
HAL Id: pasteur-02305645
https://pasteur.hal.science/pasteur-02305645

Submitted on 4 Oct 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

Pathogens, microbiome and the host: emergence of the
ecological Koch’s postulates

Pascale Vonaesch, Mark Anderson, Philippe Sansonetti

To cite this version:
Pascale Vonaesch, Mark Anderson, Philippe Sansonetti. Pathogens, microbiome and the host: emer-
gence of the ecological Koch’s postulates. FEMS Microbiology Reviews, 2018, 42 (3), pp.273-292.
�10.1093/femsre/fuy003�. �pasteur-02305645�

https://pasteur.hal.science/pasteur-02305645
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr


	 1/32	

Pathogens, microbiome and the host: emergence of the ecological Koch’s 1	

postulates 2	

 3	

Pascale Vonaesch, Mark Anderson, Philippe J. Sansonetti 4	

 5	

Abstract 6	
Even though tremendous progress has been made in the last decades to elucidate the mechanisms of intestinal 7	
homeostasis, dysbiosis and disease, we are only at the beginning of understanding the complexity of the gut 8	
ecosystem and the underlying interaction networks. We are also only starting to unravel the mechanisms that 9	
pathogens have evolved to overcome the barriers imposed by the microbiota and host to exploit the system to their 10	
own benefit. Recent work in these domains clearly indicates that the “traditional Koch’s postulate”, which state that 11	
a given pathogen leads to a distinct disease, are not valid for all “infectious” diseases, but that a more complete 12	
and complex interpretation of the Koch’s postulate is needed in order to understand and explain them. 13	
This review summarizes the current understanding of what defines a healthy gut ecosystem and highlights recent 14	
progress in uncovering the interplay between the host, its microbiota and invading intestinal pathogens. Based on 15	
these recent findings, we propose a new interpretation of the Koch’s postulate, that we term “ecological Koch’s 16	
postulate”. 17	
 18	
One sentence summary 19	
 20	
This review summarizes the current understanding of what defines a healthy gut ecosystem, highlights recent 21	
progress in uncovering the interplay between the host, its microbiota and invading intestinal pathogens and, based 22	
on the most recent findings in this field, proposes a new interpretation of the Koch's postulate, the "ecological 23	
Koch's postulates". 24	
 25	

Introduction 26	
Traditionally, pathogens have been viewed as armed warriors, fighting against the host (Sansonetti 2004). 27	
However, it is well established that not everyone that has ingested a typical infectious dose of a given pathogen, for 28	
example Salmonella Typhimurium, Helicobacter pylori or Campylobacter jejuni, will develop disease. There also is 29	
increasing evidence for asymptomatic carriage of enteric pathogens (Kotloff et al. 2013; Breurec et al. 2016; 30	
Randremanana et al. 2016). In addition, it is also known that antibiotic use leads to an increased susceptibility to 31	
infection by enteropathogens (BOHNHOFF, DRAKE and MILLER 1954; MILLER, BOHNHOFF and DRAKE 1954; 32	
Barthel et al. 2003; Sekirov et al. 2008; Van der Waaij, Berghuis-de Vries and Lekkerkerk-van der Wees 2009). 33	
These observations led to an extended concept that acknowledged the role of the microbiota in protecting the host 34	
against pathogens, referred to first as “microbial barrier” and later as “colonization resistance” (Ducluzeau and 35	
Railbaud 1989).. Bacteria can have an inhibitory effect on phylogenetically unrelated species/groups of bacteria 36	
(“interspecies barrier effect”). This was demonstrated as early as the late 1970s through work showing that pre-37	
colonization of axenic mice with Escherichia coli could inhibit the colonization of Shigella flexneri (Ducluzeau et al. 38	
1977). Further, bacteria from the same species/group can have an inhibitory effect on the installation of their peers 39	
(“intra-species barrier effect”). This concept was shown in the 1980s in studies using closely related Clostridium 40	
species (Corthier and Muller 1988). Several studies have also assessed the role of the prokaryotic microbiota on 41	
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the susceptibility to viral infections. Indeed, susceptibility to rota- and norovirus seems to depend, at least in part, 42	
on the composition of a host’s prokaryotic microbiota (Rodríguez-Díaz et al. 2017), as do sexually transmitted 43	
diseases, such as for example Human Immunodeficiency Virus (HIV, (Nunn et al. 2015)), Cervical Human 44	
Papillomavirus (HPV, (Shannon et al. 2017b)) or Herpes Simplex Virus (Shannon et al. 2017a), in the context of a 45	
changed vaginal microbiota. For many years, the exact mechanisms underlying the phenomenon of colonization 46	
resistance remained unclear. However, work over the last decades has demonstrated that the microbiota forms a 47	
complex ecosystem and interacts with the host and invading pathogens in a dynamic manner.  48	
 49	
The intestinal microbiota is composed of trillions of organisms belonging to hundreds of different species (Eckburg 50	
et al. 2005; Yatsunenko et al. 2012), reviewed in (Cho and Blaser 2012). While the majority belongs to the 51	
prokaryota (bacteria and archae), it also comprises viruses (including phages) and different eukaryotes, especially 52	
yeasts and protists (Parfrey, Walters and Knight 2011; Ursell et al. 2012; Clemente et al. 2012; Parfrey et al. 2014; 53	
Hamad, Raoult and Bittar 2016). Members of the gram-negative Bacteroidetes and the gram-positive Firmicutes 54	
dominate the bacterial community residing in the gut. Less abundant groups include members of the 55	
Proteobacteria, the Verrucomicrobia, the Tenericutes, the Defferibacteres and the Fusobacteria (Eckburg et al. 56	
2005; Yatsunenko et al. 2012). In areas of the world without developed water supplies, the intestinal microbiota can 57	
also include multicellular organisms, for example helminths (Giacomin, Agha and Loukas 2016).  58	
 59	
Several different ecosystems formed by microbial communities in and on the body (e.g. the skin microbiota, the 60	
gastric microbiota, the vaginal microbiota), engage in a constant crosstalk with the human host (Costello et al. 61	
2009). The microbes belonging to each of these communities are often specific and adapted to living in their 62	
particular environment (e.g. anaerobic bacteria in the gut). This review will focus on the interactions found in the 63	
intestine, relying mainly on data gathered in laboratory mice. Even though similar mechanisms are at work in all 64	
ecosystems found in and on the human host, a complete description would go beyond the scope of this review. In 65	
this review, we will summarize the current understanding of what defines a healthy gut ecosystem and highlight 66	
recent progress in uncovering the interplay between the host, its microbiota and invading intestinal pathogens.  67	
 68	
The gut ecosystem- species abundance, chance, and the environment 69	
It has been hypothesized that at least some of the gut microbes have co-evolved and/or co-speciated with 70	
mammals (Groussin et al. 2017). However, co-occurrence of microbes and their host, even if they affect each 71	
others fitness, does not necessarily mean a shared evolutionary history but can also be forged by numerous other 72	
mechanisms, including unidirectional selection (Moran and Sloan 2015). Regardless of their evolutionary origin, 73	
most mammals have a distinct assembly of microorganisms organized into a complex social network, which is 74	
remarkably robust and resilient to aggressions from, for example, allogenic/pathogenic intruders. 75	
Two major competing ecological theories have been proposed to explain how microbial communities are organized 76	
and maintained, i.e. how communities are assembled. The first, termed niche theory (Chase and Leibold 2004), is 77	
based on deterministic processes and assumes that each species occupies a given realized niche (i.e. a particular 78	
position in the abiotic and biotic space) due to its species-specific properties that define its fundamental niche. The 79	
grounding of this theory for microbes lies in the work of Martinus Willem Beijerinck (1851–1931) and in the famous 80	
statement: “Everything is everywhere, but the environment selects” (O'Malley 2007).  81	
On the other hand, the “neutral theory” is based only on stochastic processes and was proposed at the beginning 82	
of the century by Hubbell (Hubbell [2001. The Unified Neutral Theory of Biodiversity and Biogeography, Princeton 83	
University Press, Princeton, NJ]). The theory suggests that local communities are assembled independently of 84	



