Supplementary data

Functional reconstitution of the type IVa pilus assembly system from enterohaemorrhagic *Escherichia coli*

Areli Luna Rico^{1,2}, Weili Zheng³, Nathalie Petiot¹, Edward H. Egelman³ and Olivera Francetic^{1#}

Contents: Supplementary Table S1. Supplementary Figures S1, S2 and S3.

Table S1. Oligonucleotides used in this study

Name	Sequence (5'-3')
Linear vector 5'	GCGGCCGCGTGCATTATGATTCTTCTCGCTTC
Linear vector 3'	CTTAAGGTGCTTATCGATGATAAGCTGTCAAAC
PpdD operon 5'	GACAGCTTATCATCGATAAGCACCTTAAGTTCTTCGTAACGCCTCGC
PpdD operon 3'	CCTATAGCACCCATGGGGCCCGGTTGAAAATACC
Hof operon5'	CAACCGGGCCCCATGGGTGCTATAGGCCATAAATCGAGC
Hof operon3'	AAGCACGGCGCGCCAAAAACATTACCGCTTTTACG
PpdA operon5'	GTAATGTTTTTGGCGCGCCGTGCTTGCCAGCTTTATCAGCGC
PpdA operon 3'	AAGCGAGAAGAATCATAATGCACGCGGCCGCGCCTGTGCCTCTCCCAGC
PpdD AfIII 5'	CACCTTAAGCAAAGTAGCACCAAACCAAATCAA
HofM Ncol 5'	CACCCATGGAAGGCAAGCCAGACGCATTG
PpdA Ascl 5'	CAAGGCGCGCCTTCTCCTCGCTCCATACTGC
PpdC Notl 3'	CAAGCGGCCGCATACTCGAGCTTAACATAGCGGCTCCTGA
Lac p EcoRI 5'	CACGAATTCGCAGCTGGCACGACAGGTT
Lac p Clal 3'	CACATCGATGGCGTAATCATGGTC
GspO Xho 5'	CAACTCGAGGTCCTTCAGGGAGCAACA
GspO Notl 3'	CAAGCGGCCGCGCAAAATTATCTGCAAG
pulCp Eco	CCCGAATTCCGATAGTCCCTATACATGC
pulCp Cla	CAAATCGATCAGCAAAAGGTACCGCCCTAC
hofB AfIII 5	CTCCTTAAGCAACTAAGGAGCGGCAATG
hofB Nco 3	CACCCATGGCCAGAGTTGCTTACTCGCCAT
ppdB Kpn 5	CACGGTACCTTTTTCTCTGCTGGAAGTGTTG
ppdB Eco 3	CACGAATTCTCACAGGTTGAATCCTGTCAC
ppdA Kpn 5	CACGGTACCTTATACGCTGATTGAAACGCTG
ppdA Eco 3	CACGAATTCTTACAGGCATCCTTCTGTTTC
ygdB Kpn 5	CACGGTACCTAGCTTGCTATTACAAGGAATG
ygdB Eco 3	CACGAATTCTCAGGGAAGCTGACATAACG
ppdC Kpn 5	CACGGTACCTTTTAGCCTGCCGGAGGTAATG
ppdC Eco 3	CACGAATTCCTACTGACGATTCGGACAATGC
ppdD Kpn 5	CACGAATTCATTCCACAGCTCACTGAAATG
ppdD Eco 3	CACGAATTCCATTTCAGTGAGCTGTGGAAT
hofB Kpn 5	CACGGTACCGAATATTCCACAGCTCAC
hofB Eco 3	CACGAATTCCAGAGTTGCTTACTCGCCAT
hofC Kpn 5	CACGGTACCGGCGAGTAAGCAACTCTG
hofC Eco 3	CACGAATTCCACGCCAGCGTTATCCCAT
hofN Kpn 5	CACGGTACCGATGAACCCGCCAATTAAT
hofN Eco 3	CACGAATTCGAACCACCAGTCAAAGA
hofO Kpn 5	CACGGTACCGATGAACATGTTCTTTG
hofO Eco 3	CACGAATTCCAACCAGCGTTTAACCCTC
hofP Bam 5	CACGGAICCGGTGATGATCTTTTGTTC
hofP Eco 3	CACGAATTCGAACGTCATCCACCATC
pUT18c Rev	CTTGTCTGTAAGCGGATGC
pKT25 Rev	
Sxy L For	
Sxy Rev	CACGAATICTGAGATIGGTCGTCTGCAAC
Sxy S For	CACAAGCTTCGGGAAAACATAAATTAATC

