relatively stable
throughout adult life [12].
A variety of environmental and clinical factors including

diet, lifestyle, diseases, and medications can induce substan-
tial shifts in the microbiome composition [13, 14]. Multiple
studies have shown that diet and medications are the main
forces influencing gut microbial diversity [15–22]. Yet, they
only explain a small percentage of the microbiome variation
observed in the human population. Host genetics has also
been proposed as a contributor in determining the relative

abundance of specific gut microbes [23, 24]. Several studies
have searched for associations between human genetic vari-
ation and gut microbiome diversity [20–22, 25–28], but only
a few genetic loci have been replicated across these studies.
As a consequence, most of the interindividual variability in
gut microbiome composition remains unexplained.
In this study, we leveraged the in-depth phenotypic

and genotypic information available for the Milieu
intérieur (MI) cohort—a population-based study of
1000 healthy individuals of western European ancestry,
evenly stratified by sex (1:1) and age. We investigated
the role of socio-demographic and environmental fac-
tors in inter-individual gut microbiome variation
(Fig. 1). In particular, we were able to assess the impact
of family status, income, occupational status and educa-
tional level, smoking habits, sleeping habits, psycho-
logical problems, and nutritional behavior. We also
evaluated the influence of basic physiological parame-
ters (such as body mass index), family and personal
medical history (including vaccination history), and
multiple laboratory results (comprising mostly blood
biochemical measurements). Finally, we investigated
the potential impact of human genetic variation using a
genome-wide association study (GWAS) framework, in-
cluding as covariates, the non-genetic factors that were
found to be correlated with various measures of gut
microbiome diversity.

Results
Gut microbiome diversity in healthy donors
To characterize the bacterial diversity of the gut flora of
the 1000 healthy donors, we performed 16S rRNA gene
sequencing on standardized collections of fecal samples.
From this cohort, we obtained profiles for 858 individ-
uals and we normalized the data for sequencing depth

Fig. 1 Non-genetic variables. Six categories of non-genetic variables investigated in this study. In the parenthesis are the number of variables per
each category and for each two representative examples. Full description of the variables is available in Additional file 2: Table S1
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(see the “Methods” section). A total of 8422 operational
taxonomy units (OTUs) were detected, corresponding to
11 phyla, 24 classes, 43 orders, 103 families, 328 genera,
and 698 species. On average, we detected 193 species
per individual (standard error 1.9, standard deviation
55.1), with a minimum of 58 and a maximum of 346
species. Inter-individual variability was already marked
at the phylum level. Figure 2a presents the relative abun-
dances of the 8 phyla observed in more than 10% of
study participants. Firmicutes and Proteobacteria were
detected in all individuals, and Bacteroidetes in all but
one individual. Firmicutes was the dominant phylum in
the vast majority of individuals (91.8%).
Starting from the OTU counts, we calculated α and β

microbiome diversity metrics (see the “Methods” section).
As measures of α-diversity, which describes diversity
within each sample, we used observed richness (number
of distinct species present in the given sample), Chao1
richness estimate (estimate of the number of unobserved
species), ACE (abundance-based coverage estimator), and
Simpson’s diversity index (probability that two randomly
picked sequences belong to the same species). The histo-
grams of their raw and transformed distributions are
shown in Additional file 1: Figure S1A and S1B. We
present here the results obtained using Simpson’s diversity
index as a representative metric of α-diversity. The results
for other indicated metrics are presented in the supple-
mentary material. Figure 2b presents the distribution of
Simpson’s diversity indexes depicting the continuous dis-
tribution and high diversity of the gut microbiome in the
majority of study participants. The distributions of the
other α-diversity metrics are shown in Additional file 1:
Figure S1C.
As measures of β-diversity, which describes the dif-

ference in taxonomic composition between samples,
we used compositional Jaccard (unweighted), as well
as Bray-Curtis (weighed) and phylogenetic Unifrac
(weighted) dissimilarity matrices. We present here the
results obtained using Bray-Curtis dissimilarity matrix
as a representative metric of β-diversity. The results
for other indexes are presented in the supplementary
material. Figure 2c presents the multidimensional scal-
ing (MDS) plot of the Bray-Curtis dissimilarity matrix
coloring study participants by a relative abundance of
Firmicutes, indicating an absence of marked stratifica-
tion. Similar homogeneous distributions of other dis-
similarity metrics on the MDS plot are available in
Additional file 1: Figure S2.