	 3/32	

species fitness differences, hence assuming that all individual have the same fitness. Further, the neutral theory 85	
claims that the fitness differences between species are not larger than the fitness differences within a given 86	
species. Competition is therefore not the driving factor of the observed community structure (“all species are 87	
equivalent; they have the same chance of immigration, extinction and speciation”). Of course, these two theories 88	
are not mutually exclusive and can act in parallel to drive microbial community assembly at (i) different spatial 89	
scales (e.g. at different locations in the intestine) or  (ii) in different environments e.g. in different location on or in 90	
our body. 91	
Testing the fit of both theories on intestinal microbial communities has been hampered by the inability to culture 92	
many of the present species and hence define the composition of the microbial communities. With the rise of 93	
advanced sequencing methodologies and the decreasing associated costs, large datasets have been put together 94	
that now allow testing of these theories on highly complex communities, for example the intestinal microbiota. In 95	
studies conducted in the past few years, evidence is emerging that the intestine is not only an ecosystem based on 96	
Hubbell’s “neutral theory” where each member has the same fitness (Costello et al. 2012). Indeed the Human 97	
Microbiome Project, which screened several hundred stool samples from individuals residing in the United States, 98	
revealed that the microbiota of only one individual showed a composition structure consistent primarily with the 99	
“neutral theory” (Li and Ma 2016). Instead, modelling confirmed that the microbiota is governed mainly by 100	
deterministic processes, including environmental factors (Li and Ma 2016). This, however, does not exclude that 101	
both processes are shaping the communities at the same time and clearly more work is needed to elucidate these 102	
questions. 103	
The microbiome is shaped by different deterministic forces, including maternal transmission at birth (Dogra et al. 104	
2015; Frese and Mills 2015; Rutayisire et al. 2016; Stokholm et al. 2016; Edwards 2017), nutrition (Turnbaugh et al. 105	
2006; De Filippo et al. 2010; Muegge et al. 2011; David et al. 2014; Kashtanova et al. 2016; Donovan and 106	
Comstock 2016; Edwards 2017; Donovan 2017; Araújo et al. 2017), host genetics (Leamy et al. 2014; Camarinha-107	
Silva et al. 2017), the use of different food additives or drugs (Dethlefsen et al. 2008; Modi, Collins and Relman 108	
2014; Chassaing et al. 2015; 2017; Namasivayam et al. 2017; Pourabedin et al. 2017; Uebanso et al. 2017) and 109	
infection (Hoffmann et al. 2009; Hill et al. 2010; Braun et al. 2017). The immune system’s dynamic IgA host 110	
response to the microbiota (Suzuki et al. 2004; Peterson et al. 2007; Slack et al. 2012; Macpherson et al. 2012; 111	
Pabst, Cerovic and Hornef 2016; Moor et al. 2017) and its action to hamper bacteria from interacting with the gut 112	
tissue (“immune exclusion”) and to grow (“enchained growth”, (Moor et al. 2017)), as well as other innate and 113	
adaptive immune mechanisms, also have an important role in controlling the microbiota and shaping the 114	
community structure (Slack et al. 2009; Ivanov et al. 2009; Macpherson, Geuking and McCoy 2012; Schnupf, 115	
Gaboriau-Routhiau and Cerf-Bensussan 2013; Spasova and Surh 2014; Rescigno 2014; Kato et al. 2014; Bang et 116	
al. 2014; Goto et al. 2014; Dowds, Blumberg and Zeissig 2015; Atarashi et al. 2015; Furusawa, Obata and Hase 117	
2015; Ivanov 2017).  118	
The different environments that individuals and their gut ecosystem experience therefore select for a particular set 119	
of strains within the microbiota. However, a core bacterial genetic pool can be defined that is common to all 120	
individuals (Ley et al. 2006; Qin et al. 2010). Scarce resources, such as nutrients and access to a given niche are 121	
limiting factors for growth in this confined ecosystem (reviewed in (Stecher and Hardt 2011)). These thoughts were 122	
already, in part, formulated earlier in the “nutrient niche theory”, a refined niche theory established by Rolf Freter in 123	
1983 (Freter et al. 1983a; 1983b; 1983c). The “nutrient niche theory” or “niche co-existence theory” stresses that 124	
ecological niches are defined by the available nutrients. Further, Freter asserted that a given species can only 125	
establish itself if it is using at least one of the limiting nutrients in the most efficient way. He also hypothesized that 126	
only a few nutrients are responsible for shaping the whole community as they limit the growth potential of the whole 127	
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ecological niche (Freter et al. 1983a; 1983b; 1983c). Although Freter’s classic “nutrient niche theory” is useful to 128	
understand some of the mechanisms occurring in the gut ecosystem, it is not reflective of the entire complexity 129	
observed. Indeed, several cases of mixed-substrate utilization and metabolic flexibility have been described. For 130	
example, E. coli and Salmonella spp., can thrive on tetrathionate, nitrate, succinate, 1,2-propanediol, or 131	
ethanolamines among others, and therefore rapidly adapt to a changing environment in the intestine during 132	
inflammation (Thiennimitr et al. 2011; Winter et al. 2013; Rivera-Chávez et al. 2016a; Faber et al. 2017; Spiga et al. 133	
2017). There are also a few examples of nutritional cooperation between gut microbes described (Rakoff-Nahoum, 134	
Foster and Comstock 2016). 135	
 136	
To date, the complexity of the gut ecosystem and the underlying interaction networks are only beginning to be 137	
understood. We are also only starting to unravel the mechanisms that pathogens have evolved to overcome the 138	
barriers imposed by the microbiota and host to exploit the system to their own benefit. 139	
 140	
Hallmarks of homeostasis 141	
Intestinal pathogens are mainly ingested through consumption of contaminated food or water. During their travel to 142	
their preferred “niche”, they encounter several obstacles and barriers imposed by the members of the ecosystem, 143	
which impede colonization and invasion by intruders. Most pathogens must replicate in the gut lumen in order to 144	
elicit disease (Ackermann et al. 2008). Below, we discuss the primary mechanisms in a healthy host that hamper 145	
pathogens from overcoming these obstacles and cause disease (see Figure 1). 146	
 147	
Stomach acidity and bile acids 148	

After ingestion and resisting salivary enzymes, the first major barrier to infection is the low pH environment of the 149	
stomach. Indeed, pharmacological perturbation of stomach acidity through the use of proton-pump inhibitors leads 150	
to an increased pH and greater susceptibility to enteric infections (reviewed in (Eusebi et al. 2017)). After surviving 151	
the stomach, the pathogen then enters the duodenum, where it is exposed to the massive influx of bile acids, that 152	
are produced by the liver and released by the gall bladder. The primary bile acids are involved in lipid absorption 153	
from food. They also show toxicity towards given groups of bacteria. For example, in rats treated with cholic acid, 154	
phylum-level alterations in the composition of the gut microbiota were observed with an increase in Firmicutes and 155	
a concomitant decrease in Bacteroidetes. Cholic acid feeding also led to a less complex composition of the 156	
microbiota with overrepresentation of members of the classes Clostridia and Erysipelotrichi (Islam et al. 2011). 157	
Therefore, bile acids shape the resident bacterial community by promoting the growth of bile acid-metabolizing 158	
bacteria and by inhibiting in turn, the growth of bile-sensitive bacteria. Several studies in patients suffering from 159	
biliary obstruction, who display blocked bile flow into the small intestine, have shown an association with bacterial 160	
overgrowth and translocation of bacteria in the small intestine (Clements et al. 1996). It was also shown that this 161	
phenotype can be reversed by the administration of bile acids (Lorenzo-Zúñiga et al. 2003). Bile acids thus play an 162	
important role in regulating the microbiota in the small intestine. 163	
Over the length of the intestinal tract, these primary bile acids are metabolized by the microbiota to over 50 164	
different secondary bile acids. One of the possible transformations is deconjugation of bile acids through 165	
extracellular bile salt hydrolases (BSHs). BSHs are encoded by different members of the microbiota, especially in 166	
members of the Firmicutes, Bacteroidetes and some Actinobacteria. The deconjugated secondary bile acids show 167	
less toxicity towards the microbiota than the primary bile acids. Bile acids can also be oxidized and epimerized 168	
(transformation in between two stereoisomers) at specific hydroxyl-groups through transformation by 3-α, 7-α, or 169	
12-α hydroxysteroid dehydrogenases. The secondary bile acids have an important role in gut homeostasis 170	
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by inhibiting inflammation (reviewed in (Ridlon et al. 2014; Winston and Theriot 2016; Wahlström et al. 2016)). A 171	
recent study has shown that disuccinimidyl suberate (DSS)-mediated colitis was ameliorated in the presence of 172	
ursodeoxycholic acid or its taurine- or glycine-conjugated derivatives. Even though daily administration of these bile 173	
acids did not restore the full diversity of the microbiota to pre-DSS levels, specific species, such as Akkermansia 174	
muciniphila and the Clostridium cluster XIVa, were less depleted upon DSS treatment and the ratio of Firmicutes to 175	
Bacteroidetes remained normal (Van den Bossche et al. 2017). Secondary bile acids have also been implicated in 176	
colony resistance, for example resistance against infection by Clostridium difficile (Winston and Theriot 2016; Van 177	
den Bossche et al. 2017). Reducing the pool of secondary bile acids through antibiotic treatment relieves 178	
colonization resistance towards C. difficile and enhances spore germination. A later study demonstrated that the 179	
colonization resistance was mediated by a close relative, Clostridium scindens, through the production of the 7-α- 180	
dehydroxylated bile acids lithocholic acid and deoxycholic acid (Studer et al. 2016).	181	
 182	