Supplementary Figures

Figure S1. Sequence conservation of enterobacterial major pilins. Sequence identity (in %) is shown between each pair of PpdD proteins from the 20 diverse enterobacterial species analysed in Fig. 2. The matrix is created by Clustal 2.1.

	1.	2.	з.	4.	5.	6.	7.	8.	9.	10.	11.	12.	13.	14.	15.	16.	17.	18.	19.	20.
1.EHEC	100.00	99.32	90.34	88.11	86.21	97.26	45.39	46.76	45.89	60.42	59.59	84.62	86.21	62.50	64.14	80.69	62.76	58.33	45.00	44.29
2.E. coli K12	99.32	100.00	90.34	88.11	86.90	97.95	45.39	47.48	45.89	60.42	60.27	84.62	86.21	62.50	64.14	80.69	63.45	59.03	45.00	44.29
3.Citrobacter	90.34	90.34	100.00	85.31	87.59	90.34	46.10	46.04	45.52	60.14	57.24	81.12	86.90	61.54	61.11	79.31	59.72	55.24	46.43	46.43
4.Klebsiella	88.11	88.11	85.31	100.00	82.52	87.41	42.55	48.20	46.15	59.57	54.55	86.01	82.52	63.12	64.08	82.52	61.27	58.16	44.29	47.14
5.Salmonella	86.21	86.90	87.59	82.52	100.00	85.52	44.68	46.76	46.21	60.84	59.31	78.32	81.38	62.24	63.19	77.93	60.42	56.64	48.57	45.00
6.Shigella	97.26	97.95	90.34	87.41	85.52	100.00	46.10	46.76	46.58	59.03	58.90	83.22	86.90	62.50	62.76	82.07	64.14	58.33	45.71	45.00
7.Proteus	45.39	45.39	46.10	42.55	44.68	46.10	100.00	37.68	41.84	46.04	41.84	44.68	42.55	46.04	43.66	44.68	41.43	40.71	43.17	46.04
8.Morganella	46.76	47.48	46.04	48.20	46.76	46.76	37.68	100.00	42.45	47.45	45.32	48.92	45.32	44.20	47.83	46.04	46.76	40.58	46.04	44.60
9.Edrwardsiella	45.89	45.89	45.52	46.15	46.21	46.58	41.84	42.45	100.00	51.72	47.30	51.75	45.52	50.00	45.58	47.59	46.94	45.14	42.14	42.86
10.Serratia	60.42	60.42	60.14	59.57	60.84	59.03	46.04	47.45	51.72	100.00	62.07	58.16	60.84	60.42	61.38	57.34	61.81	58.45	50.00	48.55
11.Brenneria	59.59	60.27	57.24	54.55	59.31	58.90	41.84	45.32	47.30	62.07	100.00	56.64	54.48	60.69	61.64	56.55	69.39	52.08	48.57	48.57
12.Raoultella	84.62	84.62	81.12	86.01	78.32	83.22	44.68	48.92	51.75	58.16	56.64	100.00	79.72	63.83	62.68	79.02	61.97	56.74	42.86	44.29
13.Kluyvera	86.21	86.21	86.90	82.52	81.38	86.90	42.55	45.32	45.52	60.84	54.48	79.72	100.00	62.24	61.11	81.38	59.72	55.24	46.43	45.71
14.Pantoea	62.50	62.50	61.54	63.12	62.24	62.50	46.04	44.20	50.00	60.42	60.69	63.83	62.24	100.00	71.92	62.24	60.00	54.93	48.92	48.92
15.Erwinia	64.14	64.14	61.11	64.08	63.19	62.76	43.66	47.83	45.58	61.38	61.64	62.68	61.11	71.92	100.00	59.72	56.55	51.05	46.04	45.32
16.Trabulsiella	80.69	80.69	79.31	82.52	77.93	82.07	44.68	46.04	47.59	57.34	56.55	79.02	81.38	62.24	59.72	100.00	59.72	54.55	44.29	45.71
17.Dickeya	62.76	63.45	59.72	61.27	60.42	64.14	41.43	46.76	46.94	61.81	69.39	61.97	59.72	60.00	56.55	59.72	100.00	56.64	45.00	45.71
18.Yersinia	58.33	59.03	55.24	58.16	56.64	58.33	40.71	40.58	45.14	58.45	52.08	56.74	55.24	54.93	51.05	54.55	56.64	100.00	48.20	46.76
19.Xenorhabdus	45.00	45.00	46.43	44.29	48.57	45.71	43.17	46.04	42.14	50.00	48.57	42.86	46.43	48.92	46.04	44.29	45.00	48.20	100.00	65.71
20.Photorhabdus	44.29	44.29	46.43	47.14	45.00	45.00	46.04	44.60	42.86	48.55	48.57	44.29	45.71	48.92	45.32	45.71	45.71	46.76	65.71	100.00