Associations of non-genetic variables with gut
microbiome parameters
Demographic, lifestyle, and environmental variables were
collected via a detailed questionnaire, while biochemical pa-
rameters were measured in blood samples. Correlations

between dietary consumption parameters and gut micro-
biome have previously been investigated in the MI cohort
[29]. We considered an additional 274 variables and filtered
them based on prevalence, missingness, and collinearity,
resulting in a final number of 110 variables to be included
in association analyses (see the “Methods” section). Figure 1
outlines the six categories of non-genetic variables consid-
ered and shows representative examples. The full list with a
detailed description of the tested variables is provided in
Additional file 2: Table S1.
To investigate the potential impact of relevant demo-

graphic, social, behavioral, nutritional, and medical data
on the fecal microbiome, we searched for associations of
diversity metrics and individual taxa with the 110 non-
genetic variables selected above using Spearman rank
testing (Additional file 2: Table S2). In total, 25 variables
were significant (Additional file 1: Figure S3A), with on
average 15 of them associated with each α-diversity
metric (Additional file 1: Figure S3B) in univariate tests.
Five variables (age, level of ALT, glomerular filtration
rate, having breakfast and eating in fast-food restaurants)
were significant (FDR < 0.05) for all α-diversity metrics
(Additional file 1: Figure S3A and Figure S3C). We then
used ANOVAs to test these in multivariable models, also
including four dietary variables: consumption of raw
fruits, fish, fatty sweet products, and sodas (which were
previously found to be significantly associated with α-di-
versity in the same study population [29]). Only age and
the levels of alanine aminotransferase (ALT), a liver en-
zyme whose elevated plasma levels indicate liver damage,
remained significant in these analyses (Fig. 3 and Add-
itional file 2: Table S3). Simpson’s diversity index was
positively associated with age and negatively associated
with ALT levels, as shown in Additional file 1: Figure
S4A and Figure S4B.
We then investigated the impact of non-genetic vari-

ables on the β-diversity indexes, running PERMANO-
VAs for the 110 variables. PERMANOVA tests a
multivariate model where distance matrix is a re-
sponse variable. The results of these tests are pre-
sented in Additional file 2: Table S4. A total of 35
factors were significantly associated (FDR < 0.05) in
univariate tests (Additional file 1: Figure S5A) with, on
average, 24 being associated with each β-diversity
index (Additional file 1: Figure S5B). Fifteen factors
were significant for all 3 β-diversity metrics (Add-
itional file 1: Figure S5C). Those were then tested in
multivariable models, also including raw fruit con-
sumption (which was previously found to be signifi-
cantly associated with β-diversity in our study
population [29]) and reran PERMANOVAs. A total of
10 factors remained significant in the final models
(Fig. 4 and Additional file 2: Table S5). Of these, age,
sex, and plasma levels of ALT were the strongest
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associated factors. Also significant were chickenpox
vaccination, having breakfast, having lunch, diastolic
blood pressure, consumption of raw fruits, decreased
or increased appetite, and medical record of tooth ex-
traction. Sex and age were able to explain the biggest
portion of the observed variance of all the significantly
associated variables, albeit with small individual coeffi-
cients of correlation (R2 < 0.01, Fig. 4). We then

calculated the cumulative explained variance of Bray-
Curtis dissimilarity by using all the non-genetic vari-
ables available. This analysis revealed that 16.4% of the
variance can be explained by non-genetic factors
(Additional file 2: Table S6).
Next, we searched for associations between demo-

graphic and environmental variables and individual
taxa. We used multivariate association with linear

Fig. 2 Gut microbiome diversity. a Box-plots of relative abundances of 8 phyla that were observed in more than 10% of the donors. Outliers are
also represented. b Violin plot of Simpson’s diversity index values observed among MI study participants. c Multidimensional scaling plot of Bray-
Curtis dissimilarity matrix with study participants colored according to relative abundance of Firmicutes
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models to search for associations between the 110 fac-
tors discussed above and 475 taxa that were observed
in more than 10% of study participants. The full list of
tested taxa is available in Additional file 2: Table S7.
The results of all the test performed are available in
Additional file 2: Table S8. Table 1 shows the only
three significant associations (FDR corrected p value
< 0.05). We observed associations of age with the
Comamonadaceae family and the Schlegelella genus
and of consumption of mineral supplements with the
Clostridium papyrosolvens species. We further con-
firmed these results by using additional tests. For age
associations, we used Spearman’s rank correlations
and observed association p values of 2.37 × 10−9 and
8.65 × 10−7 with Comamonadaceae and Schlegelella,
respectively, while for the association between con-
sumption of mineral supplements and Clostridium
papyrosolvens, we used Wilcoxon rank test and ob-
tained a p value of 5.3 × 10−3. Finally, we searched for
nominally significant associations (p value < 0.05) for
the two variables that associated with both α- and β-
diversity metrics: age was nominally associated with
72 taxa, while ALT level was nominally associated
with 15 taxa (Additional file 2: Table S8).
Data plots showing positive correlations of the three

identified associations are presented in Additional file 1:
Figure S6A-C.