 183	
Short-chain fatty acids and other mechanisms of 184	
colony resistance through direct inhibition 185	
In the colon, complex carbohydrates present in the food 186	
or eaten in the form of prebiotics are metabolized by the 187	
resident microbiota into short chain fatty acids (SCFA), 188	
the three most abundant being acetate, propionate and 189	
butyrate. Acetate and propionate are produced mainly by 190	
members of the Lactobacilli and Bifidobacteriae. Butyrate 191	
is produced by bacteria of the phylum Firmicutes, for 192	
example Roseburia spp. and Faecalibacterium 193	

prausnitzii, or different members of the genus Clostridium (Ramirez-Farias et al. 2009; Rivière et al. 2016). Acetate 194	
triggers anti-inflammatory and anti-apoptotic responses in host epithelial cells, which leads to protection in the gut 195	
against colonization with pathogenic bacteria like Enterobacteriaceae and Clostridiae (Fukuda et al. 2011). 196	
Recently, butyrate production by Clostridia species has been implicated in colonization resistance against S. 197	
Typhimurium (Rivera-Chávez et al. 2016b). The authors show that either through antibiotic treatment, or to a lesser 198	
extent, through Salmonella infection and the action of the Salmonella Type Three secretion system (T3SS) and 199	
associated virulence factors, a depletion of butyrate-producing Clostridia species occurs in the intestine of affected 200	
mice. This then leads to an increased epithelial oxygenation and subsequently aerobic expansion of S. 201	
Typhimurium. The colonization resistance against Salmonella, alongside an anaerobic epithelial environment, could 202	
be restored through gavage of the mice with tributyrin, a butyrate metabolic precursor, clearly demonstrating the 203	
inhibitory role of butyrate on Salmonella invasion. 204	
 205	
Colonization resistance and maintenance of the ecosystem through competition and cooperation  206	
In addition to direct inhibition, invading bacteria must also contend with limited available nutrient resources. Nutrient 207	
availability in the gut varies with food intake and time of day. Therefore, the microbiota faces a constantly changing 208	
environment. In a healthy, fully established intestine, all nutrient niches are occupied and incoming species must 209	
utilize methods to displace resident species from their established niches in order to create their own niche. A 210	
recent study analysing the gene expression of co-occurring human gut microbes showed that for 41% of all co-211	
occurring species the presence of one of the organisms was associated with an altered transcriptional profile in the 212	
other, the most affected genes being involved in nutrient uptake and anaerobic respiration (Plichta et al. 2016). 213	

Box	1-	Colonization	resistance	
Colonization	 resistance	 describes	 a	 phenomenon,	
observed	 in	 the	 human	 gut	 as	 well	 as	 in	 many	 other	
ecosystems,	 that	 invading	 pathogens	 (and	 other	
organisms)	 face	 resistance	 against	 establishing	
themselves	 in	 this	 densely	 populated	 space.	 This	
“colonization	 resistance”	 is	 due	 to	 several	 factors,	
namely	competition	for	nutrients	or	direct	inhibition	by	
chemical	 compounds	 or	 “molecular	 weapons”,	 for	
example	 Type	 6	 secretion	 systems	 and	 translocated	
toxins	 or	 other	 toxins.	 Colonization	 resistance	 can	 be	
breached	 by	 interfering	 with	 the	 equilibrium	 of	 the	
ecosystem,	 for	 example	 by	 the	 administration	 of	
antibiotics	or	by	infection.	
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This suggests that nutrient niche partitioning is prevalent within the gut ecosystem. 214	
Furthermore, early in development or after a destabilization of the equilibrium, e.g. by an infection or antibiotic 215	
treatment, the microbiota has to re-establish itself. In this context, a so called “priority effect” is observed, whereby 216	
the first re-colonizing species establish a large colony which hampers the subsequent re-establishment of 217	
otherwise fully adapted species to the other’s niche (Fukami and Nakajima 2011) (reviewed in (Pereira and Berry 218	
2017)). This leads to fierce competition for nutrients within the microbiota and by invading pathogens. It also 219	
suggests that most of the interactions in the gut are based on competition. To date, cooperation is a type of 220	
interaction only very rarely described and does not seem to be as successful as competition in a crowded and 221	
competitive environment such as the intestine (Foster and Bell 2012). In one study of cooperation within the gut 222	
microbiota, Bacteroides ovatus was shown to produce two outer surface glycoside hydrolases, which digest 223	
complex carbohydrates, for example inulin. However, these two hydrolases are not necessary for B. ovatus to grow 224	
on inulin. Rather, other members of the microbiota, such as Bacteroides vulgatus, grow on the inulin breakdown 225	
products produced by B. ovatus. B. ovatus then uses products produced by B. vulgatus and both species flourish 226	
(Rakoff-Nahoum, Foster and Comstock 2016).  227	
Despite the rare documented cases of cooperation, most microbial interactions in the intestine are indeed 228	
competitive.  229	
The metabolic landscape is shaped by a few so-called “keystone species” or “keystone taxa”, which have a large 230	
impact on the rest of the community by degrading initial substrates and making these accessible to many other 231	
species. Keystone species may only be detectable in very low relative abundance, however their outsized effect on 232	
the global microbial composition makes them a “keystone” of the microbiota (reviewed in (Pereira and Berry 2017). 233	
One example of “keystone species” is Akkermansia muciniphila, which degrades secreted host mucus into 234	
products that are then accessible to other bacteria, such as B. vulgatus (Png et al. 2010). Hydrogen and 235	
sulfate/sulfite consuming species represent an example of a “keystone taxa” due to their regulatory effect on the 236	
fermentative activity of other species (Carbonero et al. 2012; Rey et al. 2013). Yet, some of these taxa, for example 237	
Ruminococcus, have evolved to degrade mucin without giving other species access to the degradation products. 238	
The intramolecular transsialidase produced by R. gnavus releases 2,7-anhydro- Neu5Ac instead of sialic acid from 239	
mucin and other glycoproteins, a product that cannot by utilized by other species (Tailford et al. 2015b) (reviewed 240	
in (Tailford et al. 2015a)).   241	
This nutritional limitation represents a strong barrier for the niche establishment of invading species. 242	

 243	
Mucus layer  244	
The mucus layer forms a physical barrier to the 245	
microbiota, preventing direct interaction with the 246	
epithelium (reviewed in (McGuckin et al. 2011; 247	
Pelaseyed et al. 2014)). In the gut, the goblet 248	
cells are responsible for the secretion of the 249	
mucin MUC2, which forms a disulfide cross-250	
linked network. This network is comprised of an 251	
inner layer, which is tightly attached to the 252	
epithelium and mainly impenetrable to bacteria, 253	
as well as a looser, outer layer. This outer layer 254	
harbours a specific community of bacteria, 255	
feeding on the mucus (Li et al. 2015) and 256	

Box	2-	The	concept	of	the	nutritional/dietary	niche	
A	 nutritional	 niche	 describes	 the	 nutrient	 sources	 which	 are	
available	to,	and	usable	by,	a	given	set	of	organisms	at	a	given	time	
and	space.	The	nutritional	niche	therefore	defines	if	an	organism	is	
capable	of	establishing	itself	in	a	given	place	or	not.	The	concept	of	
the	 nutritional	 niche	 is	 a	 sub-definition	 of	 the	 ecological	 niche	
concept.	 The	 concept	 has	 been	 first	 proposed	 by	 Rolf	 Freter	
(Freter’s	 nutritional	 niche	 theory)	 and	 has	 subsequently	 been	
adapted	to	take	into	account	the	instable	flux	of	nutrients	in	given	
ecosystems,	 for	 example	 the	 intestine,	 and	 to	 take	 into	 account	
the	 co-existence	 of	 other	 microorganisms	 utilizing	 the	 same	
nutrients	either	at	different	geographic	locations	in	the	intestine	or	
at	 different	 time	 points.	 The	 theory	 also	 has	 been	 expanded	 to	
take	 into	account	 the	metabolic	 flexibility	 and	mixed-substrate	
utilization	that	most	microorganisms	exhibit.	
The	 process	 by	which	 a	 given	 organism	 changes	 its	 ecological	
niche	is	known	as	“niche	construction”.	(See	(Pereira	and	Berry	
2017)	for	an	extended	review	of	the	topic.)	