Figure S2. Full induction of PpdD synthesis requires CRP-S sequence upstream of the *sxy* gene. The *E. coli* K-12 *sxy* gene was amplified by PCR using primers Sxy For L (for pCHAP8746) or Sxy For S (for pCHAP8744) and Sxy Rev. The fragments were digested with EcoRI and HindIII and cloned in the pSU19 vector under control of p*lacZ* promoter. The resulting clones contained DNA sequences shown on the left pCHAP8746 containing the *sxy* gene fragment with the CRP-S sequence shown in red and pCHAP8744 containing the *sxy* gene with its promoter (in blue) without the upstream CRP-S site. Right, immunodetection of PpdD in bacteria of strain PAP7460 carrying plasmid pMS10 and either pCHAP8744 or pCHAP8746. Bacteria were grown for 48 hours on LB plates containing Ap, Cm and IPTG. Migration of Mw markers is indicated on the left with their mass shown in kDa; PpdD migration on SDS-PAGE is indicated on the right.

Figure S3. Sequence alignments of selected T4PS and T2SS components. A. Sequence alignment of the minor pseudopilin PulH of the *K. oxytoca* T2SS and the minor T4a pilin PpdB from EHEC. **B**. Alignment of the major pseudopilin PulG and the major pilin PpdD sequences. **C** Sequence alignment of the T2SS AP component PulM with T4aP protein HofN from EHEC. **D**, Sequence alignment of the T2SS AP component PulM with T4aP protein HofO from EHEC. The transmembrane segments of these proteins are highlighted in blue. Percentage if identical and similar residues are indicated below each comparison.

Α

В

С

 Method:
 Diagonals (BLOSUH62)

 Layout:
 Standard

 Mismatch Pranlty:
 Standard

 Mismatch Pranlty:
 Medium (2)

 A Heighting:
 BLOSUH62

 20
 40

 PulM 1
 MHNLLA-L-U-QQRTREERCLLCGMAVVLL0CVVTLLUPHUQPHUNR-EADURQTLAR-EQ--A-SLG0

 A Heighting:
 BLOSUH62

 20
 40

 FR
 FR

 HoffN 1
 MHNLLA-L-U-QQRTREERCLLEGMAVVLLQCUVTULUPHUQPHUNR-EADURQTLAR-EQ--A-SLG0

 HoffN 1
 MHNLLA-L-U-QQRTREERCLEF VAPILIERVOTULLETSSEERVORVLLQGEQULARSLQITKPRLLERQUIREGRARDGTTRDUQSRLEER

 100
 100

 111
 VQPADFORALMANLDALGO-ACMTTATLARVAQPEUVTUNTLVLERSDEK----AL A + L Q A A U + SDE 126
 100

 126
 LTSITELNENLETSLEGADARSHLNDRGATQOPAGRAGUAGEFVLTARVSDEHVL* 180
 180

 126
 GLTSITELNENLETSLEGADARSHLNDRGATQOPAGRAGUAGEFVLTRVSDEHVL* 180
 180

 128
 180
 180

D