Association of human genetic variants with gut
microbiome parameters
We next searched for potential associations between hu-
man genetic variants and gut microbiome diversity,
using a GWAS framework. We here hypothesize that
common human genetic polymorphisms might have an
effect on the abundance of specific taxa or on overall
microbiome diversity.
We included in the regression models all the statistically

significant demographic and environmental variables iden-
tified above, for each respective phenotype. The full list of
all the covariates used, including the first two principal
components of the genotyping matrix, is available in Add-
itional file 2: Table S9.
We performed GWAS using the four α-diversity met-

rics and the three β-diversity indexes as phenotypic out-
comes. We did not observe any statistically significant
association upon correction for the number of polymor-
phisms and of phenotypes tested (Pα-threshold < 1.25 ×
10−8 and Pβ-threshold < 1.67 × 10−8) (Fig. 5a and Add-
itional file 1: Figure S7; Fig. 5b and Additional file 1: Fig-
ure S8). On the other hand, few genomic loci were
showing trends of significant associations and we report
all the SNPs that had association p value lower than
10−6 with α- and β-diversity metrics in Additional file 2:
Table S10 and Table S11, respectively. The quantile-
quantile plots and lambda values, assessing the false

Fig. 3 Association of non-genetic variables with Simpson’s index. Significant variables from the univariate test and their Spearman ρ values (right-
hand side). Heatmap represents the ANOVA’s p values from the multivariable test, and the asterisks denote the statistical significance (***p <
0.001, **p < 0.01, *p < 0.05). The results for other α-diversity metrics are available in Additional file 2: Table S3
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positive rate and genomic inflation rate for all genome-
wide analyses, are shown in Additional file 1: Figure S9
and Figure S10. We then attempted to replicate the pre-
viously published associations between specific SNPs
and β-diversity, by relaxing the genome-wide significant
threshold [19–21]. Upon correction for the 66 SNPs
considered (Pthreshold < 0.05/66), none was significantly
associated (Additional file 2: Table S12).
We also used a GWAS approach to search for associa-

tions between the abundance of individual taxa and human
genetic variation. We used a quantitative phenotype (non-
zero log-transformed relative abundance) and a binary
phenotype (presence vs. absence) for each taxon. After cor-
rection for the number of polymorphisms and of pheno-
types tested, we did not observe any statistically significant

signal. A total of 170 suggestive associations (PSuggestiveThres-
hold < 5 × 10−8) were detected with the quantitative pheno-
type of 53 taxa, and 65 suggestive SNPs were detected with
the binary phenotype of 23 taxa. The lists of these SNPs
and their association p values are available in Add-
itional file 2: Table S13 and Additional file 2: Table S14,
respectively.
We also imputed HLA and KIR alleles and tested them

for association with all the considered phenotypes, ob-
serving no significant associations (Additional file 1: Fig-
ure S11 and association summary statistics results
available).
We then attempted to replicate associations for the

SNPs previously reported to be associated with individ-
ual taxa (Additional file 2: Table S15) [19–22, 25, 27].

Fig. 4 Association of non-genetic variables with Bray-Curtis index. Significant variables from the univariate test and their R2 values (right-hand
side). Heatmap represents the PERMANOVA’s p values from the multivariable test, and the asterisks denote the statistical significance (***p <
0.001, **p < 0.01, *p < 0.05). The results for other β-diversity metrics are available in Additional file 2: Table S5

Table 1 Significant associations of non-genetic variables with individual taxa

Covariate Taxa Prevalence (%) Coefficient p value Q value

Age Comamonadaceae 36.8 3.99 × 10−4 3.09 × 10−9 5.89 × 10−5

Age Schlegelella 29.6 3.32 × 10−4 5.48 × 10−6 3 × 10−2

Consumption of mineral supplements Clostridium papyrosolvens 13.8 2.44 × 10−2 8.32 × 10−7 4.72 × 10−3
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Only 13 out of 336 SNPs passed the corrected nominal
significance threshold (Pthreshold < 1.49 × 10−4, i.e., 0.05/
336) for association with a quantitative phenotype. Of
these, 9 were concordant at the phylum level with the
original report (i.e., the strongest associated taxon in

our study belonged to the same phylum as the previ-
ously observed association). For binary phenotypes, 10
SNPs passed the corrected nominal significance thresh-
old, including 2 that were concordant at the phylum
level.