	 7/32	

attaching to its o-glycosylated side-chains (Johansson, Larsson and Hansson 2011). Mucus production is dynamic 257	
and depends on the presence of bacterial stimuli, especially LPS (lipopolysaccharide) and PGN (peptidoglycan) as 258	
reported in an elegant study using germ-free mice (Petersson et al. 2011). It has also been known for a long time 259	
that SCFAs are involved in mucus secretion from goblet cells into the gut lumen (Shimotoyodome et al. 2000; 260	
Willemsen et al. 2003). Homeostasis of mucus production is regulated by two complementary bacteria, Bacteroides 261	
thetaiotaomicron (stimulating mucus production through increased goblet cell differentiation) and F. prausnitzii 262	
(inhibiting goblet cell proliferation and mucus glycosylation) (Wrzosek et al. 2013). A preponderance of evidence 263	
shows that mucus composition and structure directly depends on the interplay between resident microbiota and 264	
epithelial tissues (Jakobsson et al. 2015). Several studies have also linked reduced or aberrant O-glycosylation of 265	
mucin to the development of intestinal inflammation (Fu et al. 2011; Larsson et al. 2011; Sommer et al. 2014). 266	
Other studies have shown penetration of commensal bacteria into the inner mucus layer in the context of colitis 267	
(Johansson et al. 2014). The mucus layer thickness is also related to nutrition, especially dietary intake, as it has 268	
been shown recently that low-fibre diets increase mucus-eroding bacteria communities, leading to greater access 269	
for pathogens at the epithelial surface and subsequently increased susceptibility to infection (Desai et al. 2016). 270	
Furthermore, the attachment of the mucus layer to the epithelium is dependent on the microbiota. Meprin β, a host-271	
derived zinc-dependent metalloprotease induced by the microbiota, is needed to detach the mucus in the small 272	
intestine and to subsequently release it into the intestinal lumen (Schütte et al. 2014).  273	
A healthy mucus layer is therefore essential to protect the underlying epithelium from the dense bacterial 274	
population and to physically separate this population from immune cells in the underlying tissue in order to prevent 275	
exaggerated immune activation. 276	
 277	
Mucosal immune system  278	
Prokaryotic microbiota and the immune system 279	
It is now well established that the immune system relies on the microbiota for proper maturation (reviewed in 280	
(Schnupf, Gaboriau-Routhiau and Cerf-Bensussan 2013; Spasova and Surh 2014; Turfkruyer and Verhasselt 281	
2015; Donovan and Comstock 2016; Torow and Hornef 2017)). Different bacterial species guide the development 282	
of specific cell subsets; for example, Segmented filamentous Bacteria (SFB) induce the development of TH17 cells  283	
(Ivanov et al. 2009; Gaboriau-Routhiau et al. 2009; Goto et al. 2014)(reviewed in (Schnupf et al. 2017; Ivanov 284	
2017), and Bacteroides fragilis has been shown to induce Treg proliferation and to act on the T(H)1/T(H)2 balance 285	
(Mazmanian et al. 2005; Round and Mazmanian 2010). F. prausnitzii increases antigen-specific T cells and 286	
decreases the number of IFN-γ(+) T cells (Rossi et al. 2016) and other Clostridia species induce different Treg 287	
subsets (Atarashi et al. 2011). Additionally, short chained fatty acids derived from bacteria regulate Treg numbers in 288	
the intestine (Geuking et al. 2011; Smith et al. 2013; Furusawa, Obata and Hase 2015) and have a direct impact on 289	
overall IgA levels (Kim et al. 2016) (reviewed in (Velasquez-Manoff 2015)).  290	
Mucosal IgA plays a crucial role in gut homeostasis (Peterson et al. 2007; Macpherson and Slack 2007; Pabst, 291	
Cerovic and Hornef 2016). It is known to protect the gut mucosa from access of bacteria (“immune exclusion”) and 292	
to inhibit bacterial replication in the gut lumen (“enchained growth” (Moor et al. 2017)). Through these mechanisms, 293	
IgA regulates the composition and dynamics of the gut microbiota. IgA and the microbiota therefore regulate each 294	
other, leading to a delicate homeostatic balance between stimulation and control (reviewed in (Peterson et al. 295	
2007; Macpherson and Slack 2007; Slack et al. 2012; Macpherson et al. 2012; Pabst, Cerovic and Hornef 2016)). 296	
The microbiota’s effect on the mucosal immune system is not limited to regulatory T cells and IgA secretion. It also 297	
plays a major role in inducing production of antimicrobial peptides (AMPs), which concentrate at the interphase 298	
between the thick, tightly formed, mucus layer and the more dispersed outer layer (reviewed in (Lehrer, 299	
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Lichtenstein and Ganz 1993; Salzman et al. 2010))(Meyer-Hoffert et al. 2008; Vaishnava et al. 2011). Antimicrobial 300	
peptides include the defensins, the Reg-protein family and several other proteins, which act directly on the bacteria 301	
by targeting the bacterial cell wall. In addition, other host factors with antimicrobial activity include lipocalin2/NGAL, 302	
which chelates bacterial siderophores involved in iron acquisition, as well as calprotectin, which leads to the 303	
chelation of two other essential trace elements, zinc and manganese. .  304	
 305	
Eukaryotic microbiota and the immune system 306	
The intestinal microbiota is not only composed of bacteria, but also harbours a whole array of archae, viruses and 307	
eukaryotes. It has been shown that the presence of helminths, through their effect on the host immune system 308	
(Walsh et al. 2009; Finlay, Walsh and Mills 2014; Finlay et al. 2016; Ramanan et al. 2016), can have profound 309	
effects on the microbiota composition in the intestine (Walk et al. 2010; Broadhurst et al. 2012; Giacomin et al. 310	
2015; McKenney et al. 2015; Ramanan et al. 2016; Li et al. 2016; Guernier et al. 2017) , reviewed in  (Gause and 311	
Maizels 2016)) as well as on disease susceptibility within the intestine (Reynolds et al. 2017) and at distant sites, 312	
e.g. the respiratory system (McFarlane et al. 2017). However, alterations in the microbiota composition due to the 313	
presence of helminths are not generalisable, as changes were observed in a first study of 51 persons infected with 314	
Trichuris trichiuria in Malaysia (Lee et al. 2014), but no changes were found in a second study in 97 children from 315	
Ecuador (Cooper et al. 2013) nor in 8 persons living in Australia infected experimentally by Necator americanus 316	
(Cantacessi et al. 2014). Helminths have also been shown to attenuate the effect of intestinal bowel disease by 317	
restoring the number of goblet cells and preventing outgrowth of B. vulgatus in the context of Nod2-/- mice and 318	
associated intestinal inflammation (Ramanan et al. 2016). For some of the observed immune changes, the 319	
helminth-induced changes seem to be mediated through the prokaryotic microbiota (Zaiss et al. 2015). For other 320	
effects, they seem to be independent from the microbiota (Osborne et al. 2014), highlighting the complex interplay 321	
found within the gut ecosystem. Very recently, a member of the eukaryome, Tritrichomonas musculis, was shown 322	
to activate the epithelial inflammasome to induce protection against bacterial mucosal infection (Chudnovskiy et al. 323	
2016). Other protists, such as Giardia (Barash et al. 2017) and possibly Blastocystis (Audebert et al. 2016; 324	
Siegwald et al. 2017) have also been shown to change the resident prokaryotic microbiota. However, data remains 325	
conflicting, pointing towards the fact that shifts in the microbiota through given eukaryotes might be strain-specific. 326	
Due to incomplete databases, it is currently difficult to determine the exact strain of a eukaryotic organism by 327	
comparison against the database. More work in curating these databases is therefore needed to better appreciate 328	
the influence that specific eukaryotes might have on the prokaryotic microbiota. More work is also needed to 329	
unravel the triad of eukaryotes, prokaryotes, and the immune system to better understand the mutual interactions 330	
that take place. 331	
 332	
Taken together, the microbiota and the development and proper function of the mucosal immune system are 333	
exquisitely intertwined. Thus, perturbations on either side of this ecosystem can deregulate the balance and leave 334	
the host open to infection or inflammatory diseases (Clarke 2014). 335	
 336	
Friend or foe: pathogens facing the microbiota and the host  337	
As discussed, the host and its microbiota have set-up a tightly regulated network of mutual control. Invading 338	
pathogens therefore have several barriers to overcome in order to establish themselves and cause disease (see 339	
Figure 2).  340	
Within the last decade, much progress has been made in understanding the “ménage à trois” of the microbiota, the 341	
host, and pathogens. In this section we will discuss the mechanisms that have evolved in pathogens to overcome 342	
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the protective environment arising from homeostasis and summarize the complex interactions that take place 343	
between pathogens, the microbrobiota and their host. 344	
 345	
Combatting the resident microbiota by direct killing or by inhibition  346	
Small antibacterial toxins 347	
A number of small, mainly plasmid-encoded, antibacterial peptides termed bacteriocins or microcins, are produced 348	
and secreted by a broad range of bacteria, including the Bifidobacteria (reviewed in (Martinez et al. 2013; Alvarez-349	
Sieiro et al. 2016)), Lactobacilli (Collins et al. 2017), Enterococci (Kommineni et al. 2015) and many more. It has 350	
been demonstrated that bacteriocin production leads to a niche advantage for the bacteria expressing them (Riley 351	
and Wertz 2002; Kommineni et al. 2015). Some of the bacteriocins and microcins have been shown to act against 352	
pathogenic strains (Kommineni et al. 2015; Sassone-Corsi et al. 2016b), thereby augmenting colonization 353	
resistance and mediating resistance to invading pathogens. One bacteriocin subclass produced by 354	
Enterobacteriaceae and termed colicins are encoded by several pathogenic strains including S. Typhimurium 355	
(Nedialkova et al. 2014) and Shigella sonnei (Anderson et al. 2017; Calcuttawala et al. 2017). It has been shown 356	
recently that S. Typhimurium expresses colicin Ib (ColIB), giving it a fitness advantage over the closely related E. 357	
coli, which blooms simultaneously in the gut upon Salmonella-induced intestinal inflammation. ColIb is regulated 358	
through the SOS-response and iron-limitation and upregulated in the context of inflammation (Nedialkova et al. 359	
2014). Therefore, the carriage and induced upregulation of colicins seems to be an evolutionary adaption of 360	
enteropathogens in order to have a selective advantage in the ecological niche they share with commensal E. coli 361	
in the inflamed gut.  362	
 363	
Type 6 secretion system (T6SS) 364	
T6SS are encoded by a substantial number of gram-negative pathogens, as diverse as Helicobacter hepaticus 365	
(Chow and Mazmanian 2010), S. Typhimurium (Sana et al. 2016), S. sonnei (Anderson et al. 2017), Pseudomonas 366	
aeruginosa (Mougous et al. 2006), enteroaggregative E. coli (Dudley et al. 2006), Vibrio cholera (Pukatzki et al. 367	
2006) and B. fragilis (Hecht et al. 2016; Chatzidaki-Livanis, Geva-Zatorsky and Comstock 2016) to name a few. 368	
Indeed, T6SS homologous have been described in up to 25% of all sequenced gram-negative genomes. While 369	
some bacteria use their T6SS to interfere with host processes (Brodmann et al. 2017), alter the immune response 370	
upon infection (Chow and Mazmanian 2010; Hachani, Wood and Filloux 2016; Aubert et al. 2016; Chen et al. 371	
2017), or modulate virulence (Bladergroen, Badelt and Spaink 2003; Parsons and Heffron 2005; Pukatzki et al. 372	
2006), growing evidence suggests that T6SS are also used to attack the resident microbiota and to confer the 373	
bacteria expressing them with a competitive advantage ((Russell et al. 2014; Unterweger et al. 2014; Sana et al. 374	
2016; Chatzidaki-Livanis, Geva-Zatorsky and Comstock 2016; Anderson et al. 2017; Bernal et al. 2017; Tian et al. 375	
2017; Kim et al. 2017), reviewed in (Sana, Lugo and Monack 2017)). Indeed, Shigella, which encodes a T6SS had 376	
a selective advantage in colonization of the mouse gut compared to S. flexneri or E. coli, a phenomenon which was 377	
shown to be largely due to the T6SS (Anderson et al. 2017). In B. fragilis this could also be observed at the strain 378	
level, where symbiotic, non-toxic B. fragilis was shown to outcompete a pathogenic strain in a T6SS-dependent 379	
manner (Hecht et al. 2016; Chatzidaki-Livanis, Geva-Zatorsky and Comstock 2016).  380	
The T6SS is also implicated in other important tasks that confer the bacterium harbouring it a selective advantage 381	
over the resident microbiota. These include iron acquisition (Lin et al. 2017) as well as different mechanisms to 382	
handle oxidative stress induced by the host (Wang et al. 2015; Si et al. 2017; Wan et al. 2017). It has been shown 383	
recently in marine bacteria that T6SS are horizontally shared between different species (Salomon et al. 2015). 384	
Furthermore, in Vibrio cholera, the T6SS was shown to be able to foster horizontal gene transfer (Borgeaud et al. 385	
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2015). Clearly, the last few years have seen strong advancements in the understanding of T6SS contributions to 386	
microbial life cycles (Filloux 2013), while more work is needed in order to fully understand the full scope of T6SS 387	
functions. 388	
 389	
Exploiting nutrients to gain a selective advantage over the resident microbiota 390	
The most limiting nutrients in the gut are micronutrients, especially iron, as well as general energy sources, such as 391	
carbohydrates. Bacterial pathogens have evolved a number of strategies to selectively acquire nutrients over the 392	
resident microbiota in the race for these resources. 393	
 394	
Iron scavenging and use of specific siderophores 395	
The host has evolved sophisticated strategies termed “nutritional immunity” to limit the amount of available iron that 396	
the microbiota has access to, (reviewed in (Cassat and Skaar 2013) and (Kortman et al. 2014)). Bacteria have 397	
responded by maximizing their ability to uptake iron through the secretion of iron-scavenging molecules, termed 398	
siderophores, which give them a selective advantage over strains lacking the scavenging capability (Niehus et al. 399	
2017). Lipocalin2 (NGAL in humans) is a potent antimicrobial factor secreted by the host whose function is to 400	
sequester iron bound siderophores (Flo et al. 2004). Bacteria do not only have to compete with the host for iron, 401	
but also with the resident members of the microbiota. Indeed, many microbes encode species-specific 402	
siderophores that require specific re-uptake machinery to bind and import the iron-siderophore complex (reviewed 403	
in (Miethke and Marahiel 2007)). Many enteropathogens have also evolved specific strategies to more efficiently 404	
scavenge any available iron. S. Typhimurium for example secretes Salmochelin, which is not recognized by 405	
lipocalin2/NGAL (Raffatellu et al. 2009). Using Salmochelin, S. typhimurium is able to obtain enough iron to 406	
overcome iron-restriction, leading to a selective growth advantage over neighbouring bacteria. This proves 407	
especially important in the context of the inflamed intestine where Salmonella thrives amidst large quantities of 408	
Lipocalin2 secreted mainly by recruited neutrophils.  409	
 410	
Use of alternative energy sources 411	
S. Typhimurium is a useful model pathogen to illustrate the basic mechanisms that pathogens employ to bypass 412	
the metabolic environment established by the microbiota. Initial replication of Salmonella in the yet undisturbed gut 413	
depends on hydrogen gas, an important intermediate in microbiota metabolism (Maier et al. 2013). Once 414	
Salmonella has invaded the gut mucosa and induced inflammation, other energy sources become available and 415	
are exploited by the pathogen. One of these is the aerobic and anaerobic respiration of 1, 2-propanediol generated 416	
by the resident microbiota (demonstrated in mono-associated mice using B. fragilis and B. thetaiotaomicron) 417	
through fermentation of fucose or rhamnose in the inflamed intestine (Faber et al. 2017). Salmonella can also thrive 418	
by oxidative respiration on succinate, which is released by the resident microbiota (Spiga et al. 2017). As an 419	
alternative energy source, Salmonella is also capable of using galactarate and glucarate, generated by the 420	
microbiota after antibiotic treatment. This metabolic versatility, especially in an oxidative environment as is found in 421	
the inflamed intestine, is likely the basis of the long known condition of antibiotic-mediated Salmonella expansion 422	
(Faber et al. 2016). Another nutrient source is siacylic acid, liberated from the breakdown of sialyated mucins by B. 423	
thetaiotaomicron and other microbiota members. B. thetaiotaomicron secretes a sialidase but lacks the ability to 424	
use the freed siacylic acid itself. In turn, this acid is metabolized by C. difficile and S. Typhimurium as an alternative 425	
nutrient source giving them a selective nutritional advantage over neighbouring bacteria (Ng et al. 2013; Huang et 426	
al. 2015). Differential energy utilization has also been recently shown in some E. coli species, which use 427	
microbiota-derived formate as an alternative energy source to increase their advantage over other resident species 428	
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(Hughes et al. 2017).  429	

Several enteropathogens, including Citrobacter rodentium, Campylobacter jejuni and S. Typhimurium, induce acute 430	
intestinal inflammation through their virulence factors (reviewed in (Winter et al. 2010a)). The inflammation provides 431	
these pathogens with an advantage over the resident microbiota by transforming the intestine into an aerobic 432	
environment. Niche creation can be exemplified by the widely studied enteropathogen S. Typhimurium (reviewed in 433	
(Winter, Lopez and Bäumler 2013; Winter and Bäumler 2014a)). It is likely that similar mechanisms that have 434	
evolved in Salmonella have also evolved in other enteropathogens, for example E. coli and Shigella spp. and 435	
together contribute to the “enterobacterial bloom” that is observed in the inflamed gut ((Lupp et al. 2007; Stecher et 436	
al. 2010) reviewed in (Winter and Bäumler 2014a)). Inflammation leads to the production of respiratory electron 437	
acceptors, for example nitrogen species and reactive oxygen species. These products are converted in the 438	
intestine to nitrate. Nitrate can be used by Salmonella spp., E. coli and potentially other facultative anaerobe 439	
members of the Enterobacteriaceae as an alternative electron acceptor, giving them a selective advantage over 440	
other resident bacteria, which rely mainly on anaerobic fermentation of carbohydrates (Lopez et al. 2012; Spees et 441	
al. 2013; Winter et al. 2013). Salmonella has also been shown to use other electron acceptors, for example S-442	
oxides, ethanolamine or tetrathionate, which are present in larger amounts in the inflamed intestine (Winter et al. 443	
2010b; Thiennimitr et al. 2011). In a recent study, it could be shown that Salmonella T3SS activation leads to a 444	
depletion of Clostridium species, which in turn leads to a decrease in butyrate levels. Butyrate is the most important 445	
energy source of colonocytes and butyrate oxidation to carbon dioxide leads to the consumption of local oxygen 446	
and the generation of an anaerobic environment. The lack of butyrate therefore increases tissue oxygenation, 447	
generating a favourable niche for Salmonella’s aerobic expansion in the gut lumen (Rivera-Chávez et al. 2016b).  448	

Under physiological conditions, the microbiota induces expression of PPARγ, resulting in an increase in β-oxidation 449	
of the colonocytes and hence an anoxic environment. In the context of antibiotic treatment, PPARγ-induction is 450	
inhibited and the colonocytes switch to anaerobic glucose oxidation. This then leads to increased availability of 451	
nitrate and allows for aerobic expansion of Enterobacteriaceae (Byndloss et al. 2017). Inflammation also leads to 452	
outgrowth of other bacterial species, for example B. vulgatus (Huang et al. 2015). Through its sialidase activity, B. 453	
vulgatus releases sialic acid from the intestinal tissue, supporting the growth of E. coli. B. vulgatus thereby 454	
contributes to the occurrence of the “enterobacterial blooms” observed during inflammation. Conversely, 455	
enterobacterial blooms during infection are abrogated when sialidase inhibitors are administered (Huang et al. 456	
2015). Gut inflammation can also boost horizontal gene transfer, either between pathogenic and commensal 457	
enteropathogens or between dense populations of enteropathogens in the context of the so-called “enterobacterial 458	
booms” (see text above). This has been shown for the transfer of a colicin-carrying plasmid p2 (Stecher et al. 2012)  459	
as well as of temperate phages (Diard et al. 2017). Enterobacterial blooms can therefore contribute to pathogen 460	
evolution of some species.  461	