Fig. 5 Results of genome-wide association study between host genetic variants and microbiome diversity metrics. a Manhattan plot for
Simpson’s diversity metric (representative α-diversity metric). The dashed horizontal line denotes the genome-wide significance threshold
(Pα-threshold < 1.25 × 10−8). b Manhattan plot for Bray-Curtis dissimilarity matrix (representative ß-diversity index). The dashed horizontal line
denotes the genome-wide significance threshold (Pβ-threshold < 1.67 × 10−8)
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Discussion
We investigated the potential influence of demographic,
environmental, clinical, and genetic factors on the fecal
microbiome composition in 858 unrelated healthy indi-
viduals of French descent. The Milieu Intérieur cohort is
particularly well suited for such a comprehensive assess-
ment [30]. The study participants have a homogeneous
genetic background, live in the same region, and are
evenly stratified by sex and age, which provides an excel-
lent opportunity to search for unique determinants of
gut microbiome diversity.
First, we used the rich data collected through ques-

tionnaires that gathered detailed medical history as well
as lifestyle and socio-demographic information. We also
considered laboratory results that could indicate under-
lying physiological differences (e.g., levels of hemoglobin,
glucose, hepatic transaminases). We searched for a po-
tential association of these variables with several α- and
β-diversity metrics of the gut microbiome, as well as
with quantitative and binary phenotypes derived from
the detected abundance of individual microbial taxa.
As the MI cohort was designed to better understand

healthy immunity, strict criteria were used during enroll-
ment to exclude individuals with chronic medical condi-
tions. Similarly to other studies in healthy individuals, the
distribution of major phyla was in the same range as ob-
served before (Additional file 2: Table S16). The use of
prescription drugs, on the other hand, was very limited
among MI participants. In fact, the final set of 110 non-
genetic variables contained only one drug-related variable
(“on any type of medication”). Even the use of over-the-
counter drugs, such as proton pump inhibitors, was
observed in less than 1% of the individuals (i.e., only in 4
individuals). The potential impact of drugs on the gut
microbiome, suggested by previous studies [11, 16, 18],
was therefore not evaluated in our study.
The influence of dietary variables on the gut micro-

biome has already been evaluated in the MI cohort [29].
Increased α-diversity was found to be associated with
foods generally considered as healthy (fruits, fish), while
a decrease was associated with foods for which limited
consumption is generally recommended (e.g., fried prod-
ucts). Dissimilarity measure by β-diversity level was
driven by consumption of raw fruits, fried products,
ready-cooked meals, and cheese [29]. In the current ana-
lysis, we focused our attention on additional environ-
mental influences, lifestyle variables, and biochemical
measurements. Age showed a strong positive association
with α-diversity in all models, whereas sex and BMI did
not show any consistent association. Interestingly, we
replicated a correlation between higher plasma levels of
alanine aminotransferase and lower microbiome diver-
sity (previously also observed in a Belgian cohort, but
not replicated in a Dutch study population [16]). The

causality of the observed correlation is unclear. Indeed,
much work is still needed to get a better understanding
of the interplay between the gut microbiome and liver
disease [31].
In the analysis of β-diversity indexes, we identified ten

factors that were significant in the multivariable PERMA-
NOVA models. In line with previous reports [6, 14, 26],
we observed sex and age as the strongest influencers on
all β-diversity indexes, with the lowest association p values
and highest proportion of variance explained by these fac-
tors. As other co-variates, such as environmental and
host-extrinsic, are also known to impact the overall com-
position [32], we identified factors related to medical his-
tory (in particular chickenpox vaccination and teeth
extraction), blood measurements (ALT levels and diastolic
blood pressure), and lifestyle (such as tendency to have
breakfast or lunch and variable appetite) having mild, yet
significant, correlations with β-diversity in MI cohort. We
also confirmed the independent effects of diet, in particu-
lar the consumption of raw fruits [29]. Interestingly, we
could not confirm any significant association between
BMI and microbiome diversity, in contrast to the recent
population-based observations in the FGFP study [16].
This apparent contradiction could be partly explained by
the MI study design [30]: the careful selection of healthy
individuals resulted in a more limited distribution of BMI
values among study participants (mean ± SD: 24.26 ± 3.26
kg/m2; min 18.59 and max 32). This ascertainment bias
reduced our power to detect potential correlations be-
tween more extreme BMI values and microbiome diver-
sity measurements [33]. Furthermore, an estimation of the
explained variance in β-diversity metrics demonstrated a
small individual effect of each variable (Additional file 2:
Table S4), which together explained 16.4% of the variance.
This is concordant with previous reports, where a similar
proportion of variance (18.7% [16], 16.4% [17|, and 20%
[19]) could be explained by demographic and environ-
mental factors. In contrast to what we observed in the MI
cohort, prescription medication explained an important
fraction of the variance in these other studies (up to 10%
[17]), attesting to the uniqueness of our healthy study
sample.
In our exploration of variables potentially associated