Virulence genes 462	
Once in contact with the host, pathogens have developed different strategies to influence the host and exploit it to 463	
their own benefit. This is mainly achieved through so called “virulence factors”. First and foremost, pathogens 464	
express “classical” virulence factors, for example toxins and the T3SS and their associated effector proteins. The 465	
function and specific role of these virulence factors have been discussed in detail elsewhere ((Puhar and 466	
Sansonetti 2014; Qiu and Luo 2017) and many others for specific pathogens). The expression of these virulence 467	
factors can be constitutive. However, with the immense fitness cost virulence gene expression imparts on the 468	
pathogen, virulence gene expression is often regulated by environmental cues. This means that the 469	
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bacterium only expresses the virulence genes once it is in close contact with the host and at the right location along 470	
the gastrointestinal tract.  471	
 472	
Induction of pathogen virulence genes by cues from the host 473	
Different host cues allow invading pathogens to pinpoint their position within their host and to regulate virulence 474	
genes only once the appropriate location has been reached. Host cues for virulence regulation include bile 475	
acids (Antunes et al. 2012; Brotcke Zumsteg et al. 2014; Eade et al. 2016), pH (Behari, Stagon and Calderwood 476	
2001), temperature (Elhadad et al. 2015; Nuss et al. 2015; Fraser and Brown 2017), nutrient availability (reviewed 477	
in (Porcheron, Schouler and Dozois 2016)), and oxygen levels ((Marteyn et al. 2010; Fraser and Brown 478	
2017) reviewed in (Marteyn et al. 2011; Marteyn, Gazi and Sansonetti 2012)). Oxygen levels are dynamic within 479	
the intestine and even within the anoxic colon an oxygen tension gradient is present in close proximity to the 480	
epithelial surface. Shigella flexneri has adapted to this gradient by repressing its T3SS in response to reduced 481	
oxygen levels encountered in the lumen of the intestine. The key outcome is to conserve metabolic resources in 482	
this energy and nutrient depleted environment. This regulation has the added benefit of more closely aligning the 483	
expression of virulence factors to the site of infection at the epithelial layer, where they are actually used. The 484	
suppression of the T3SS system is mediated by the oxygen sensitive regulator gene fnr. When oxygen pressure 485	
increases near the epithelium, the anaerobic block on the master regulators of the T3SS, spa32 and spa33, is 486	
released and the genes of the T3SS can be expressed (Marteyn et al. 2010).  487	
Another example of regulated virulence is the bile salt-mediated activation of virulence in Vibrio cholerae. It was 488	
recently shown through a series of elegant in vitro experiments in a tissue model of infection that virulence genes of 489	
V. cholerae are induced by the bile salt taurocholate, glyocholate and cholate, but not the deconjugated 490	
deoxycholate or chenodeoxycholate. This virulence activation is mediated through dimerization of the transcription 491	
factor TcpP by disulfide bond formation. Consequently, a V. cholerae strain mutated in the respective cysteine is 492	
unable to respond to the bile salts, leading to a competitive disadvantage compared to the wildtype strain in an 493	
infant mouse model of colonization. This colonization difference was abolished when a bile-salt sequestering 494	
resine, cholestyramine, was co-administered, confirming the crucial role of bile acids in the observed colonization 495	
defect (Yang et al. 2013). 496	
A third example is the regulation of virulence genes in Enterotoxigenic E. coli (ETEC) and its close relative, the 497	
mouse pathogen C. rodentium in the intestine. A recent study has shown that the two neurotransmitters 498	
epinephrine and norepinephrine, that are produced by the endocrine cells localized in the intestine are needed for 499	
the full expression of virulence/colonization genes (Moreira et al. 2016).  500	
Together, these observations show that pathogens have evolved varied and complex mechanisms to tightly 501	
regulate their virulence attributes. This helps pathogens avoid unnecessary energetic costs that may lead to a loss 502	
of fitness in the highly competitive gut environment (see (Diard and Hardt 2017) for a recent review on the evolution 503	
of bacterial virulence).   504	
 505	
Induction of pathogens’s virulence genes by members of the microbiota  506	
We previously discussed the cues from the host that lead to the induction of virulence genes expression in the 507	
invading pathogens. Beside this host-mediated induction, some virulence genes are also controlled by sensing 508	
metabolites derived from the microbiota, for example SCFAs (butyrate, actetate, lactate and propionate). A recent 509	
study has shown that microbiota-derived SCFAs modulate the expression of virulence genes in Campylobacter 510	
jejuni. The authors discovered that the gradient of SCFAs butyrate, acetate, and lactate along the intestinal tract 511	
guide expression of genes involved in virulence and commensalism of C. jejuni. Lactate, which is abundant in the 512	
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upper intestinal tract, suppresses production of C. jejuni virulence genes, while acetate and butyrate, two SCFA’s 513	
that are mostly produced in the lower intestinal tract, activate virulence pathways (Luethy et al. 2017).  514	
Expression of the Salmonella pathogenicity island 1 (SPI-1) is inhibited in the presence of propionate, a SCFA that 515	
is produced mainly by Lactobacilli and Bifidobacteria and is more abundant in the upper gastrointestinal tract. 516	
Propionate acts through posttranslational modification on HilD, the master regulator of the Salmonella SPI-1 (Hung 517	
et al. 2013). This inhibition ensures that the coordinated expression of SPI-1 genes starts only in the distal small 518	
intestine, the main site of Salmonella infection. Another example of microbiota-mediated virulence gene expression 519	
is the enhancement of enterohemorraghic E. coli (EHEC) T3SS by B. thetaiotaomicron.  B. thetaiotaomicron is an 520	
abundant member of the gut microbiota metabolizing complex polysaccharides into monosaccharides that can be 521	
further processed by a number of other bacteria. The presence of B. thetaiotaomicron leads to a local increase in 522	
the levels of succinate, which is sensed by the transcription factor Cra of EHEC. Cra activation leads to an increase 523	
in the expression of the genes encoding EHEC’s T3SS while leaving the general growth of the pathogen unaffected 524	
(Curtis et al. 2014).  525	
 526	
Induction of AMP’s by pathogens to inhibit microbiota competition 527	
Some pathogens have evolved mechanisms to exploit the host’s own antibacterial defenses. By developing 528	
countermeasures against host AMPs, pathogens can rely on the host response to combat the resident microbiota 529	
and gain a selective advantage. Salmonella Typhimurium for example uses an alternative siderophore 530	
(Salmochelin, described above), which is resistant to chelation by Lipocalin2. Salmonella has also evolved 531	
strategies to resist against calprotectin-induced sequestration of zinc and manganese (Liu et al. 2012), giving 532	
Salmonella a selective advantage over the majority of microbiota members that do not have the necessary tools to 533	
survive in the inflamed gut. 534	
Salmonella infection induces the cytokine IL-22, which in turn activates AMP’s (Behnsen et al. 2014). One of the 535	
proteins induced is the antimicrobial peptide Reg3beta. Previously, Stelter and colleagues showed that induction of 536	
this antimicrobial peptide inhibits the competing microbiota (Miki, Holst and Hardt 2012), while having no effect on 537	
the resistant S. Typhimurium (Stelter et al. 2011). In a new study, Miki and collaborators could show that Reg3beta 538	
extends gut colonization by S. Typhimurium through the prolonged induction of a pro-inflammatory environment 539	
and changes to the microbiota, especially an inhibition of Bacteroides species. The alteration of the microbiota also 540	
leads to profound changes in the metabolic landscape with metabolites of Vitamin B6 being the most affected. The 541	
authors could show that re-insertion of Bacteroides species or supplementation of Vitamin B6 alone was able to 542	
accelerate clearance of Salmonella from infected mice (Miki et al. 2017).  543	
A recent study in Ixodes scacpularis ticks showed a similar mechanism whereby Anaplasma phagocytophilum 544	
infection induced Ixodes anti-freeze glycoprotein (Iafgp), which alters biofilm formation in the Ixodes gut to 545	
destabilize the resident microbiota and facilitate niche construction of A. phagocytophilum. It is likely that many 546	
pathogens have evolved similar mechanisms to take advantage of host defence mechanisms to facilitate niche 547	
construction and induce a host-derived selective advantage over the resident microbiota. 548	
 549	
Evolutionary adaptions of pathogens to overcome homeostasis: penetrating the mucus layer  550	
As described previously, the mucus layer constitutes a thick, protective layer between the gut lumen and the 551	
epithelium. To get access to the epithelium, pathogens have evolved strategies to penetrate the mucus layer and 552	
enter the underlying epithelium. Porphyromonas gingivalis, a pathogen found mostly in the oral cavity, secretes a 553	
cysteine protease (RgpB), which leads to Muc2 cleavage (van der Post et al. 2013). Mucinases also play an 554	
important role in the colonization and fitness of pathogenic E. coli (Valeri et al. 2015), an E. coli strain associated 555	
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with Crohn’s disease (Gibold et al. 2016), and also eukaryotic pathogens such as Candida albicans (Colina et al. 556	
1996) or Entamoeba histolytica (Lidell et al. 2006). It is likely that other enteropathogens also express mucinases to 557	
gain access to the underlying epithelium although more research is needed to fully address the scope of mucinase 558	
secretion and usage by pathogens. 559	
	560	
Mechanisms established by the microbiota to clear off invading pathogen after infection 561	

The microbiota not only plays an important role in preventing the colonization of pathogens, but also in the 562	
pathogen clearing from the gut upon resolution of the inflammation. The mechanisms underlying this process differ 563	
from those governing colonization resistance as the mucosa and the microbiota have both been affected and 564	
therefore need to return to homeostasis (Endt et al. 2010). In the case of S. Typhimurium infection it was shown 565	
that recovery is mainly mediated by the microbiota and was largely independent of the IgA pool (Endt et al. 2010). 566	
Mechanistic insights on the underlying causes of clearance were elucidated in a study on Vibrio cholera infection, 567	
showing an increase in Ruminococcus obeum upon infection of mice with the pathogen. The same was also 568	
observed in a cohort of infected humans from Bangladesh recovering from the disease. In elegant mouse studies, 569	
the authors showed that Ruminococcus obeum, through the expression of the luxS gene (autoinducer-2 synthase), 570	
promotes quorum sensing-mediated restriction of virulence gene expression in V. cholerae, leading to a decrease 571	
in host symptoms (Hsiao et al. 2014) 572	

Dysbiosis: Towards a new interpretation of Koch's postulate 573	
It is now common knowledge that the gut is a complex ecosystem with different interacting entities and that 574	
infections must be understood in this context rather than isolated as a pathogen and a host. In consequence, for 575	
these complex diseases, neither Koch’s postulate (“a pathogen, a disease”) nor the molecular Koch’s postulate as 576	
proposed by Stanley Falkow (“a virulence gene, a disease”, (Falkow 1988)) are sufficient. In a very recent review 577	
by Neville and collaborators, a third interpretation of the Koch’s postulates, the commensal Koch’s postulate, was 578	
proposed (“a beneficial microbe”, “an ameliorated disease state”). The authors infer a new framework for 579	
establishing causation in microbiome studies were they use the commensal Koch’s postulate to test if a given 580	
microorganism is able to ameliorate a disease state in a reproducible manner (Neville, Forster and Lawley 2017). 581	
As in the original Koch’s postulate, they propose that for inferring causation, the “beneficial” commensals need to 582	
be isolated in pure cultures before they are re-introduced and tested in a host for their capacity to mitigate disease. 583	
 584	
We propose yet another interpretation of Koch’ postulate, which we have termed “ecological Koch’s postulate (“a 585	
gut ecosystem state, a disease”). Underlying these postulates is the fact that the gut harbours a full ecosystem, 586	
rather than an isolated bacterium or pathogen. This means that rather than an isolated microorganism or group of 587	
microorganisms, a whole ecosystem, including the microbiota, the genetic make-up of the host as well as nutrition, 588	
age etc. form an entity, which can ultimately lead to disease (see Figure 3 and Box 3). 589	
 590	
The ecological Koch’s postulates are based on two major observations, both pointing towards the fact that the clear 591	
distinction between a pathogen and a commensal are probably too simple of a model to explain complex disease 592	
states. 593	
 594	
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(I) Not every person infected with a 595	
“pathogen” will manifest disease. 596	
Therefore, host susceptibility, from a 597	
genetic point of view, but also from the 598	
resident microbiota, the nutrition, earlier 599	
infections, or other insults to the 600	
microbiota, play as much of a role in the 601	
manifestation of disease as does the 602	
presence of given virulence factors in an 603	
aggressing pathogen. The pathogens not 604	
only need to be present and harbour the 605	
virulence genes, but they also need to 606	
express these genes and be able to 607	
establish a niche for themselves within 608	
the competitive environment of the 609	

already established microbial community in order to replicate and then cause disease.  610	
 611	
(II) In the last years, several gastrointestinal diseases have emerged, which are not associated with an overt 612	
pathogen, but where the microbial community as a whole seems to mediate the disease. Examples are intestinal 613	
bowel disease, colorectal cancer, obesity, and different states of malnutrition. Indeed, depending on the microbial 614	
community pathogens find themselves in, bacteria, which normally do behave as commensals may become 615	
invasive and cause disease. For all of these diseases, a decrease in the composition complexity of the microbiota 616	
leads to dysbiosis and an oxidation of the gut environment as well as an increase in aeortolerant species such as 617	
Enterobacteriaceae (Rivera-Chávez, Lopez and Bäumler 2017). These disturbances in the ecosystem lead to a 618	
lowered resilience and increased susceptibility to pathogens and other, normally commensal, bacteria with 619	
potential harmful properties (often called “pathobionts”). Indeed, these diseases are characterized by the fact that 620	
the wrong bacteria are in wrong proportions, in wrong “company” (Huang et al. 2015) or in the wrong “place” 621	
(Brown et al. 2015; Tomas et al. 2016). The presence of commensal bacteria near the epithelial surface has been 622	
put in relation with the breakdown of gut homeostasis and emergence of pathological states in the context of 623	
environmental enteropathy (Brown et al. 2015) or in a pre-diabetic state (Tomas et al. 2016). 624	
 625	
In the ecological Koch’s postulate, a dysbiotic community, including or not “classical pathogens” or pathobionts 626	
therefore represents a disease. The entity of transmission is the complete dysbiotic microbiota rather than a 627	
pathogen (Koch’s postulate), a virulence gene (molecular Koch’s postulate) or a commensal (commensal Koch’s 628	
postulate).  629	
In accordance to the other Koch’s postulate, the ecological Koch’s postulate are proven through the fact that a 630	
given entity (here the dysbiotic microbiota) from a diseased individual can provoke disease in a formerly healthy 631	
individual. To prove this hypothesis, one hence has to transmit the microbiota from a diseased individual into a 632	
germfree individual/ mouse and this transplanted individual subsequently has to develop the signs of the disease. 633	
This transfer can either be performed in (I) “standard” conditions, using a “wild type, normally fed” germ-free host 634	
(showing a direct effect of the microbiota on disease), or, else, in (II) a “pre-fragilised” host, as an example in a 635	
mouse exhibiting a mutation in a given gene or eating a specific chow. In syndromes, which do need a pre-636	
fragilised host, the dysbiotic microbiota contributes to disease, without however being the only cause for it.  637	

Box	3-	Postulates	for	defining	a	disease-promoting	ecosystem	(dysbiosis)	
	
Ecological	Koch’s	postulates	
1	 The	 dysbiotic	 microbiota	 is	 found	 in	 similar	 composition/	 with	 similar	
characteristics	in	all	affected	individuals	
2	The	dysbiotic	microbiota	can	be	retrieved	from	the	affected	host	
3	 Gavaging	 of	 germ-free	 hosts	 with	 this	 retrieved	 microbiota	 leads,	 in	
combination	with	a	 similar	environment	 (ex.	genetic	make-up	of	 the	host,	
nutrition,	age),	to	similar	symptoms	as	in	the	affected	individual	
4	 The	 dysbiotic	microbiota	 composition	 remains	 fairly	 stable	 in	 the	newly	
affected	host		
	