with individual taxa, we observed a strong positive cor-
relation between age and the Schlegelella genus (as well
as the family it belongs to: Comamonadaceae). This
family is very diverse, and its members have been ob-
served both in man-made environments (various clean
or polluted soils and waters) and in animals or human
clinical samples [34]. The epidemiological or clinical
relevance of this newly observed association is unknown.
We also found an association between Clostridium
papyrosolvens, belonging to the Clostridia class and Fir-
micutes phylum, and the oral intake of mineral
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supplements. Clostridium papyrosolvens is an anaerobic
bacterium that is involved in the degradation of diverse
carbohydrates (such as cellulose, arabinose, and glucose)
[35] and could thus play a role in modulating the indi-
vidual glycemic response.
Our in-depth investigation of demographic, environ-

mental, and clinical variables allowed us to identify fac-
tors that are associated with various measures of gut
microbiome composition. Including them as covariates
in genome-wide association studies increased our power
to potentially detect true genetic effects, by increasing
the signal-to-noise ratio. However, after correction for
multiple testing, we did not observe any statistically sig-
nificant associations. This was the case for a total of 7
different α- and β-diversity metrics and for 475 individ-
ual taxa, tested either as quantitative or as binary pheno-
types. We also attempted to replicate the previously
reported associations between human polymorphisms
and gut microbiome composition at the β-diversity or
the taxonomic levels [19–22, 25, 27]. None of the vari-
ants associated with β-diversity metrics replicated. For
individual taxa, replication at the phylum level was suc-
cessful for 2 SNPs using binary phenotypes (presence vs.
absence of the phylum) and for 9 SNPs using quantita-
tive phenotypes (abundance). Of these, only one signal
was replicated at the family level: the association be-
tween rs7856187 and Lachnospiraceae [27]. Of note, the
only SNP that was significant in a recent meta-analysis
[20], rs4988235, did not show any association in our
study (Additional file 2: Table S12).

Conclusions
Our study provides an in-depth investigation of potential
demographic, environmental, clinical, and genetic influ-
ences on the diversity of the fecal microbiome in healthy
individuals. We identified variables associated with overall
microbiome composition and with a small number of in-
dividual taxa, explaining a non-negligible fraction of
microbiome diversity in healthy individuals in the absence
of drug treatment. The lack of any significant results in
the genome-wide association analyses, on the other hand,
indicates that common human genetic variants of large ef-
fects do not play a major role in shaping the gut micro-
biome diversity observed in healthy populations. Future
studies should include larger sample sizes and a more
comprehensive evaluation of human genetic variation, in-
cluding rare and structural variants not captured by geno-
typing arrays. Evaluation of the environmental effects
should be optimized for example by longitudinal tracking
of study participants. It should be noted that our study, as
most previously published works of comparative power,
tried to link human genetics and the microbiome by ex-
ploring microbiome variation through 16S rRNA gene se-
quencing. This methodology has obvious limitations, since

it only allows the study of taxonomic composition and di-
versity measures, while ignoring variation of gene
repertories and species pangenomes, which represent a
broader and more refined picture of microbiome variabil-
ity [36–38]. Future efforts evaluating host genetics influ-
ence on microbiome composition should thus focus on a
refined picture of microbiome variability, obtainable
through shotgun metagenomics instead of 16S rRNA gene
profiling. Lastly, large-scale microbiome and genomic data
should be pooled across cohorts, as recently proposed
[39], to accelerate discovery in the field of human-micro-
biome interactions.