Original	Koch’s	postulates	
1	The	microorganism	must	be	present	in	all	diseased	individuals	
2	The	microorganism	must	be	isolated	from	the	diseased	host	and	be	grown	
in	a	pure	culture	
3	The	re-inoculation	of	a	naïve	host	with	this	pure	culture	must	lead	to	the	
same	disease	as	in	the	original	host	
4	The	microorganism	must	be	recovered	from	the	newly	diseased	host	
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As stated earlier, several inflammatory, gastrointestinal diseases can be explained through the ecological Koch’s 638	
postulate, including obesity. Indeed, if a microbiota from obese mice is transplanted into lean mice, the 639	
transplanted mice showed increased fat deposition (Turnbaugh et al. 2006; Ridaura et al. 2013). The same could 640	
also be proven for kwashiorkor, the oedematous form of acute undernutrition (Smith et al. 2013) as well as for 641	
environmental enteropathy (Brown et al. 2015). On the other hand, it is well known that mutations in nod2 facilitate 642	
and support the onset of IBD (Cho 2001). Therefore, to prove the contribution of the microbiota in IBD, a 643	
susceptible host, mutated for nod2, should be transplanted with the dysbiotic microbiota and this transplanted 644	
microbiota should worsen the disease state.  645	
 646	
An instructive example of a “pathological dysbiosis” and hence a disease following the ecological Koch’s postulates 647	
is chronic and acute malnutrition coupled to associated environmental enteropathy. Several reports have shown 648	
evidence that children suffering from one of these two syndromes have an altered colonic microbiota (Smith et al. 649	
2013; Subramanian et al. 2014; Gough et al. 2015; Blanton et al. 2016a; 2016b) and increased abundance of 650	
asymptomatic pathogen carriage, including enteroaggregative E. coli (Havt et al. 2017), Campylobacter spp. and 651	
Giardia spp. (Platts-Mills et al. 2017). Further, a recent study sequencing cultured microbes from two Bangladeshi 652	
children suffering or not of undernutrition showed that the B. fragilis strain found in the undernourished child is 653	
enterotoxic, while the strains found within the normally nourished child were not. When transplanting the native 654	
community into germfree mice and infecting with the enterotoxigenic B. fragilis strain, the authors could show that 655	
the enterotoxigenic strain causally led to malnutrition and associated pathophysiological disturbances only in its 656	
native community, but not when administered to mice harboring the microbiota of the healthy child (Wagner et al. 657	
2016). These observations put forward the hypotheses that (I) even subclinical infections with enteropathogens can 658	
have negative effects on gut health and that (II) pathogens or pathobionts, depending on the community they dwell 659	
in, might have negative effects on host homeostasis or not. This indeed supports the concept of the “ecological 660	
Koch’s postulates”, stating that the whole ecosystem, rather than an isolated element contributes to morbidity. 661	
 662	
Overall, we are only beginning to understand the complex relationships and interactions within the gut ecosystem 663	
and more research is needed in order to elucidate the origin and pathophysiological effect of the different dysbiotic 664	
communities and to understand the crosstalk they have between each other as well as with the host. 665	
 666	
Conclusion 667	
Infection biology has been moving in the last decades from the original Koch’s postulate looking at pathogens, to 668	
molecular Koch’s postulate looking at virulence factors, to the newly proposed ecological Koch’s postulate looking 669	
at dysbiosis. Indeed, infection biology has shifted towards an integrated approach of systems biology, ecology, and 670	
evolution. This increasing complexity makes it more and more difficult to untangle the causative effects of disease 671	
states and asks for imaginative and sophisticated designs of experiments to explain the underlying 672	
pathophysiological mechanisms. Particularly, experiments need to take into account the physiological and 673	
pathophysiological state of the infected host, for example the microbiota and the exact nutrition the model animals 674	
are receiving. In recent years, several initiatives have been launched to standardize the microbiota of model 675	
animals (Brugiroux et al. 2016) or at least to meticulously report, not only the exact strain of pathogen used and the 676	
genetics of the mouse model, but also the microbiota composition, as well as the food composition of the animal 677	
models used (Ma et al. 2012; Macpherson and McCoy 2015). This will prove indispensable in the future in order to 678	
compare different studies and explain the pathophysiological mechanisms underlying the complex interplay 679	
between pathogens, the microbiota, and their host. To date, we are only at the beginning of understanding the 680	
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interactions within these ecosystems, the perturbations, which can be induced, and their effect on pathogen 681	
susceptibility and disease. The widely available techniques of sequencing, especially of metagenomics, 682	
metatranscriptomics and metabolomics, will prove essential in this endeavour. Special attention should also be 683	
paid to not forget that the microbiota harbours other organisms than prokaryotes, first and foremost viruses 684	
(including phages and prophages), and eukaryotes. Only an integrated view of the gut ecosystem, including the 685	
host, the pro- and eukaryome and virome as well as the pathogens will allow us to move forward in our 686	
understanding of which mechanisms are governing infection.  687	
The scientific community is on the verge of experiencing another revolution in understanding the complex network 688	
of gut interactions. This will surely open the way for more targeted and personalized interventions to infectious 689	
diseases based on interference or corrections to the misbalances in the gut ecosystem and restoration of gut 690	
homeostasis. This could include siderophore-based immunization strategies (Mike et al. 2016; Sassone-Corsi et al. 691	
2016a), probiotic bacteria (e.g. E. coli strain Nissle) using similar iron-scavenging mechanisms than the invading 692	
pathogen (Deriu et al. 2013), probiotic strains consuming H2 and hence restricting the use of this energy source for 693	
invading pathogens (Maier et al. 2013), the development of probiotic strains expressing bacteriocins or microcins 694	
targeting the pathogen (Kommineni et al. 2015; Hegarty et al. 2016; Sassone-Corsi et al. 2016b), expressing iron-695	
sequestering mechanisms to inhibit invading pathogens (Vazquez-Gutierrez et al. 2016), siacylidase inhibitors 696	
(Huang et al. 2015) or inhibitors of anaerobic respiration (Winter and Bäumler 2014b) (see Table 1). There are 697	
certainly many other possible intervention strategies yet to be discovered. The generated knowledge will therefore 698	
prove very important in paving the way to propose other intervention strategies, which do not rely on antibiotics. In 699	
a world where antibiotic resistance is on a constant rise this aspect will be of utmost importance.  700	

 701	
  702	
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Figure 1: Homeostatic gut environment (A) versus a dysbiotic gut environment (B). Scheme of an intestine in 703	
homeostasis (left) and in dysbiosis upon invasion of a pathogen (depicted in red). Upon dysbiosis, the mucus layer 704	
is thinner, larger amounts of antimicrobial peptides are secreted (e.g. C-type lectins as Reg3γ) to prevent bacteria 705	
breach the barrier and get access to the underlying tissue. This leads to villous blunting, influx of inflammatory cells 706	
into the lamina propria and depletion of members of the microbiota, leading to a changed composition and lower 707	
diversity of the resident microbiota. 708	
 709	
 710	
Figure 2: Mechanisms evolved by pathogen to combat the resident microbiota and the host 711	
Pathogens have evolved several mechanisms to overcome the barrier imposed by the resident microbiota and the 712	
host. These include direct (bacteriocins, microcins, T6SS) and indirect (nutrient restriction) inhibition of members of 713	
the microbiota, the use of alternative energy sources as well as different mechanisms to overcome the barriers 714	
imposed by the hosts (mucinases, T3SS and other virulence factors acting on the host). 715	
 716	
Figure 3: The evolution of the Koch’s postulate 717	
In recent years, the original Koch’s postulate (“a pathogen, a disease”) have been extended to the molecular 718	
Koch’s postulate (Stanley Falkow, “a virulence genes, a disease”) and here to the ecological Koch’s postulate (“a 719	
dysbiosis, a disease”) 720	
 721	
 722	
 723	
 724	
 725	
 726	
 727	
 728	
 729	
  730	
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Table 1: Possible new intervention strategies intervening with the gut ecosystem to target diseases related 731	
to dysbioses-induced enteropathogenic blooms 732	
 733	
Intervention strategy Evidence for intervention References 

Siderophore-based 
immunization strategies 

Mice immunized mice with siderophores conjugated to an 
immunogenic carrier protein were able to elicit a potent 
immune response and to protect against urinary tract 
infections.  

Mice immunized with a cholera toxin β-siderophore conjugate 
show a potent immune response and are able to protect 
against infection with Salmonella Typhimurium. 

(Mike et al. 2016; 
Sassone-Corsi et al. 
2016a) 

Probiotic strains with 
similar or more efficient 
iron-sequestering 
mechanisms inhibiting 
invading pathogens 

Oral gavage with Escherichia coli strain Nissle 1917 reduces 
S. Typhimurium colonization in mouse models of acute colitis 
or chronic persistent infection. The observed probiotic activity 
depends on the iron-sequestering mechanisms of E. coli 
Nissle, which is highly similar to the one found in Salmonella 
Typhimurium. 

The two bifidobacterial strains Bifidobacterium 
pseudolongum PV8-2 (Bp PV8-2) and Bifidobacterium 
kashiwanohense PV20-2 (Bk PV20-2) are able to inhibit 
growth of S. Typhimurium and E. coli O157:H45 (EHEC) in in 
vitro co-culture experiments and are able to displace the 
pathogens on mucus-producing HT29-MTX cell lines. 

(Deriu et al. 2013) 
(Vazquez-Gutierrez 
et al. 2016), 

Probiotic strains 
consuming H2 to prevent 
initial ecosystem invasion 

In a non-inflamed intestine, S. Typhimurium relys on H2 
metabolisms for invasion. Introducing H2-consuming bacteria 
into the microbiota reduces hyb-dependent S. Typhimurium 
growth. 

(Maier et al. 2013) 

Probiotic strains producing 
butyrate 

Oral gavage of mice with tributyrin reduces growth of S. 
Typhimurium in the inflamed intestine. 

(Rivera-Chávez et 
al. 2016b) 

Probiotic strains 
expressing bacteriocins or 
microcins targeting the 
pathogen 

Colonization of mice with a bacteriocin-carrying E. faecalis 
strain defective for conjugation leads to clearance of 
vancomycin resistant enterococci. 

Microcin-producing E. coli Nissle is able to limit the growth of 
commensal E. coli, adherent–invasive E. coli and Salmonella 
enterica in the inflamed intestine. 

(Kommineni et al. 
2015; Hegarty et al. 
2016; Sassone-Corsi 
et al. 2016b) 

Siacylidase inhibitors Oral administration of sialidase inhibitors decreases 
outgrowth of E. coli as well as the severity of colitis in a 
mouse model. 

(Huang et al. 2015) 

Inhibitors of aerobic 
respiration 

Aerobic respiration is used by Salmonella spp and other 
Enterobacteriaceae to thrive in the inflamed intestine. 

(Winter and Bäumler 
2014b) 

Sustaining PPAR-γ 
signaling  

 

PPAR-γ signaling in the homeostatic intestine leads to β-
oxidation in the colonocytes and hence an anoxic 
environment limiting nitrate availability and outgrowth of 
Enterobacteriaceae 

(Byndloss et al. 
2017) 

  734	
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