Methods
The Milieu Intérieur cohort
The 1000 healthy donors of the Milieu Intérieur cohort
were recruited by BioTrial (Rennes, France). The cohort
is stratified by sex (500 men, 500 women) and age (200
individuals from each decade of life, between 20 and 70
years of age). Participants were selected based on strin-
gent inclusion and exclusion criteria, detailed elsewhere
[30]. Briefly, they had no evidence of any severe/chronic/
recurrent medical conditions. The main exclusion cri-
teria were seropositivity for human immunodeficiency
virus or hepatitis C virus, travel to (sub-) tropical coun-
tries within the previous 6 months, recent vaccine ad-
ministration, and alcohol abuse. Subjects were excluded
if they were on treatment at the time or were treated in
the 3 months preceding enrolment with, nasal, intestinal,
or respiratory antibiotics or antiseptics. Volunteers fol-
lowing a specific diet prescribed by a doctor or dietician
for medical reasons (calorie-controlled diet or diet favor-
ing weight loss in very overweight patients, diets to de-
crease cholesterol levels) and volunteers with food
intolerance or allergy were also excluded. To avoid the
influence of hormonal fluctuations in women during the
peri-menopausal phase, only pre- or post-menopausal
women were included. To minimize the influence of
population substructure on genomic analyses, the study
was restricted to individuals of self-reported Metropol-
itan French origin for three generations (i.e., with par-
ents and grandparents born in continental France).
Fasting whole blood samples were collected from the
1000 participants in lithium heparin tubes between Sep-
tember 2012 and August 2013.

Fecal DNA extraction and amplicon sequencing
Human stool samples were produced at home no more
than 24 h before the scheduled medical visit and collected
in a double-lined sealable bag with the outer bag contain-
ing a GENbag Anaer atmosphere generator (Aerocult,
Biomerieux), used to maintain anaerobic conditions, and
an anaerobic indicator strip (Anaerotest, Merck Millipore)
to record the strict maintenance of the anaerobic
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atmosphere. Upon reception at the clinical site, the fresh
stool samples were aliquoted and stored immediately at −
80 °C. DNA was extracted from the stool as previously
published [40, 41]. DNA quantity was measured with
Qubit using a broad range assay. Barcoding polymerase
chain reaction (PCR) was carried out using indexed
primers targeting the V3-V4 region of the 16S rRNA gene
as described in [42]. AccuPrime™ Pfx SuperMix (Invitro-
gen - 12344-040) was used to perform the PCR. PCR mix
was made up of 18 μL of AccuPrime™ Pfx SuperMix,
0.5 μL of both V3-340F and V4-806R primers (0.2 μM),
and 1 μL of DNA (10 ng). PCR was carried out as follows:
95 °C for 2min, 30 cycles of 95 °C for 20 s, 55 °C for 15 s,
72 °C for 5 min, and a final step at 72 °C for 10min.
Amplicon concentration was then normalized to 25 ng
per PCR reaction using SequalPrep™ Normalization Plate
Kit, 96-well (Thermo Fisher Scientific). Equal volumes of
normalized PCR reaction were pooled and thoroughly
mixed. The amplicon libraries were sequenced at the
Institut Curie NGS platform on Illumina MiSeq using the
2*300 base pair V3 kit to 5064 to 240,472 sequencing
reads per sample (mean ± SD: 21,363 ± 19,087 reads).

16S rRNA gene sequencing data processing and
identification of microbial taxa
Raw reads were trimmed using sickle [43], then error
corrected using SPAdes [44] and merged using PEAR
[45]. Reads were clustered into operational taxonomy
units (OTUs) at 97% of identity using vsearch pipeline
[46]. Chimeric OTUs were identified using UCHIME
[47] and discarded from downstream analysis. Micro-
biome profiles obtained were normalized for sequencing
depth (sequencing counts were divided to their sample
size and then multiplied by the size of the smaller sam-
ple) [48]. We further checked the presence of the se-
quencing batch effect and principal coordinate analysis
(PCoA) plot obtained at the genus level presented in
Additional file 1: Figure S12 shows a random distribu-
tion of samples obtained from different sequencing
batches.
Taxonomy of representative OTU sequences was de-

termined using RDP classifier [49]. OTU sequences were
aligned using ssu-align [50]. The phylogenetic tree was
inferred from the OTU multiple alignments using Fas-
tree2 [51]. We further checked the specific taxonomic
assignations identified in our study. Schlegelella genus
was made of 15 OTUs that had a similarity score ran-
ging from 60 to 80% with a phylogenetically close previ-
ously identified environmental bacteria Schlegelella
thermodepolymerans. Furthermore, taxonomic assigna-
tion of Clostridium papyrosolvens was obtained with
73% of accuracy.
For 138 individuals, the gut microbiome compos-

ition could not be established because of technical

issues in the extraction and the sequencing steps (i.e.,
due to low DNA extraction yield, absence of PCR
amplicons, low read counts). These were excluded
from further analysis.

Gut microbiome diversity estimates
Based on OTUs, we calculated two types of microbial
diversity indicators: α- and β-diversity indexes. As es-
timates of α-diversity, we used Simpson’s diversity
index, observed richness, Chao1 richness estimate,
and ACE (abundance-based coverage estimator). We
applied Yeo-Johnson transformation with R package
VGAM [52] to normalize these phenotypes. The his-
tograms of raw and transformed distributions are
shown in Additional file 1: Figure S1A and Add-
itional file 1: Figure S1B, respectively. As estimates of
β-diversity, we used Bray-Curtis (weighed), compos-
itional Jaccard (unweighted), and Unifrac (weighted)
dissimilarity matrices. All diversity indicators were
generated on non-rarefied data using the R package
vegan [53] that was corrected for sequencing depth
prior to indexes’ computation [48].

Demographic, environmental, and clinical variables
A large number of demographical, environmental, and clin-
ical variables are available in the Milieu Intérieur cohort [30].
These notably include infection and vaccination history,
childhood diseases, health- and diet-related habits, socio-de-
mographical variables, and laboratory measurements. The
questionnaire that was filled by the study participants and
used to obtain the majority of the non-genetic variables is
available at http://www.milieuinterieur.fr/sites/milieuinter-
ieur.fr/files/crf_mi.pdf. After manual curation, we considered
274 variables as potentially interesting for our analyses. Of
those, we removed 130 that (i) were only variable in less than
5% of participants or (ii) were missing in more than 10% of
participants. We tested for collinearity among the remaining
144 variables using Spearman rank correlation. All pairwise
correlations with a Spearman’s ρ > 0.6 or ≤ 0.6 and a false
discovery rate (FDR) < 5% were considered colinear; one
variable from each pair was removed from further analysis,
resulting in a final set of 110 variables (described in Add-
itional file 2: Table S1). Of these, 39 had some missing values
(< 1% in 25, 1–5% in 10, 5–10% in 4 individuals), which were
imputed using random forest method in the R package mice
[54]. We evaluated the effects of various clinical measure-
ments within their normal healthy range, such as those of
BMI (mean ± SD: 24.26 ± 3.26 kg/m2) and C-reactive protein
(CRP; mean ± SD: 1.99 ± 2.58mg/L). Several symptoms of
depression, such as lack of interest in doing things and poor
self-image, and potentially relevant personal and family med-
ical history information (such as route of birth delivery,
immunization history with several vaccines, and familial
occurrence of diabetes or myocardial infarction) were

Scepanovic et al. Microbiome           (2019) 7:130 Page 10 of 15

http://www.milieuinterieur.fr/sites/milieuinterieur.fr/files/crf_mi.pdf
http://www.milieuinterieur.fr/sites/milieuinterieur.fr/files/crf_mi.pdf


investigated. Furthermore, smoking status and nutritional
tendencies (such as the salt consumption habits) were kept
in our analyses.

Testing of demographic, environmental, and clinical
variables
We searched for associations between the 110 demo-
graphic, environmental, and clinical variables selected
above and the various gut microbiome phenotypes.
For α-diversity indexes (Simpson’s index, observed
richness, Chao1 richness estimate, and ACE), we used
non-parametric Spearman correlations. For β-diversity
dissimilarities (Jaccard, Bray-Curtis, and Unifrac
matrices), we used permutational analysis of variance
(PERMANOVA) with 1000 permutations. PERMANO-
VAs identify variables that are significantly associated
with β-diversity and measure the fraction of variance
explained by the factors tested. The variables that
were significantly associated (Benjamini–Hochberg
FDR < 0.05) with the diversity estimates in the univari-
able models were included in the respective multivari-
able models: we used multivariable ANOVAs for α-
diversity and PERMANOVAs for β-diversity. We used
a backward selection, i.e., we eliminated the variables
that were not significant in the first multivariable
model, and reran the tests iteratively until all included
predictors were significant. Spearman correlations,
ANOVA, and PERMANOVAs tests were performed in
R v3.5.1. Finally, to search for associations with indi-
vidual taxa, we implemented multivariate association
with linear models by using MaAsLin [55] with default
parameters. For each taxon, MaAsLin preforms boost-
ing and feature reduction of metadata, thus selecting
each time different set of non-genetic variables to test
in the final model. All associations between taxa and
non-genetic variables that were tested in the final
model are presented in Additional file 2: Table S8 with
their respective p and q values.

Human DNA genotyping
As previously described [56], the blood was collected in 5-
mL sodium EDTA tubes and kept at room temperature
(18–25°) until processing. After extraction, DNA was geno-
typed at 719,665 single nucleotide polymorphisms (SNPs)
using the HumanOmniExpress-24 BeadChip (Illumina).
The SNP call rate was > 97% in all donors. To increase
coverage of rare and potentially functional variation, 966 of
the 1000 donors were also genotyped at 245,766 exonic var-
iants using the HumanExome-12 BeadChip. The variant
call rate was < 97% in 11 donors, which were thus removed
from this dataset. We filtered out from both datasets gen-
etic variants based on a set of criteria detailed in [57]. These
quality-control filters yielded a total of 661,332 and 87,960
variants for the HumanOmniExpress and HumanExome

BeadChips, respectively. Average concordance rate for the
16,753 SNPs shared between the two genotyping platforms
was 99.99%, and individual concordance rates ranged from
99.8 to 100%.

Genetic relatedness and structure
Relatedness was detected using KING [58]. Six pairs of
related participants (parent-child, first-, and second-de-
gree siblings) were identified. Of those, four pairs had
both genotyping and microbiome datasets and one indi-
vidual from each pair, randomly selected, was removed
from the genetic analyses, leaving in total 858 individuals
with both genotyping and 16S rRNA gene sequencing
data. The genetic structure of the study population was
estimated using principal component analysis (PCA), im-
plemented in EIGENSTRAT (v6.1.3) [59]. The PCA plot
of the study population is shown in Additional file 1:
Figure S13.

Genotype imputation
As described previously [57], we used Positional Bur-
rows-Wheeler Transform for genotype imputation, start-
ing with the 661,332 quality-controlled SNPs genotyped
on the HumanOmniExpress array. Phasing was per-
formed using EAGLE2 (v2.0.5) [60]. As a reference
panel, we used the haplotypes from the Haplotype Refer-
ence Consortium (release 1.1) [61]. After removing SNPs
that had an imputation info score < 0.8, we obtained 22,
235,661 variants. We then merged the imputed dataset
with 87,960 variants directly genotyped on the Huma-
nExome BeadChips array and removed variants that
were monomorphic or diverged significantly from
Hardy-Weinberg equilibrium (P < 10−7). We obtained a
total of 12,058,650 genetic variants to be used in associ-
ation analyses.
We used SNP2HLA (v1.03) [62] to impute 104 4-digit

human leukocyte antigen (HLA) alleles and 738 amino
acid residues (at 315 variable amino acid positions of the
HLA class I and II proteins) with a minor allele fre-
quency (MAF) of > 1%.
We used KIR*IMP [63] to impute killer-cell immuno-

globulin-like receptor (KIR) alleles, after haplotype infer-
ence on chromosome 19 with SHAPEIT2 (v2.r790) [64].
A total of 19 KIR types were imputed: 17 loci plus two
extended haplotype classifications (A vs. B and KIR
haplotype). A MAF threshold of 1% was applied, leaving
16 KIR alleles for association analysis.

Genetic association analyses
For single-variant association analyses, we only consid-
ered SNPs with a MAF higher than 5% (N = 5,293,637).
Unless otherwise stated, we used PLINK (v1.9) [65] for
association testing. In all tests, we included the first two
first principal components of the genotyping matrix as
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covariates to correct for residual population stratifica-
tion. The demographic, environmental, and clinical vari-
ables that were identified as significantly associated were
also included as covariates in the respective analyses. A
full list of covariates for each phenotype is available in
Additional file 2: Table S8.
We used linear regression (within PLINK) and microbio-

meGWAS [66] to test for SNP associations with α-diversity
indexes and β-diversity dissimilarities, respectively. Linear
regression was also used to search for associations with
relative abundance of specific taxa. Only taxa present in at
least 10% of individuals were tested (N = 475), i.e., 8/11
(remaining/total) phyla, 16/24 classes, 20/43 orders, 50/103
families, 135/328 genera, and 246/698 species. The list of
all tested taxa is presented in Additional file 2: Table S7.
We used logistic regression to test binary phenotypes (pres-
ence/absence of specific taxa). Here, we excluded taxa that
were present in > 90% of individuals, resulting in a total of
374 phenotypes (4 phyla, 8 classes, 15 orders, 38 families,
104 genera, and 205 species). For all GWAS, we used a sig-
nificance threshold corrected for the number of tests per-
formed. For α-diversity (N = 4): Pα-threshold < 1.25 × 10−8, for
β-diversity (N = 3): Pβ-threshold < 1.67 × 10−8, for taxa abun-
dance (N = 475): Ptaxa-linear < 1.05 × 10−10 and for presence
or absence of taxa (N = 374): Ptaxa-logistic < 1.33 × 10−10.
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